The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 1 | /*- |
| 2 | * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG> |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * |
| 14 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| 15 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 17 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 18 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 19 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 20 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 21 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 22 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 23 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 24 | * SUCH DAMAGE. |
| 25 | */ |
| 26 | |
| 27 | #include <sys/cdefs.h> |
| 28 | /* __FBSDID("$FreeBSD: src/lib/msun/src/s_fma.c,v 1.4 2005/03/18 02:27:59 das Exp $"); */ |
| 29 | |
| 30 | #include <fenv.h> |
| 31 | #include <float.h> |
| 32 | #include <math.h> |
| 33 | |
| 34 | /* |
| 35 | * Fused multiply-add: Compute x * y + z with a single rounding error. |
| 36 | * |
| 37 | * We use scaling to avoid overflow/underflow, along with the |
| 38 | * canonical precision-doubling technique adapted from: |
| 39 | * |
| 40 | * Dekker, T. A Floating-Point Technique for Extending the |
| 41 | * Available Precision. Numer. Math. 18, 224-242 (1971). |
| 42 | * |
| 43 | * This algorithm is sensitive to the rounding precision. FPUs such |
| 44 | * as the i387 must be set in double-precision mode if variables are |
| 45 | * to be stored in FP registers in order to avoid incorrect results. |
| 46 | * This is the default on FreeBSD, but not on many other systems. |
| 47 | * |
| 48 | * Hardware instructions should be used on architectures that support it, |
| 49 | * since this implementation will likely be several times slower. |
| 50 | */ |
| 51 | #if LDBL_MANT_DIG != 113 |
| 52 | double |
| 53 | fma(double x, double y, double z) |
| 54 | { |
| 55 | static const double split = 0x1p27 + 1.0; |
| 56 | double xs, ys, zs; |
| 57 | double c, cc, hx, hy, p, q, tx, ty; |
| 58 | double r, rr, s; |
| 59 | int oround; |
| 60 | int ex, ey, ez; |
| 61 | int spread; |
| 62 | |
| 63 | if (z == 0.0) |
| 64 | return (x * y); |
| 65 | if (x == 0.0 || y == 0.0) |
| 66 | return (x * y + z); |
| 67 | |
| 68 | /* Results of frexp() are undefined for these cases. */ |
| 69 | if (!isfinite(x) || !isfinite(y) || !isfinite(z)) |
| 70 | return (x * y + z); |
| 71 | |
| 72 | xs = frexp(x, &ex); |
| 73 | ys = frexp(y, &ey); |
| 74 | zs = frexp(z, &ez); |
| 75 | oround = fegetround(); |
| 76 | spread = ex + ey - ez; |
| 77 | |
| 78 | /* |
| 79 | * If x * y and z are many orders of magnitude apart, the scaling |
| 80 | * will overflow, so we handle these cases specially. Rounding |
| 81 | * modes other than FE_TONEAREST are painful. |
| 82 | */ |
| 83 | if (spread > DBL_MANT_DIG * 2) { |
| 84 | fenv_t env; |
| 85 | feraiseexcept(FE_INEXACT); |
| 86 | switch(oround) { |
| 87 | case FE_TONEAREST: |
| 88 | return (x * y); |
| 89 | case FE_TOWARDZERO: |
| 90 | if (x > 0.0 ^ y < 0.0 ^ z < 0.0) |
| 91 | return (x * y); |
| 92 | feholdexcept(&env); |
