The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 1 | |
| 2 | /* @(#)e_jn.c 1.4 95/01/18 */ |
| 3 | /* |
| 4 | * ==================================================== |
| 5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 6 | * |
| 7 | * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| 8 | * Permission to use, copy, modify, and distribute this |
| 9 | * software is freely granted, provided that this notice |
| 10 | * is preserved. |
| 11 | * ==================================================== |
| 12 | */ |
| 13 | |
| 14 | #ifndef lint |
| 15 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_jn.c,v 1.9 2005/02/04 18:26:06 das Exp $"; |
| 16 | #endif |
| 17 | |
| 18 | /* |
| 19 | * __ieee754_jn(n, x), __ieee754_yn(n, x) |
| 20 | * floating point Bessel's function of the 1st and 2nd kind |
| 21 | * of order n |
| 22 | * |
| 23 | * Special cases: |
| 24 | * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; |
| 25 | * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. |
| 26 | * Note 2. About jn(n,x), yn(n,x) |
| 27 | * For n=0, j0(x) is called, |
| 28 | * for n=1, j1(x) is called, |
| 29 | * for n<x, forward recursion us used starting |
| 30 | * from values of j0(x) and j1(x). |
| 31 | * for n>x, a continued fraction approximation to |
| 32 | * j(n,x)/j(n-1,x) is evaluated and then backward |
| 33 | * recursion is used starting from a supposed value |
| 34 | * for j(n,x). The resulting value of j(0,x) is |
| 35 | * compared with the actual value to correct the |
| 36 | * supposed value of j(n,x). |
| 37 | * |
| 38 | * yn(n,x) is similar in all respects, except |
| 39 | * that forward recursion is used for all |
| 40 | * values of n>1. |
| 41 | * |
| 42 | */ |
| 43 | |
| 44 | #include "math.h" |
| 45 | #include "math_private.h" |
| 46 | |
| 47 | static const double |
| 48 | invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ |
| 49 | two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ |
| 50 | one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */ |
| 51 | |
| 52 | static const double zero = 0.00000000000000000000e+00; |
| 53 | |
| 54 | double |
| 55 | __ieee754_jn(int n, double x) |
| 56 | { |
| 57 | int32_t i,hx,ix,lx, sgn; |
| 58 | double a, b, temp, di; |
| 59 | double z, w; |
| 60 | |
| 61 | /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) |
| 62 | * Thus, J(-n,x) = J(n,-x) |
| 63 | */ |
| 64 | EXTRACT_WORDS(hx,lx,x); |
| 65 | ix = 0x7fffffff&hx; |
| 66 | /* if J(n,NaN) is NaN */ |
| 67 | if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x; |
| 68 | if(n<0){ |
| 69 | n = -n; |
| 70 | x = -x; |
| 71 | hx ^= 0x80000000; |
| 72 | } |
| 73 | if(n==0) return(__ieee754_j0(x)); |
| 74 | if(n==1) return(__ieee754_j1(x)); |
| 75 | sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */ |
| 76 | x = fabs(x); |
| 77 | if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */ |
| 78 | b = zero; |
| 79 | else if((double)n<=x) { |
| 80 | /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ |
| 81 | if(ix>=0x52D00000) { /* x > 2**302 */ |
| 82 | /* (x >> n**2) |
| 83 | * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
| 84 | * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
| 85 | * Let s=sin(x), c=cos(x), |
| 86 | * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
| 87 | * |
| 88 | * n sin(xn)*sqt2 cos(xn)*sqt2 |
| 89 | * ---------------------------------- |
| 90 | * 0 s-c c+s |
| 91 | * 1 -s-c -c+s |
| 92 | * 2 -s+c -c-s |
| 93 | * 3 s+c c-s |
| 94 | */ |
| 95 | switch(n&3) { |
| 96 | case 0: temp = cos(x)+sin(x); break; |
| 97 | case 1: temp = -cos(x)+sin(x); break; |
| 98 | case 2: temp = -cos(x)-sin(x); break; |
| 99 | case 3: temp = cos(x)-sin(x); break; |
| 100 | } |
| 101 | b = invsqrtpi*temp/sqrt(x); |
| 102 | } else { |
| 103 | a = __ieee754_j0(x); |
| 104 | b = __ieee754_j1(x); |
| 105 | for(i=1;i<n;i++){ |
| 106 | temp = b; |
| 107 | b = b*((double)(i+i)/x) - a; /* avoid underflow */ |
| 108 | a = temp; |
| 109 | } |
| 110 | } |
| 111 | } else { |
| 112 | if(ix<0x3e100000) { /* x < 2**-29 */ |
| 113 | /* x is tiny, return the first Taylor expansion of J(n,x) |
| 114 | * J(n,x) = 1/n!*(x/2)^n - ... |
| 115 | */ |
| 116 | if(n>33) /* underflow */ |
| 117 | b = zero; |
| 118 | else { |
| 119 | temp = x*0.5; b = temp; |
| 120 | for (a=one,i=2;i<=n;i++) { |
| 121 | a *= (double)i; /* a = n! */ |
| 122 | b *= temp; /* b = (x/2)^n */ |
| 123 | } |
