Dmitriy Ivanov | 87a0617 | 2015-02-06 10:56:28 -0800 | [diff] [blame^] | 1 | // Copyright 2014 The Chromium Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
| 5 | // Implementation notes: |
| 6 | // |
| 7 | // We need to remove a piece from the ELF shared library. However, we also |
| 8 | // want to ensure that code and data loads at the same addresses as before |
| 9 | // packing, so that tools like breakpad can still match up addresses found |
| 10 | // in any crash dumps with data extracted from the pre-packed version of |
| 11 | // the shared library. |
| 12 | // |
| 13 | // Arranging this means that we have to split one of the LOAD segments into |
| 14 | // two. Unfortunately, the program headers are located at the very start |
| 15 | // of the shared library file, so expanding the program header section |
| 16 | // would cause a lot of consequent changes to files offsets that we don't |
| 17 | // really want to have to handle. |
| 18 | // |
| 19 | // Luckily, though, there is a segment that is always present and always |
| 20 | // unused on Android; the GNU_STACK segment. What we do is to steal that |
| 21 | // and repurpose it to be one of the split LOAD segments. We then have to |
| 22 | // sort LOAD segments by offset to keep the crazy linker happy. |
| 23 | // |
| 24 | // All of this takes place in SplitProgramHeadersForHole(), used on packing, |
| 25 | // and is unraveled on unpacking in CoalesceProgramHeadersForHole(). See |
| 26 | // commentary on those functions for an example of this segment stealing |
| 27 | // in action. |
| 28 | |
| 29 | #include "elf_file.h" |
| 30 | |
| 31 | #include <stdlib.h> |
| 32 | #include <sys/types.h> |
| 33 | #include <unistd.h> |
| 34 | #include <algorithm> |
| 35 | #include <string> |
| 36 | #include <vector> |
| 37 | |
| 38 | #include "debug.h" |
| 39 | #include "elf_traits.h" |
| 40 | #include "libelf.h" |
| 41 | #include "packer.h" |
| 42 | |
| 43 | namespace relocation_packer { |
| 44 | |
| 45 | // Stub identifier written to 'null out' packed data, "NULL". |
| 46 | static const uint32_t kStubIdentifier = 0x4c4c554eu; |
| 47 | |
| 48 | // Out-of-band dynamic tags used to indicate the offset and size of the |
| 49 | // android packed relocations section. |
| 50 | static const ELF::Sword DT_ANDROID_REL_OFFSET = DT_LOOS; |
| 51 | static const ELF::Sword DT_ANDROID_REL_SIZE = DT_LOOS + 1; |
| 52 | |
| 53 | // Alignment to preserve, in bytes. This must be at least as large as the |
| 54 | // largest d_align and sh_addralign values found in the loaded file. |
| 55 | // Out of caution for RELRO page alignment, we preserve to a complete target |
| 56 | // page. See http://www.airs.com/blog/archives/189. |
| 57 | static const size_t kPreserveAlignment = 4096; |
| 58 | |
| 59 | namespace { |
| 60 | |
| 61 | // Get section data. Checks that the section has exactly one data entry, |
| 62 | // so that the section size and the data size are the same. True in |
| 63 | // practice for all sections we resize when packing or unpacking. Done |
| 64 | // by ensuring that a call to elf_getdata(section, data) returns NULL as |
| 65 | // the next data entry. |
| 66 | Elf_Data* GetSectionData(Elf_Scn* section) { |
| 67 | Elf_Data* data = elf_getdata(section, NULL); |
| 68 | CHECK(data && elf_getdata(section, data) == NULL); |
| 69 | return data; |
| 70 | } |
| 71 | |
| 72 | // Rewrite section data. Allocates new data and makes it the data element's |
| 73 | // buffer. Relies on program exit to free allocated data. |
| 74 | void RewriteSectionData(Elf_Scn* section, |
| 75 | const void* section_data, |
| 76 | size_t size) { |
| 77 | Elf_Data* data = GetSectionData(section); |
| 78 | CHECK(size == data->d_size); |
| 79 | uint8_t* area = new uint8_t[size]; |
| 80 | memcpy(area, section_data, size); |
| 81 | data->d_buf = area; |
| 82 | } |
| 83 | |
| 84 | // Verbose ELF header logging. |
| 85 | void VerboseLogElfHeader(const ELF::Ehdr* elf_header) { |
| 86 | VLOG(1) << "e_phoff = " << elf_header->e_phoff; |
| 87 | VLOG(1) << "e_shoff = " << elf_header->e_shoff; |
| 88 | VLOG(1) << "e_ehsize = " << elf_header->e_ehsize; |
| 89 | VLOG(1) << "e_phentsize = " << elf_header->e_phentsize; |
| 90 | VLOG(1) << "e_phnum = " << elf_header->e_phnum; |
| 91 | VLOG(1) << "e_shnum = " << elf_header->e_shnum; |
| 92 | VLOG(1) << "e_shstrndx = " << elf_header->e_shstrndx; |
| 93 | } |
| 94 | |
| 95 | // Verbose ELF program header logging. |
| 96 | void VerboseLogProgramHeader(size_t program_header_index, |
| 97 | const ELF::Phdr* program_header) { |
| 98 | std::string type; |
| 99 | switch (program_header->p_type) { |
| 100 | case PT_NULL: type = "NULL"; break; |
| 101 | case PT_LOAD: type = "LOAD"; break; |
| 102 | case PT_DYNAMIC: type = "DYNAMIC"; break; |
| 103 | case PT_INTERP: type = "INTERP"; break; |
| 104 | case PT_PHDR: type = "PHDR"; break; |
| 105 | case PT_GNU_RELRO: type = "GNU_RELRO"; break; |
| 106 | case PT_GNU_STACK: type = "GNU_STACK"; break; |
| 107 | case PT_ARM_EXIDX: type = "EXIDX"; break; |
| 108 | default: type = "(OTHER)"; break; |
| 109 | } |
| 110 | VLOG(1) << "phdr[" << program_header_index << "] : " << type; |
| 111 | VLOG(1) << " p_offset = " << program_header->p_offset; |
| 112 | VLOG(1) << " p_vaddr = " << program_header->p_vaddr; |
| 113 | VLOG(1) << " p_paddr = " << program_header->p_paddr; |
| 114 | VLOG(1) << " p_filesz = " << program_header->p_filesz; |
| 115 | VLOG(1) << " p_memsz = " << program_header->p_memsz; |
| 116 | VLOG(1) << " p_flags = " << program_header->p_flags; |
| 117 | VLOG(1) << " p_align = " << program_header->p_align; |
| 118 | } |
| 119 | |
| 120 | // Verbose ELF section header logging. |
| 121 | void VerboseLogSectionHeader(const std::string& section_name, |
| 122 | const ELF::Shdr* section_header) { |
| 123 | VLOG(1) << "section " << section_name; |
| 124 | VLOG(1) << " sh_addr = " << section_header->sh_addr; |
| 125 | VLOG(1) << " sh_offset = " << section_header->sh_offset; |
| 126 | VLOG(1) << " sh_size = " << section_header->sh_size; |
| 127 | VLOG(1) << " sh_addralign = " << section_header->sh_addralign; |
| 128 | } |
| 129 | |
| 130 | // Verbose ELF section data logging. |
| 131 | void VerboseLogSectionData(const Elf_Data* data) { |
| 132 | VLOG(1) << " data"; |
| 133 | VLOG(1) << " d_buf = " << data->d_buf; |
| 134 | VLOG(1) << " d_off = " << data->d_off; |
| 135 | VLOG(1) << " d_size = " << data->d_size; |
| 136 | VLOG(1) << " d_align = " << data->d_align; |
| 137 | } |
| 138 | |
| 139 | } // namespace |
| 140 | |
| 141 | // Load the complete ELF file into a memory image in libelf, and identify |
| 142 | // the .rel.dyn or .rela.dyn, .dynamic, and .android.rel.dyn or |
| 143 | // .android.rela.dyn sections. No-op if the ELF file has already been loaded. |