| 93 | r = x * y; |
| 94 | if (!fetestexcept(FE_INEXACT)) |
| 95 | r = nextafter(r, 0); |
| 96 | feupdateenv(&env); |
| 97 | return (r); |
| 98 | case FE_DOWNWARD: |
| 99 | if (z > 0.0) |
| 100 | return (x * y); |
| 101 | feholdexcept(&env); |
| 102 | r = x * y; |
| 103 | if (!fetestexcept(FE_INEXACT)) |
| 104 | r = nextafter(r, -INFINITY); |
| 105 | feupdateenv(&env); |
| 106 | return (r); |
| 107 | default: /* FE_UPWARD */ |
| 108 | if (z < 0.0) |
| 109 | return (x * y); |
| 110 | feholdexcept(&env); |
| 111 | r = x * y; |
| 112 | if (!fetestexcept(FE_INEXACT)) |
| 113 | r = nextafter(r, INFINITY); |
| 114 | feupdateenv(&env); |
| 115 | return (r); |
| 116 | } |
| 117 | } |
| 118 | if (spread < -DBL_MANT_DIG) { |
| 119 | feraiseexcept(FE_INEXACT); |
| 120 | if (!isnormal(z)) |
| 121 | feraiseexcept(FE_UNDERFLOW); |
| 122 | switch (oround) { |
| 123 | case FE_TONEAREST: |
| 124 | return (z); |
| 125 | case FE_TOWARDZERO: |
| 126 | if (x > 0.0 ^ y < 0.0 ^ z < 0.0) |
| 127 | return (z); |
| 128 | else |
| 129 | return (nextafter(z, 0)); |
| 130 | case FE_DOWNWARD: |
| 131 | if (x > 0.0 ^ y < 0.0) |
| 132 | return (z); |
| 133 | else |
| 134 | return (nextafter(z, -INFINITY)); |
| 135 | default: /* FE_UPWARD */ |
| 136 | if (x > 0.0 ^ y < 0.0) |
| 137 | return (nextafter(z, INFINITY)); |
| 138 | else |
| 139 | return (z); |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | /* |
| 144 | * Use Dekker's algorithm to perform the multiplication and |
| 145 | * subsequent addition in twice the machine precision. |
| 146 | * Arrange so that x * y = c + cc, and x * y + z = r + rr. |
| 147 | */ |
| 148 | fesetround(FE_TONEAREST); |
| 149 | |
| 150 | p = xs * split; |
| 151 | hx = xs - p; |
| 152 | hx += p; |
| 153 | tx = xs - hx; |
| 154 | |
| 155 | p = ys * split; |
| 156 | hy = ys - p; |
| 157 | hy += p; |
| 158 | ty = ys - hy; |
| 159 | |
| 160 | p = hx * hy; |
| 161 | q = hx * ty + tx * hy; |
| 162 | c = p + q; |
| 163 | cc = p - c + q + tx * ty; |
| 164 | |
| 165 | zs = ldexp(zs, -spread); |
| 166 | r = c + zs; |
| 167 | s = r - c; |
| 168 | rr = (c - (r - s)) + (zs - s) + cc; |
| 169 | |
| 170 | spread = ex + ey; |
| 171 | if (spread + ilogb(r) > -1023) { |
| 172 | fesetround(oround); |
| 173 | r = r + rr; |
| 174 | } else { |
| 175 | /* |
| 176 | * The result is subnormal, so we round before scaling to |
| 177 | * avoid double rounding. |
| 178 | */ |
| 179 | p = ldexp(copysign(0x1p-1022, r), -spread); |
| 180 | c = r + p; |
| 181 | s = c - r; |
| 182 | cc = (r - (c - s)) + (p - s) + rr; |
| 183 | fesetround(oround); |
| 184 | r = (c + cc) - p; |
| 185 | } |
| 186 | return (ldexp(r, spread)); |
| 187 | } |
| 188 | #else /* LDBL_MANT_DIG == 113 */ |
| 189 | /* |
| 190 | * 113 bits of precision is more than twice the precision of a double, |
| 191 | * so it is enough to represent the intermediate product exactly. |
| 192 | */ |
| 193 | double |
| 194 | fma(double x, double y, double z) |
| 195 | { |
| 196 | return ((long double)x * y + z); |
| 197 | } |
| 198 | #endif /* LDBL_MANT_DIG != 113 */ |
| 199 | |
| 200 | #if (LDBL_MANT_DIG == 53) |
| 201 | __weak_reference(fma, fmal); |
| 202 | #endif |