| 124 | b = b/a; |
| 125 | } |
| 126 | } else { |
| 127 | /* use backward recurrence */ |
| 128 | /* x x^2 x^2 |
| 129 | * J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
| 130 | * 2n - 2(n+1) - 2(n+2) |
| 131 | * |
| 132 | * 1 1 1 |
| 133 | * (for large x) = ---- ------ ------ ..... |
| 134 | * 2n 2(n+1) 2(n+2) |
| 135 | * -- - ------ - ------ - |
| 136 | * x x x |
| 137 | * |
| 138 | * Let w = 2n/x and h=2/x, then the above quotient |
| 139 | * is equal to the continued fraction: |
| 140 | * 1 |
| 141 | * = ----------------------- |
| 142 | * 1 |
| 143 | * w - ----------------- |
| 144 | * 1 |
| 145 | * w+h - --------- |
| 146 | * w+2h - ... |
| 147 | * |
| 148 | * To determine how many terms needed, let |
| 149 | * Q(0) = w, Q(1) = w(w+h) - 1, |
| 150 | * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
| 151 | * When Q(k) > 1e4 good for single |
| 152 | * When Q(k) > 1e9 good for double |
| 153 | * When Q(k) > 1e17 good for quadruple |
| 154 | */ |
| 155 | /* determine k */ |
| 156 | double t,v; |
| 157 | double q0,q1,h,tmp; int32_t k,m; |
| 158 | w = (n+n)/(double)x; h = 2.0/(double)x; |
| 159 | q0 = w; z = w+h; q1 = w*z - 1.0; k=1; |
| 160 | while(q1<1.0e9) { |
| 161 | k += 1; z += h; |
| 162 | tmp = z*q1 - q0; |
| 163 | q0 = q1; |
| 164 | q1 = tmp; |
| 165 | } |
| 166 | m = n+n; |
| 167 | for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); |
| 168 | a = t; |
| 169 | b = one; |
| 170 | /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) |
| 171 | * Hence, if n*(log(2n/x)) > ... |
| 172 | * single 8.8722839355e+01 |
| 173 | * double 7.09782712893383973096e+02 |
| 174 | * long double 1.1356523406294143949491931077970765006170e+04 |
| 175 | * then recurrent value may overflow and the result is |
| 176 | * likely underflow to zero |
| 177 | */ |
| 178 | tmp = n; |
| 179 | v = two/x; |
| 180 | tmp = tmp*__ieee754_log(fabs(v*tmp)); |
| 181 | if(tmp<7.09782712893383973096e+02) { |
| 182 | for(i=n-1,di=(double)(i+i);i>0;i--){ |
| 183 | temp = b; |
| 184 | b *= di; |
| 185 | b = b/x - a; |
| 186 | a = temp; |
| 187 | di -= two; |
| 188 | } |
| 189 | } else { |
| 190 | for(i=n-1,di=(double)(i+i);i>0;i--){ |
| 191 | temp = b; |
| 192 | b *= di; |
| 193 | b = b/x - a; |
| 194 | a = temp; |
| 195 | di -= two; |
| 196 | /* scale b to avoid spurious overflow */ |
| 197 | if(b>1e100) { |
| 198 | a /= b; |
| 199 | t /= b; |
| 200 | b = one; |
| 201 | } |
| 202 | } |
| 203 | } |
| 204 | b = (t*__ieee754_j0(x)/b); |
| 205 | } |
| 206 | } |
| 207 | if(sgn==1) return -b; else return b; |
| 208 | } |
| 209 | |
| 210 | double |
| 211 | __ieee754_yn(int n, double x) |
| 212 | { |
| 213 | int32_t i,hx,ix,lx; |
| 214 | int32_t sign; |
| 215 | double a, b, temp; |
| 216 | |
| 217 | EXTRACT_WORDS(hx,lx,x); |
| 218 | ix = 0x7fffffff&hx; |
| 219 | /* if Y(n,NaN) is NaN */ |
| 220 | if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x; |
| 221 | if((ix|lx)==0) return -one/zero; |
| 222 | if(hx<0) return zero/zero; |
| 223 | sign = 1; |
| 224 | if(n<0){ |
| 225 | n = -n; |
| 226 | sign = 1 - ((n&1)<<1); |
| 227 | } |
| 228 | if(n==0) return(__ieee754_y0(x)); |
| 229 | if(n==1) return(sign*__ieee754_y1(x)); |
| 230 | if(ix==0x7ff00000) return zero; |
| 231 | if(ix>=0x52D00000) { /* x > 2**302 */ |
| 232 | /* (x >> n**2) |
| 233 | * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
| 234 | * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
| 235 | * Let s=sin(x), c=cos(x), |
| 236 | * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
| 237 | * |
| 238 | * n sin(xn)*sqt2 cos(xn)*sqt2 |
| 239 | * ---------------------------------- |
| 240 | * 0 s-c c+s |
| 241 | * 1 -s-c -c+s |
| 242 | * 2 -s+c -c-s |
| 243 | * 3 s+c c-s |
| 244 | */ |
| 245 | switch(n&3) { |
| 246 | case 0: temp = sin(x)-cos(x); break; |
| 247 | case 1: temp = -sin(x)-cos(x); break; |
| 248 | case 2: temp = -sin(x)+cos(x); break; |
| 249 | case 3: temp = sin(x)+cos(x); break; |
| 250 | } |
| 251 | b = invsqrtpi*temp/sqrt(x); |
| 252 | } else { |
| 253 | u_int32_t high; |
| 254 | a = __ieee754_y0(x); |
| 255 | b = __ieee754_y1(x); |
| 256 | /* quit if b is -inf */ |
| 257 | GET_HIGH_WORD(high,b); |
| 258 | for(i=1;i<n&&high!=0xfff00000;i++){ |
| 259 | temp = b; |
| 260 | b = ((double)(i+i)/x)*b - a; |
| 261 | GET_HIGH_WORD(high,b); |
| 262 | a = temp; |
| 263 | } |
| 264 | } |
| 265 | if(sign>0) return b; else return -b; |
| 266 | } |