| 144 | bool ElfFile::Load() { |
| 145 | if (elf_) |
| 146 | return true; |
| 147 | |
| 148 | Elf* elf = elf_begin(fd_, ELF_C_RDWR, NULL); |
| 149 | CHECK(elf); |
| 150 | |
| 151 | if (elf_kind(elf) != ELF_K_ELF) { |
| 152 | LOG(ERROR) << "File not in ELF format"; |
| 153 | return false; |
| 154 | } |
| 155 | |
| 156 | ELF::Ehdr* elf_header = ELF::getehdr(elf); |
| 157 | if (!elf_header) { |
| 158 | LOG(ERROR) << "Failed to load ELF header: " << elf_errmsg(elf_errno()); |
| 159 | return false; |
| 160 | } |
| 161 | if (elf_header->e_machine != ELF::kMachine) { |
| 162 | LOG(ERROR) << "ELF file architecture is not " << ELF::Machine(); |
| 163 | return false; |
| 164 | } |
| 165 | if (elf_header->e_type != ET_DYN) { |
| 166 | LOG(ERROR) << "ELF file is not a shared object"; |
| 167 | return false; |
| 168 | } |
| 169 | |
| 170 | // Require that our endianness matches that of the target, and that both |
| 171 | // are little-endian. Safe for all current build/target combinations. |
| 172 | const int endian = elf_header->e_ident[EI_DATA]; |
| 173 | CHECK(endian == ELFDATA2LSB); |
| 174 | CHECK(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__); |
| 175 | |
| 176 | // Also require that the file class is as expected. |
| 177 | const int file_class = elf_header->e_ident[EI_CLASS]; |
| 178 | CHECK(file_class == ELF::kFileClass); |
| 179 | |
| 180 | VLOG(1) << "endian = " << endian << ", file class = " << file_class; |
| 181 | VerboseLogElfHeader(elf_header); |
| 182 | |
| 183 | const ELF::Phdr* elf_program_header = ELF::getphdr(elf); |
| 184 | CHECK(elf_program_header); |
| 185 | |
| 186 | const ELF::Phdr* dynamic_program_header = NULL; |
| 187 | for (size_t i = 0; i < elf_header->e_phnum; ++i) { |
| 188 | const ELF::Phdr* program_header = &elf_program_header[i]; |
| 189 | VerboseLogProgramHeader(i, program_header); |
| 190 | |
| 191 | if (program_header->p_type == PT_DYNAMIC) { |
| 192 | CHECK(dynamic_program_header == NULL); |
| 193 | dynamic_program_header = program_header; |
| 194 | } |
| 195 | } |
| 196 | CHECK(dynamic_program_header != NULL); |
| 197 | |
| 198 | size_t string_index; |
| 199 | elf_getshdrstrndx(elf, &string_index); |
| 200 | |
| 201 | // Notes of the dynamic relocations, packed relocations, and .dynamic |
| 202 | // sections. Found while iterating sections, and later stored in class |
| 203 | // attributes. |
| 204 | Elf_Scn* found_relocations_section = NULL; |
| 205 | Elf_Scn* found_android_relocations_section = NULL; |
| 206 | Elf_Scn* found_dynamic_section = NULL; |
| 207 | |
| 208 | // Notes of relocation section types seen. We require one or the other of |
| 209 | // these; both is unsupported. |
| 210 | bool has_rel_relocations = false; |
| 211 | bool has_rela_relocations = false; |
| 212 | |
| 213 | Elf_Scn* section = NULL; |
| 214 | while ((section = elf_nextscn(elf, section)) != NULL) { |
| 215 | const ELF::Shdr* section_header = ELF::getshdr(section); |
| 216 | std::string name = elf_strptr(elf, string_index, section_header->sh_name); |
| 217 | VerboseLogSectionHeader(name, section_header); |
| 218 | |
| 219 | // Note relocation section types. |
| 220 | if (section_header->sh_type == SHT_REL) { |
| 221 | has_rel_relocations = true; |
| 222 | } |
| 223 | if (section_header->sh_type == SHT_RELA) { |
| 224 | has_rela_relocations = true; |
| 225 | } |
| 226 | |
| 227 | // Note special sections as we encounter them. |
| 228 | if ((name == ".rel.dyn" || name == ".rela.dyn") && |
| 229 | section_header->sh_size > 0) { |
| 230 | found_relocations_section = section; |
| 231 | } |
| 232 | if ((name == ".android.rel.dyn" || name == ".android.rela.dyn") && |
| 233 | section_header->sh_size > 0) { |
| 234 | found_android_relocations_section = section; |
| 235 | } |
| 236 | if (section_header->sh_offset == dynamic_program_header->p_offset) { |
| 237 | found_dynamic_section = section; |
| 238 | } |
| 239 | |
| 240 | // Ensure we preserve alignment, repeated later for the data block(s). |
| 241 | CHECK(section_header->sh_addralign <= kPreserveAlignment); |
| 242 | |
| 243 | Elf_Data* data = NULL; |
| 244 | while ((data = elf_getdata(section, data)) != NULL) { |
| 245 | CHECK(data->d_align <= kPreserveAlignment); |
| 246 | VerboseLogSectionData(data); |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | // Loading failed if we did not find the required special sections. |
| 251 | if (!found_relocations_section) { |
| 252 | LOG(ERROR) << "Missing or empty .rel.dyn or .rela.dyn section"; |
| 253 | return false; |
| 254 | } |
| 255 | if (!found_android_relocations_section) { |
| 256 | LOG(ERROR) << "Missing or empty .android.rel.dyn or .android.rela.dyn " |
| 257 | << "section (to fix, run with --help and follow the " |
| 258 | << "pre-packing instructions)"; |
| 259 | return false; |
| 260 | } |
| 261 | if (!found_dynamic_section) { |
| 262 | LOG(ERROR) << "Missing .dynamic section"; |
| 263 | return false; |
| 264 | } |
| 265 | |
| 266 | // Loading failed if we could not identify the relocations type. |
| 267 | if (!has_rel_relocations && !has_rela_relocations) { |
| 268 | LOG(ERROR) << "No relocations sections found"; |
| 269 | return false; |
| 270 | } |
| 271 | if (has_rel_relocations && has_rela_relocations) { |
| 272 | LOG(ERROR) << "Multiple relocations sections with different types found, " |
| 273 | << "not currently supported"; |
| 274 | return false; |
| 275 | } |
| 276 | |
| 277 | elf_ = elf; |
| 278 | relocations_section_ = found_relocations_section; |
| 279 | dynamic_section_ = found_dynamic_section; |
| 280 | android_relocations_section_ = found_android_relocations_section; |
| 281 | relocations_type_ = has_rel_relocations ? REL : RELA; |
| 282 | return true; |
| 283 | } |
| 284 | |
| 285 | namespace { |
| 286 | |
| 287 | // Helper for ResizeSection(). Adjust the main ELF header for the hole. |
| 288 | void AdjustElfHeaderForHole(ELF::Ehdr* elf_header, |
| 289 | ELF::Off hole_start, |
| 290 | ssize_t hole_size) { |
| 291 | if (elf_header->e_phoff > hole_start) { |
| 292 | elf_header->e_phoff += hole_size; |
| 293 | VLOG(1) << "e_phoff adjusted to " << elf_header->e_phoff; |
| 294 | } |
| 295 | if (elf_header->e_shoff > hole_start) { |
| 296 | elf_header->e_shoff += hole_size; |
| 297 | VLOG(1) << "e_shoff adjusted to " << elf_header->e_shoff; |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | // Helper for ResizeSection(). Adjust all section headers for the hole. |
| 302 | void AdjustSectionHeadersForHole(Elf* elf, |
| 303 | ELF::Off hole_start, |
| 304 | ssize_t hole_size) { |
| 305 | size_t string_index; |
| 306 | elf_getshdrstrndx(elf, &string_index); |
| 307 | |
| 308 | Elf_Scn* section = NULL; |
| 309 | while ((section = elf_nextscn(elf, section)) != NULL) { |
| 310 | ELF::Shdr* section_header = ELF::getshdr(section); |
| 311 | std::string name = elf_strptr(elf, string_index, section_header->sh_name); |
| 312 | |
| 313 | if (section_header->sh_offset > hole_start) { |
| 314 | section_header->sh_offset += hole_size; |
| 315 | VLOG(1) << "section " << name |
| 316 | << " sh_offset adjusted to " << section_header->sh_offset; |
| 317 | } |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | // Helper for ResizeSection(). Adjust the offsets of any program headers |
| 322 | // that have offsets currently beyond the hole start. |
| 323 | void AdjustProgramHeaderOffsets(ELF::Phdr* program_headers, |
| 324 | size_t count, |
| 325 | ELF::Phdr* ignored_1, |
| 326 | ELF::Phdr* ignored_2, |
| 327 | ELF::Off hole_start, |
| 328 | ssize_t hole_size) { |
| 329 | for (size_t i = 0; i < count; ++i) { |
| 330 | ELF::Phdr* program_header = &program_headers[i]; |
| 331 | |
| 332 | if (program_header == ignored_1 || program_header == ignored_2) |
| 333 | continue; |
| 334 | |
| 335 | if (program_header->p_offset > hole_start) { |
| 336 | // The hole start is past this segment, so adjust offset. |
| 337 | program_header->p_offset += hole_size; |
| 338 | VLOG(1) << "phdr[" << i |
| 339 | << "] p_offset adjusted to "<< program_header->p_offset; |
| 340 | } |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | // Helper for ResizeSection(). Find the first loadable segment in the |
| 345 | // file. We expect it to map from file offset zero. |
| 346 | ELF::Phdr* FindFirstLoadSegment(ELF::Phdr* program_headers, |
| 347 | size_t count) { |
| 348 | ELF::Phdr* first_loadable_segment = NULL; |
| 349 | |
| 350 | for (size_t i = 0; i < count; ++i) { |
| 351 | ELF::Phdr* program_header = &program_headers[i]; |
| 352 | |
| 353 | if (program_header->p_type == PT_LOAD && |
| 354 | program_header->p_offset == 0 && |
| 355 | program_header->p_vaddr == 0 && |
| 356 | program_header->p_paddr == 0) { |
| 357 | first_loadable_segment = program_header; |
| 358 | } |
| 359 | } |
| 360 | LOG_IF(FATAL, !first_loadable_segment) |
| 361 | << "Cannot locate a LOAD segment with address and offset zero"; |
| 362 | |
| 363 | return first_loadable_segment; |
| 364 | } |
| 365 | |
| 366 | // Helper for ResizeSection(). Find the PT_GNU_STACK segment, and check |
| 367 | // that it contains what we expect so we can restore it on unpack if needed. |
| 368 | ELF::Phdr* FindUnusedGnuStackSegment(ELF::Phdr* program_headers, |
| 369 | size_t count) { |
| 370 | ELF::Phdr* unused_segment = NULL; |
| 371 | |
| 372 | for (size_t i = 0; i < count; ++i) { |
| 373 | ELF::Phdr* program_header = &program_headers[i]; |
| 374 | |
| 375 | if (program_header->p_type == PT_GNU_STACK && |
| 376 | program_header->p_offset == 0 && |
| 377 | program_header->p_vaddr == 0 && |
| 378 | program_header->p_paddr == 0 && |
| 379 | program_header->p_filesz == 0 && |
| 380 | program_header->p_memsz == 0 && |
| 381 | program_header->p_flags == (PF_R | PF_W) && |
| 382 | program_header->p_align == ELF::kGnuStackSegmentAlignment) { |
| 383 | unused_segment = program_header; |
| 384 | } |
| 385 | } |
| 386 | LOG_IF(FATAL, !unused_segment) |
| 387 | << "Cannot locate the expected GNU_STACK segment"; |
| 388 | |
| 389 | return unused_segment; |
| 390 | } |
| 391 | |
| 392 | // Helper for ResizeSection(). Find the segment that was the first loadable |
| 393 | // one before we split it into two. This is the one into which we coalesce |
| 394 | // the split segments on unpacking. |
| 395 | ELF::Phdr* FindOriginalFirstLoadSegment(ELF::Phdr* program_headers, |
| 396 | size_t count) { |
| 397 | const ELF::Phdr* first_loadable_segment = |
| 398 | FindFirstLoadSegment(program_headers, count); |
| 399 | |
| 400 | ELF::Phdr* original_first_loadable_segment = NULL; |
| 401 | |
| 402 | for (size_t i = 0; i < count; ++i) { |
| 403 | ELF::Phdr* program_header = &program_headers[i]; |
| 404 | |
| 405 | // The original first loadable segment is the one that follows on from |
| 406 | // the one we wrote on split to be the current first loadable segment. |
| 407 | if (program_header->p_type == PT_LOAD && |
| 408 | program_header->p_offset == first_loadable_segment->p_filesz) { |
| 409 | original_first_loadable_segment = program_header; |
| 410 | } |
| 411 | } |
| 412 | LOG_IF(FATAL, !original_first_loadable_segment) |
| 413 | << "Cannot locate the LOAD segment that follows a LOAD at offset zero"; |
| 414 | |
| 415 | return original_first_loadable_segment; |
| 416 | } |
| 417 | |
| 418 | // Helper for ResizeSection(). Find the segment that contains the hole. |
| 419 | Elf_Scn* FindSectionContainingHole(Elf* elf, |
| 420 | ELF::Off hole_start, |
| 421 | ssize_t hole_size) { |
| 422 | Elf_Scn* section = NULL; |
| 423 | Elf_Scn* last_unholed_section = NULL; |
| 424 | |
| 425 | while ((section = elf_nextscn(elf, section)) != NULL) { |
| 426 | const ELF::Shdr* section_header = ELF::getshdr(section); |
| 427 | |
| 428 | // Because we get here after section headers have been adjusted for the |
| 429 | // hole, we need to 'undo' that adjustment to give a view of the original |
| 430 | // sections layout. |
| 431 | ELF::Off offset = section_header->sh_offset; |
| 432 | if (section_header->sh_offset >= hole_start) { |
| 433 | offset -= hole_size; |
| 434 | } |
| 435 | |
| 436 | if (offset <= hole_start) { |
| 437 | last_unholed_section = section; |
| 438 | } |
| 439 | } |
| 440 | LOG_IF(FATAL, !last_unholed_section) |
| 441 | << "Cannot identify the section before the one containing the hole"; |
| 442 | |
| 443 | // The section containing the hole is the one after the last one found |
| 444 | // by the loop above. |
| 445 | Elf_Scn* holed_section = elf_nextscn(elf, last_unholed_section); |
| 446 | LOG_IF(FATAL, !holed_section) |
| 447 | << "Cannot identify the section containing the hole"; |
| 448 | |
| 449 | return holed_section; |
| 450 | } |
| 451 | |
| 452 | // Helper for ResizeSection(). Find the last section contained in a segment. |
| 453 | Elf_Scn* FindLastSectionInSegment(Elf* elf, |
| 454 | ELF::Phdr* program_header, |
| 455 | ELF::Off hole_start, |
| 456 | ssize_t hole_size) { |
| 457 | const ELF::Off segment_end = |
| 458 | program_header->p_offset + program_header->p_filesz; |
| 459 | |
| 460 | Elf_Scn* section = NULL; |
| 461 | Elf_Scn* last_section = NULL; |
| 462 | |
| 463 | while ((section = elf_nextscn(elf, section)) != NULL) { |
| 464 | const ELF::Shdr* section_header = ELF::getshdr(section); |
| 465 | |
| 466 | // As above, 'undo' any section offset adjustment to give a view of the |
| 467 | // original sections layout. |
| 468 | ELF::Off offset = section_header->sh_offset; |
| 469 | if (section_header->sh_offset >= hole_start) { |
| 470 | offset -= hole_size; |
| 471 | } |
| 472 | |
| 473 | if (offset < segment_end) { |
| 474 | last_section = section; |
| 475 | } |
| 476 | } |
| 477 | LOG_IF(FATAL, !last_section) |
| 478 | << "Cannot identify the last section in the given segment"; |
| 479 | |
| 480 | return last_section; |
| 481 | } |
| 482 | |
| 483 | // Helper for ResizeSection(). Order loadable segments by their offsets. |
| 484 | // The crazy linker contains assumptions about loadable segment ordering, |
| 485 | // and it is better if we do not break them. |
| 486 | void SortOrderSensitiveProgramHeaders(ELF::Phdr* program_headers, |
| 487 | size_t count) { |
| 488 | std::vector<ELF::Phdr*> orderable; |
| 489 | |
| 490 | // Collect together orderable program headers. These are all the LOAD |
| 491 | // segments, and any GNU_STACK that may be present (removed on packing, |
| 492 | // but replaced on unpacking). |
| 493 | for (size_t i = 0; i < count; ++i) { |
| 494 | ELF::Phdr* program_header = &program_headers[i]; |
| 495 | |
| 496 | if (program_header->p_type == PT_LOAD || |
| 497 | program_header->p_type == PT_GNU_STACK) { |
| 498 | orderable.push_back(program_header); |
| 499 | } |
| 500 | } |
| 501 | |
| 502 | // Order these program headers so that any PT_GNU_STACK is last, and |
| 503 | // the LOAD segments that precede it appear in offset order. Uses |
| 504 | // insertion sort. |
| 505 | for (size_t i = 1; i < orderable.size(); ++i) { |
| 506 | for (size_t j = i; j > 0; --j) { |
| 507 | ELF::Phdr* first = orderable[j - 1]; |
| 508 | ELF::Phdr* second = orderable[j]; |
| 509 | |
| 510 | if (!(first->p_type == PT_GNU_STACK || |
| 511 | first->p_offset > second->p_offset)) { |
| 512 | break; |
| 513 | } |
| 514 | std::swap(*first, *second); |
| 515 | } |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | // Helper for ResizeSection(). The GNU_STACK program header is unused in |
| 520 | // Android, so we can repurpose it here. Before packing, the program header |
| 521 | // table contains something like: |
| 522 | // |
| 523 | // Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align |
| 524 | // LOAD 0x000000 0x00000000 0x00000000 0x1efc818 0x1efc818 R E 0x1000 |
| 525 | // LOAD 0x1efd008 0x01efe008 0x01efe008 0x17ec3c 0x1a0324 RW 0x1000 |
| 526 | // DYNAMIC 0x205ec50 0x0205fc50 0x0205fc50 0x00108 0x00108 RW 0x4 |
| 527 | // GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0 |
| 528 | // |
| 529 | // The hole in the file is in the first of these. In order to preserve all |
| 530 | // load addresses, what we do is to turn the GNU_STACK into a new LOAD entry |
| 531 | // that maps segments up to where we created the hole, adjust the first LOAD |
| 532 | // entry so that it maps segments after that, adjust any other program |
| 533 | // headers whose offset is after the hole start, and finally order the LOAD |
| 534 | // segments by offset, to give: |
| 535 | // |
| 536 | // Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align |
| 537 | // LOAD 0x000000 0x00000000 0x00000000 0x14ea4 0x14ea4 R E 0x1000 |
| 538 | // LOAD 0x014ea4 0x00212ea4 0x00212ea4 0x1cea164 0x1cea164 R E 0x1000 |
| 539 | // DYNAMIC 0x1e60c50 0x0205fc50 0x0205fc50 0x00108 0x00108 RW 0x4 |
| 540 | // LOAD 0x1cff008 0x01efe008 0x01efe008 0x17ec3c 0x1a0324 RW 0x1000 |
| 541 | // |
| 542 | // We work out the split points by finding the .rel.dyn or .rela.dyn section |
| 543 | // that contains the hole, and by finding the last section in a given segment. |
| 544 | // |
| 545 | // To unpack, we reverse the above to leave the file as it was originally. |
| 546 | void SplitProgramHeadersForHole(Elf* elf, |
| 547 | ELF::Off hole_start, |
| 548 | ssize_t hole_size) { |
| 549 | CHECK(hole_size < 0); |
| 550 | const ELF::Ehdr* elf_header = ELF::getehdr(elf); |
| 551 | CHECK(elf_header); |
| 552 | |
| 553 | ELF::Phdr* elf_program_header = ELF::getphdr(elf); |
| 554 | CHECK(elf_program_header); |
| 555 | |
| 556 | const size_t program_header_count = elf_header->e_phnum; |
| 557 | |
| 558 | // Locate the segment that we can overwrite to form the new LOAD entry, |
| 559 | // and the segment that we are going to split into two parts. |
| 560 | ELF::Phdr* spliced_header = |
| 561 | FindUnusedGnuStackSegment(elf_program_header, program_header_count); |
| 562 | ELF::Phdr* split_header = |
| 563 | FindFirstLoadSegment(elf_program_header, program_header_count); |
| 564 | |
| 565 | VLOG(1) << "phdr[" << split_header - elf_program_header << "] split"; |
| 566 | VLOG(1) << "phdr[" << spliced_header - elf_program_header << "] new LOAD"; |
| 567 | |
| 568 | // Find the section that contains the hole. We split on the section that |
| 569 | // follows it. |
| 570 | Elf_Scn* holed_section = |
| 571 | FindSectionContainingHole(elf, hole_start, hole_size); |
| 572 | |
| 573 | size_t string_index; |
| 574 | elf_getshdrstrndx(elf, &string_index); |
| 575 | |
| 576 | ELF::Shdr* section_header = ELF::getshdr(holed_section); |
| 577 | std::string name = elf_strptr(elf, string_index, section_header->sh_name); |
| 578 | VLOG(1) << "section " << name << " split after"; |
| 579 | |
| 580 | // Find the last section in the segment we are splitting. |
| 581 | Elf_Scn* last_section = |
| 582 | FindLastSectionInSegment(elf, split_header, hole_start, hole_size); |
| 583 | |
| 584 | section_header = ELF::getshdr(last_section); |
| 585 | name = elf_strptr(elf, string_index, section_header->sh_name); |
| 586 | VLOG(1) << "section " << name << " split end"; |
| 587 | |
| 588 | // Split on the section following the holed one, and up to (but not |
| 589 | // including) the section following the last one in the split segment. |
| 590 | Elf_Scn* split_section = elf_nextscn(elf, holed_section); |
| 591 | LOG_IF(FATAL, !split_section) |
| 592 | << "No section follows the section that contains the hole"; |
| 593 | Elf_Scn* end_section = elf_nextscn(elf, last_section); |
| 594 | LOG_IF(FATAL, !end_section) |
| 595 | << "No section follows the last section in the segment being split"; |
| 596 | |
| 597 | // Split the first portion of split_header into spliced_header. |
| 598 | const ELF::Shdr* split_section_header = ELF::getshdr(split_section); |
| 599 | spliced_header->p_type = split_header->p_type; |
| 600 | spliced_header->p_offset = split_header->p_offset; |
| 601 | spliced_header->p_vaddr = split_header->p_vaddr; |
| 602 | spliced_header->p_paddr = split_header->p_paddr; |
| 603 | CHECK(split_header->p_filesz == split_header->p_memsz); |
| 604 | spliced_header->p_filesz = split_section_header->sh_offset; |
| 605 | spliced_header->p_memsz = split_section_header->sh_offset; |
| 606 | spliced_header->p_flags = split_header->p_flags; |
| 607 | spliced_header->p_align = split_header->p_align; |
| 608 | |
| 609 | // Now rewrite split_header to remove the part we spliced from it. |
| 610 | const ELF::Shdr* end_section_header = ELF::getshdr(end_section); |
| 611 | split_header->p_offset = spliced_header->p_filesz; |
| 612 | CHECK(split_header->p_vaddr == split_header->p_paddr); |
| 613 | split_header->p_vaddr = split_section_header->sh_addr; |
| 614 | split_header->p_paddr = split_section_header->sh_addr; |
| 615 | CHECK(split_header->p_filesz == split_header->p_memsz); |
| 616 | split_header->p_filesz = |
| 617 | end_section_header->sh_offset - spliced_header->p_filesz; |
| 618 | split_header->p_memsz = |
| 619 | end_section_header->sh_offset - spliced_header->p_filesz; |
| 620 | |
| 621 | // Adjust the offsets of all program headers that are not one of the pair |
| 622 | // we just created by splitting. |
| 623 | AdjustProgramHeaderOffsets(elf_program_header, |
| 624 | program_header_count, |
| 625 | spliced_header, |
| 626 | split_header, |
| 627 | hole_start, |
| 628 | hole_size); |
| 629 | |
| 630 | // Finally, order loadable segments by offset/address. The crazy linker |
| 631 | // contains assumptions about loadable segment ordering. |
| 632 | SortOrderSensitiveProgramHeaders(elf_program_header, |
| 633 | program_header_count); |
| 634 | } |
| 635 | |
| 636 | // Helper for ResizeSection(). Undo the work of SplitProgramHeadersForHole(). |
| 637 | void CoalesceProgramHeadersForHole(Elf* elf, |
| 638 | ELF::Off hole_start, |
| 639 | ssize_t hole_size) { |
| 640 | CHECK(hole_size > 0); |
| 641 | const ELF::Ehdr* elf_header = ELF::getehdr(elf); |
| 642 | CHECK(elf_header); |
| 643 | |
| 644 | ELF::Phdr* elf_program_header = ELF::getphdr(elf); |
| 645 | CHECK(elf_program_header); |
| 646 | |
| 647 | const size_t program_header_count = elf_header->e_phnum; |
| 648 | |
| 649 | // Locate the segment that we overwrote to form the new LOAD entry, and |
| 650 | // the segment that we split into two parts on packing. |
| 651 | ELF::Phdr* spliced_header = |
| 652 | FindFirstLoadSegment(elf_program_header, program_header_count); |
| 653 | ELF::Phdr* split_header = |
| 654 | FindOriginalFirstLoadSegment(elf_program_header, program_header_count); |
| 655 | |
| 656 | VLOG(1) << "phdr[" << spliced_header - elf_program_header << "] stack"; |
| 657 | VLOG(1) << "phdr[" << split_header - elf_program_header << "] coalesce"; |
| 658 | |
| 659 | // Find the last section in the second segment we are coalescing. |
| 660 | Elf_Scn* last_section = |
| 661 | FindLastSectionInSegment(elf, split_header, hole_start, hole_size); |
| 662 | |
| 663 | size_t string_index; |
| 664 | elf_getshdrstrndx(elf, &string_index); |
| 665 | |
| 666 | const ELF::Shdr* section_header = ELF::getshdr(last_section); |
| 667 | std::string name = elf_strptr(elf, string_index, section_header->sh_name); |
| 668 | VLOG(1) << "section " << name << " coalesced"; |
| 669 | |
| 670 | // Rewrite the coalesced segment into split_header. |
| 671 | const ELF::Shdr* last_section_header = ELF::getshdr(last_section); |
| 672 | split_header->p_offset = spliced_header->p_offset; |
| 673 | CHECK(split_header->p_vaddr == split_header->p_paddr); |
| 674 | split_header->p_vaddr = spliced_header->p_vaddr; |
| 675 | split_header->p_paddr = spliced_header->p_vaddr; |
| 676 | CHECK(split_header->p_filesz == split_header->p_memsz); |
| 677 | split_header->p_filesz = |
| 678 | last_section_header->sh_offset + last_section_header->sh_size; |
| 679 | split_header->p_memsz = |
| 680 | last_section_header->sh_offset + last_section_header->sh_size; |
| 681 | |
| 682 | // Reconstruct the original GNU_STACK segment into spliced_header. |
| 683 | spliced_header->p_type = PT_GNU_STACK; |
| 684 | spliced_header->p_offset = 0; |
| 685 | spliced_header->p_vaddr = 0; |
| 686 | spliced_header->p_paddr = 0; |
| 687 | spliced_header->p_filesz = 0; |
| 688 | spliced_header->p_memsz = 0; |
| 689 | spliced_header->p_flags = PF_R | PF_W; |
| 690 | spliced_header->p_align = ELF::kGnuStackSegmentAlignment; |
| 691 | |
| 692 | // Adjust the offsets of all program headers that are not one of the pair |
| 693 | // we just coalesced. |
| 694 | AdjustProgramHeaderOffsets(elf_program_header, |
| 695 | program_header_count, |
| 696 | spliced_header, |
| 697 | split_header, |
| 698 | hole_start, |
| 699 | hole_size); |
| 700 | |
| 701 | // Finally, order loadable segments by offset/address. The crazy linker |
| 702 | // contains assumptions about loadable segment ordering. |
| 703 | SortOrderSensitiveProgramHeaders(elf_program_header, |
| 704 | program_header_count); |
| 705 | } |
| 706 | |
| 707 | // Helper for ResizeSection(). Rewrite program headers. |
| 708 | void RewriteProgramHeadersForHole(Elf* elf, |
| 709 | ELF::Off hole_start, |
| 710 | ssize_t hole_size) { |
| 711 | // If hole_size is negative then we are removing a piece of the file, and |
| 712 | // we want to split program headers so that we keep the same addresses |
| 713 | // for text and data. If positive, then we are putting that piece of the |
| 714 | // file back in, so we coalesce the previously split program headers. |
| 715 | if (hole_size < 0) |
| 716 | SplitProgramHeadersForHole(elf, hole_start, hole_size); |
| 717 | else if (hole_size > 0) |
| 718 | CoalesceProgramHeadersForHole(elf, hole_start, hole_size); |
| 719 | } |
| 720 | |
| 721 | // Helper for ResizeSection(). Locate and return the dynamic section. |
| 722 | Elf_Scn* GetDynamicSection(Elf* elf) { |
| 723 | const ELF::Ehdr* elf_header = ELF::getehdr(elf); |
| 724 | CHECK(elf_header); |
| 725 | |
| 726 | const ELF::Phdr* elf_program_header = ELF::getphdr(elf); |
| 727 | CHECK(elf_program_header); |
| 728 | |
| 729 | // Find the program header that describes the dynamic section. |
| 730 | const ELF::Phdr* dynamic_program_header = NULL; |
| 731 | for (size_t i = 0; i < elf_header->e_phnum; ++i) { |
| 732 | const ELF::Phdr* program_header = &elf_program_header[i]; |
| 733 | |
| 734 | if (program_header->p_type == PT_DYNAMIC) { |
| 735 | dynamic_program_header = program_header; |
| 736 | } |
| 737 | } |
| 738 | CHECK(dynamic_program_header); |
| 739 | |
| 740 | // Now find the section with the same offset as this program header. |
| 741 | Elf_Scn* dynamic_section = NULL; |
| 742 | Elf_Scn* section = NULL; |
| 743 | while ((section = elf_nextscn(elf, section)) != NULL) { |
| 744 | ELF::Shdr* section_header = ELF::getshdr(section); |
| 745 | |
| 746 | if (section_header->sh_offset == dynamic_program_header->p_offset) { |
| 747 | dynamic_section = section; |
| 748 | } |
| 749 | } |
| 750 | CHECK(dynamic_section != NULL); |
| 751 | |
| 752 | return dynamic_section; |
| 753 | } |
| 754 | |
| 755 | // Helper for ResizeSection(). Adjust the .dynamic section for the hole. |
| 756 | template <typename Rel> |
| 757 | void AdjustDynamicSectionForHole(Elf_Scn* dynamic_section, |
| 758 | ELF::Off hole_start, |
| 759 | ssize_t hole_size) { |
| 760 | Elf_Data* data = GetSectionData(dynamic_section); |
| 761 | |
| 762 | const ELF::Dyn* dynamic_base = reinterpret_cast<ELF::Dyn*>(data->d_buf); |
| 763 | std::vector<ELF::Dyn> dynamics( |
| 764 | dynamic_base, |
| 765 | dynamic_base + data->d_size / sizeof(dynamics[0])); |
| 766 | |
| 767 | for (size_t i = 0; i < dynamics.size(); ++i) { |
| 768 | ELF::Dyn* dynamic = &dynamics[i]; |
| 769 | const ELF::Sword tag = dynamic->d_tag; |
| 770 | |
| 771 | // DT_RELSZ or DT_RELASZ indicate the overall size of relocations. |
| 772 | // Only one will be present. Adjust by hole size. |
| 773 | if (tag == DT_RELSZ || tag == DT_RELASZ) { |
| 774 | dynamic->d_un.d_val += hole_size; |
| 775 | VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag |
| 776 | << " d_val adjusted to " << dynamic->d_un.d_val; |
| 777 | } |
| 778 | |
| 779 | // DT_RELCOUNT or DT_RELACOUNT hold the count of relative relocations. |
| 780 | // Only one will be present. Packing reduces it to the alignment |
| 781 | // padding, if any; unpacking restores it to its former value. The |
| 782 | // crazy linker does not use it, but we update it anyway. |
| 783 | if (tag == DT_RELCOUNT || tag == DT_RELACOUNT) { |
| 784 | // Cast sizeof to a signed type to avoid the division result being |
| 785 | // promoted into an unsigned size_t. |
| 786 | const ssize_t sizeof_rel = static_cast<ssize_t>(sizeof(Rel)); |
| 787 | dynamic->d_un.d_val += hole_size / sizeof_rel; |
| 788 | VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag |
| 789 | << " d_val adjusted to " << dynamic->d_un.d_val; |
| 790 | } |
| 791 | |
| 792 | // DT_RELENT and DT_RELAENT do not change, but make sure they are what |
| 793 | // we expect. Only one will be present. |
| 794 | if (tag == DT_RELENT || tag == DT_RELAENT) { |
| 795 | CHECK(dynamic->d_un.d_val == sizeof(Rel)); |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | void* section_data = &dynamics[0]; |
| 800 | size_t bytes = dynamics.size() * sizeof(dynamics[0]); |
| 801 | RewriteSectionData(dynamic_section, section_data, bytes); |
| 802 | } |
| 803 | |
| 804 | // Resize a section. If the new size is larger than the current size, open |
| 805 | // up a hole by increasing file offsets that come after the hole. If smaller |
| 806 | // than the current size, remove the hole by decreasing those offsets. |
| 807 | template <typename Rel> |
| 808 | void ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size) { |
| 809 | ELF::Shdr* section_header = ELF::getshdr(section); |
| 810 | if (section_header->sh_size == new_size) |
| 811 | return; |
| 812 | |
| 813 | // Note if we are resizing the real dyn relocations. |
| 814 | size_t string_index; |
| 815 | elf_getshdrstrndx(elf, &string_index); |
| 816 | const std::string section_name = |
| 817 | elf_strptr(elf, string_index, section_header->sh_name); |
| 818 | const bool is_relocations_resize = |
| 819 | (section_name == ".rel.dyn" || section_name == ".rela.dyn"); |
| 820 | |
| 821 | // Require that the section size and the data size are the same. True |
| 822 | // in practice for all sections we resize when packing or unpacking. |
| 823 | Elf_Data* data = GetSectionData(section); |
| 824 | CHECK(data->d_off == 0 && data->d_size == section_header->sh_size); |
| 825 | |
| 826 | // Require that the section is not zero-length (that is, has allocated |
| 827 | // data that we can validly expand). |
| 828 | CHECK(data->d_size && data->d_buf); |
| 829 | |
| 830 | const ELF::Off hole_start = section_header->sh_offset; |
| 831 | const ssize_t hole_size = new_size - data->d_size; |
| 832 | |
| 833 | VLOG_IF(1, (hole_size > 0)) << "expand section size = " << data->d_size; |
| 834 | VLOG_IF(1, (hole_size < 0)) << "shrink section size = " << data->d_size; |
| 835 | |
| 836 | // Resize the data and the section header. |
| 837 | data->d_size += hole_size; |
| 838 | section_header->sh_size += hole_size; |
| 839 | |
| 840 | // Add the hole size to all offsets in the ELF file that are after the |
| 841 | // start of the hole. If the hole size is positive we are expanding the |
| 842 | // section to create a new hole; if negative, we are closing up a hole. |
| 843 | |
| 844 | // Start with the main ELF header. |
| 845 | ELF::Ehdr* elf_header = ELF::getehdr(elf); |
| 846 | AdjustElfHeaderForHole(elf_header, hole_start, hole_size); |
| 847 | |
| 848 | // Adjust all section headers. |
| 849 | AdjustSectionHeadersForHole(elf, hole_start, hole_size); |
| 850 | |
| 851 | // If resizing the dynamic relocations, rewrite the program headers to |
| 852 | // either split or coalesce segments, and adjust dynamic entries to match. |
| 853 | if (is_relocations_resize) { |
| 854 | RewriteProgramHeadersForHole(elf, hole_start, hole_size); |
| 855 | |
| 856 | Elf_Scn* dynamic_section = GetDynamicSection(elf); |
| 857 | AdjustDynamicSectionForHole<Rel>(dynamic_section, hole_start, hole_size); |
| 858 | } |
| 859 | } |
| 860 | |
| 861 | // Find the first slot in a dynamics array with the given tag. The array |
| 862 | // always ends with a free (unused) element, and which we exclude from the |
| 863 | // search. Returns dynamics->size() if not found. |
| 864 | size_t FindDynamicEntry(ELF::Sword tag, |
| 865 | std::vector<ELF::Dyn>* dynamics) { |
| 866 | // Loop until the penultimate entry. We exclude the end sentinel. |
| 867 | for (size_t i = 0; i < dynamics->size() - 1; ++i) { |
| 868 | if (dynamics->at(i).d_tag == tag) |
| 869 | return i; |
| 870 | } |
| 871 | |
| 872 | // The tag was not found. |
| 873 | return dynamics->size(); |
| 874 | } |
| 875 | |
| 876 | // Replace the first free (unused) slot in a dynamics vector with the given |
| 877 | // value. The vector always ends with a free (unused) element, so the slot |
| 878 | // found cannot be the last one in the vector. |
| 879 | void AddDynamicEntry(const ELF::Dyn& dyn, |
| 880 | std::vector<ELF::Dyn>* dynamics) { |
| 881 | const size_t slot = FindDynamicEntry(DT_NULL, dynamics); |
| 882 | if (slot == dynamics->size()) { |
| 883 | LOG(FATAL) << "No spare dynamic array slots found " |
| 884 | << "(to fix, increase gold's --spare-dynamic-tags value)"; |
| 885 | } |
| 886 | |
| 887 | // Replace this entry with the one supplied. |
| 888 | dynamics->at(slot) = dyn; |
| 889 | VLOG(1) << "dynamic[" << slot << "] overwritten with " << dyn.d_tag; |
| 890 | } |
| 891 | |
| 892 | // Remove the element in the dynamics vector that matches the given tag with |
| 893 | // unused slot data. Shuffle the following elements up, and ensure that the |
| 894 | // last is the null sentinel. |
| 895 | void RemoveDynamicEntry(ELF::Sword tag, |
| 896 | std::vector<ELF::Dyn>* dynamics) { |
| 897 | const size_t slot = FindDynamicEntry(tag, dynamics); |
| 898 | CHECK(slot != dynamics->size()); |
| 899 | |
| 900 | // Remove this entry by shuffling up everything that follows. |
| 901 | for (size_t i = slot; i < dynamics->size() - 1; ++i) { |
| 902 | dynamics->at(i) = dynamics->at(i + 1); |
| 903 | VLOG(1) << "dynamic[" << i |
| 904 | << "] overwritten with dynamic[" << i + 1 << "]"; |
| 905 | } |
| 906 | |
| 907 | // Ensure that the end sentinel is still present. |
| 908 | CHECK(dynamics->at(dynamics->size() - 1).d_tag == DT_NULL); |
| 909 | } |
| 910 | |
| 911 | // Construct a null relocation without addend. |
| 912 | void NullRelocation(ELF::Rel* relocation) { |
| 913 | relocation->r_offset = 0; |
| 914 | relocation->r_info = ELF_R_INFO(0, ELF::kNoRelocationCode); |
| 915 | } |
| 916 | |
| 917 | // Construct a null relocation with addend. |
| 918 | void NullRelocation(ELF::Rela* relocation) { |
| 919 | relocation->r_offset = 0; |
| 920 | relocation->r_info = ELF_R_INFO(0, ELF::kNoRelocationCode); |
| 921 | relocation->r_addend = 0; |
| 922 | } |
| 923 | |
| 924 | // Pad relocations with the given number of null entries. Generates its |
| 925 | // null entry with the appropriate NullRelocation() invocation. |
| 926 | template <typename Rel> |
| 927 | void PadRelocations(size_t count, std::vector<Rel>* relocations) { |
| 928 | Rel null_relocation; |
| 929 | NullRelocation(&null_relocation); |
| 930 | std::vector<Rel> padding(count, null_relocation); |
| 931 | relocations->insert(relocations->end(), padding.begin(), padding.end()); |
| 932 | } |
| 933 | |
| 934 | } // namespace |
| 935 | |
| 936 | // Remove relative entries from dynamic relocations and write as packed |
| 937 | // data into android packed relocations. |
| 938 | bool ElfFile::PackRelocations() { |
| 939 | // Load the ELF file into libelf. |
| 940 | if (!Load()) { |
| 941 | LOG(ERROR) << "Failed to load as ELF"; |
| 942 | return false; |
| 943 | } |
| 944 | |
| 945 | // Retrieve the current dynamic relocations section data. |
| 946 | Elf_Data* data = GetSectionData(relocations_section_); |
| 947 | |
| 948 | if (relocations_type_ == REL) { |
| 949 | // Convert data to a vector of relocations. |
| 950 | const ELF::Rel* relocations_base = reinterpret_cast<ELF::Rel*>(data->d_buf); |
| 951 | std::vector<ELF::Rel> relocations( |
| 952 | relocations_base, |
| 953 | relocations_base + data->d_size / sizeof(relocations[0])); |
| 954 | |
| 955 | LOG(INFO) << "Relocations : REL"; |
| 956 | return PackTypedRelocations<ELF::Rel>(relocations); |
| 957 | } |
| 958 | |
| 959 | if (relocations_type_ == RELA) { |
| 960 | // Convert data to a vector of relocations with addends. |
| 961 | const ELF::Rela* relocations_base = |
| 962 | reinterpret_cast<ELF::Rela*>(data->d_buf); |
| 963 | std::vector<ELF::Rela> relocations( |
| 964 | relocations_base, |
| 965 | relocations_base + data->d_size / sizeof(relocations[0])); |
| 966 | |
| 967 | LOG(INFO) << "Relocations : RELA"; |
| 968 | return PackTypedRelocations<ELF::Rela>(relocations); |
| 969 | } |
| 970 | |
| 971 | NOTREACHED(); |
| 972 | return false; |
| 973 | } |
| 974 | |
| 975 | // Helper for PackRelocations(). Rel type is one of ELF::Rel or ELF::Rela. |
| 976 | template <typename Rel> |
| 977 | bool ElfFile::PackTypedRelocations(const std::vector<Rel>& relocations) { |
| 978 | // Filter relocations into those that are relative and others. |
| 979 | std::vector<Rel> relative_relocations; |
| 980 | std::vector<Rel> other_relocations; |
| 981 | |
| 982 | for (size_t i = 0; i < relocations.size(); ++i) { |
| 983 | const Rel& relocation = relocations[i]; |
| 984 | if (ELF_R_TYPE(relocation.r_info) == ELF::kRelativeRelocationCode) { |
| 985 | CHECK(ELF_R_SYM(relocation.r_info) == 0); |
| 986 | relative_relocations.push_back(relocation); |
| 987 | } else { |
| 988 | other_relocations.push_back(relocation); |
| 989 | } |
| 990 | } |
| 991 | LOG(INFO) << "Relative : " << relative_relocations.size() << " entries"; |
| 992 | LOG(INFO) << "Other : " << other_relocations.size() << " entries"; |
| 993 | LOG(INFO) << "Total : " << relocations.size() << " entries"; |
| 994 | |
| 995 | // If no relative relocations then we have nothing packable. Perhaps |
| 996 | // the shared object has already been packed? |
| 997 | if (relative_relocations.empty()) { |
| 998 | LOG(ERROR) << "No relative relocations found (already packed?)"; |
| 999 | return false; |
| 1000 | } |
| 1001 | |
| 1002 | // If not padding fully, apply only enough padding to preserve alignment. |
| 1003 | // Otherwise, pad so that we do not shrink the relocations section at all. |
| 1004 | if (!is_padding_relocations_) { |
| 1005 | // Calculate the size of the hole we will close up when we rewrite |
| 1006 | // dynamic relocations. |
| 1007 | ssize_t hole_size = |
| 1008 | relative_relocations.size() * sizeof(relative_relocations[0]); |
| 1009 | const ssize_t unaligned_hole_size = hole_size; |
| 1010 | |
| 1011 | // Adjust the actual hole size to preserve alignment. We always adjust |
| 1012 | // by a whole number of NONE-type relocations. |
| 1013 | while (hole_size % kPreserveAlignment) |
| 1014 | hole_size -= sizeof(relative_relocations[0]); |
| 1015 | LOG(INFO) << "Compaction : " << hole_size << " bytes"; |
| 1016 | |
| 1017 | // Adjusting for alignment may have removed any packing benefit. |
| 1018 | if (hole_size == 0) { |
| 1019 | LOG(INFO) << "Too few relative relocations to pack after alignment"; |
| 1020 | return false; |
| 1021 | } |
| 1022 | |
| 1023 | // Find the padding needed in other_relocations to preserve alignment. |
| 1024 | // Ensure that we never completely empty the real relocations section. |
| 1025 | size_t padding_bytes = unaligned_hole_size - hole_size; |
| 1026 | if (padding_bytes == 0 && other_relocations.size() == 0) { |
| 1027 | do { |
| 1028 | padding_bytes += sizeof(relative_relocations[0]); |
| 1029 | } while (padding_bytes % kPreserveAlignment); |
| 1030 | } |
| 1031 | CHECK(padding_bytes % sizeof(other_relocations[0]) == 0); |
| 1032 | const size_t padding = padding_bytes / sizeof(other_relocations[0]); |
| 1033 | |
| 1034 | // Padding may have removed any packing benefit. |
| 1035 | if (padding >= relative_relocations.size()) { |
| 1036 | LOG(INFO) << "Too few relative relocations to pack after padding"; |
| 1037 | return false; |
| 1038 | } |
| 1039 | |
| 1040 | // Add null relocations to other_relocations to preserve alignment. |
| 1041 | PadRelocations<Rel>(padding, &other_relocations); |
| 1042 | LOG(INFO) << "Alignment pad : " << padding << " relocations"; |
| 1043 | } else { |
| 1044 | // If padding, add NONE-type relocations to other_relocations to make it |
| 1045 | // the same size as the the original relocations we read in. This makes |
| 1046 | // the ResizeSection() below a no-op. |
| 1047 | const size_t padding = relocations.size() - other_relocations.size(); |
| 1048 | PadRelocations<Rel>(padding, &other_relocations); |
| 1049 | } |
| 1050 | |
| 1051 | // Pack relative relocations. |
| 1052 | const size_t initial_bytes = |
| 1053 | relative_relocations.size() * sizeof(relative_relocations[0]); |
| 1054 | LOG(INFO) << "Unpacked relative: " << initial_bytes << " bytes"; |
| 1055 | std::vector<uint8_t> packed; |
| 1056 | RelocationPacker packer; |
| 1057 | packer.PackRelativeRelocations(relative_relocations, &packed); |
| 1058 | const void* packed_data = &packed[0]; |
| 1059 | const size_t packed_bytes = packed.size() * sizeof(packed[0]); |
| 1060 | LOG(INFO) << "Packed relative: " << packed_bytes << " bytes"; |
| 1061 | |
| 1062 | // If we have insufficient relative relocations to form a run then |
| 1063 | // packing fails. |
| 1064 | if (packed.empty()) { |
| 1065 | LOG(INFO) << "Too few relative relocations to pack"; |
| 1066 | return false; |
| 1067 | } |
| 1068 | |
| 1069 | // Run a loopback self-test as a check that packing is lossless. |
| 1070 | std::vector<Rel> unpacked; |
| 1071 | packer.UnpackRelativeRelocations(packed, &unpacked); |
| 1072 | CHECK(unpacked.size() == relative_relocations.size()); |
| 1073 | CHECK(!memcmp(&unpacked[0], |
| 1074 | &relative_relocations[0], |
| 1075 | unpacked.size() * sizeof(unpacked[0]))); |
| 1076 | |
| 1077 | // Make sure packing saved some space. |
| 1078 | if (packed_bytes >= initial_bytes) { |
| 1079 | LOG(INFO) << "Packing relative relocations saves no space"; |
| 1080 | return false; |
| 1081 | } |
| 1082 | |
| 1083 | // Rewrite the current dynamic relocations section to be only the ARM |
| 1084 | // non-relative relocations, then shrink it to size. |
| 1085 | const void* section_data = &other_relocations[0]; |
| 1086 | const size_t bytes = other_relocations.size() * sizeof(other_relocations[0]); |
| 1087 | ResizeSection<Rel>(elf_, relocations_section_, bytes); |
| 1088 | RewriteSectionData(relocations_section_, section_data, bytes); |
| 1089 | |
| 1090 | // Rewrite the current packed android relocations section to hold the packed |
| 1091 | // relative relocations. |
| 1092 | ResizeSection<Rel>(elf_, android_relocations_section_, packed_bytes); |
| 1093 | RewriteSectionData(android_relocations_section_, packed_data, packed_bytes); |
| 1094 | |
| 1095 | // Rewrite .dynamic to include two new tags describing the packed android |
| 1096 | // relocations. |
| 1097 | Elf_Data* data = GetSectionData(dynamic_section_); |
| 1098 | const ELF::Dyn* dynamic_base = reinterpret_cast<ELF::Dyn*>(data->d_buf); |
| 1099 | std::vector<ELF::Dyn> dynamics( |
| 1100 | dynamic_base, |
| 1101 | dynamic_base + data->d_size / sizeof(dynamics[0])); |
| 1102 | // Use two of the spare slots to describe the packed section. |
| 1103 | ELF::Shdr* section_header = ELF::getshdr(android_relocations_section_); |
| 1104 | { |
| 1105 | ELF::Dyn dyn; |
| 1106 | dyn.d_tag = DT_ANDROID_REL_OFFSET; |
| 1107 | dyn.d_un.d_ptr = section_header->sh_offset; |
| 1108 | AddDynamicEntry(dyn, &dynamics); |
| 1109 | } |
| 1110 | { |
| 1111 | ELF::Dyn dyn; |
| 1112 | dyn.d_tag = DT_ANDROID_REL_SIZE; |
| 1113 | dyn.d_un.d_val = section_header->sh_size; |
| 1114 | AddDynamicEntry(dyn, &dynamics); |
| 1115 | } |
| 1116 | const void* dynamics_data = &dynamics[0]; |
| 1117 | const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]); |
| 1118 | RewriteSectionData(dynamic_section_, dynamics_data, dynamics_bytes); |
| 1119 | |
| 1120 | Flush(); |
| 1121 | return true; |
| 1122 | } |
| 1123 | |
| 1124 | // Find packed relative relocations in the packed android relocations |
| 1125 | // section, unpack them, and rewrite the dynamic relocations section to |
| 1126 | // contain unpacked data. |
| 1127 | bool ElfFile::UnpackRelocations() { |
| 1128 | // Load the ELF file into libelf. |
| 1129 | if (!Load()) { |
| 1130 | LOG(ERROR) << "Failed to load as ELF"; |
| 1131 | return false; |
| 1132 | } |
| 1133 | |
| 1134 | // Retrieve the current packed android relocations section data. |
| 1135 | Elf_Data* data = GetSectionData(android_relocations_section_); |
| 1136 | |
| 1137 | // Convert data to a vector of bytes. |
| 1138 | const uint8_t* packed_base = reinterpret_cast<uint8_t*>(data->d_buf); |
| 1139 | std::vector<uint8_t> packed( |
| 1140 | packed_base, |
| 1141 | packed_base + data->d_size / sizeof(packed[0])); |
| 1142 | |
| 1143 | if (packed.size() > 3 && |
| 1144 | packed[0] == 'A' && |
| 1145 | packed[1] == 'P' && |
| 1146 | packed[2] == 'R' && |
| 1147 | packed[3] == '1') { |
| 1148 | // Signature is APR1, unpack relocations. |
| 1149 | CHECK(relocations_type_ == REL); |
| 1150 | LOG(INFO) << "Relocations : REL"; |
| 1151 | return UnpackTypedRelocations<ELF::Rel>(packed); |
| 1152 | } |
| 1153 | |
| 1154 | if (packed.size() > 3 && |
| 1155 | packed[0] == 'A' && |
| 1156 | packed[1] == 'P' && |
| 1157 | packed[2] == 'A' && |
| 1158 | packed[3] == '1') { |
| 1159 | // Signature is APA1, unpack relocations with addends. |
| 1160 | CHECK(relocations_type_ == RELA); |
| 1161 | LOG(INFO) << "Relocations : RELA"; |
| 1162 | return UnpackTypedRelocations<ELF::Rela>(packed); |
| 1163 | } |
| 1164 | |
| 1165 | LOG(ERROR) << "Packed relative relocations not found (not packed?)"; |
| 1166 | return false; |
| 1167 | } |
| 1168 | |
| 1169 | // Helper for UnpackRelocations(). Rel type is one of ELF::Rel or ELF::Rela. |
| 1170 | template <typename Rel> |
| 1171 | bool ElfFile::UnpackTypedRelocations(const std::vector<uint8_t>& packed) { |
| 1172 | // Unpack the data to re-materialize the relative relocations. |
| 1173 | const size_t packed_bytes = packed.size() * sizeof(packed[0]); |
| 1174 | LOG(INFO) << "Packed relative: " << packed_bytes << " bytes"; |
| 1175 | std::vector<Rel> relative_relocations; |
| 1176 | RelocationPacker packer; |
| 1177 | packer.UnpackRelativeRelocations(packed, &relative_relocations); |
| 1178 | const size_t unpacked_bytes = |
| 1179 | relative_relocations.size() * sizeof(relative_relocations[0]); |
| 1180 | LOG(INFO) << "Unpacked relative: " << unpacked_bytes << " bytes"; |
| 1181 | |
| 1182 | // Retrieve the current dynamic relocations section data. |
| 1183 | Elf_Data* data = GetSectionData(relocations_section_); |
| 1184 | |
| 1185 | // Interpret data as relocations. |
| 1186 | const Rel* relocations_base = reinterpret_cast<Rel*>(data->d_buf); |
| 1187 | std::vector<Rel> relocations( |
| 1188 | relocations_base, |
| 1189 | relocations_base + data->d_size / sizeof(relocations[0])); |
| 1190 | |
| 1191 | std::vector<Rel> other_relocations; |
| 1192 | size_t padding = 0; |
| 1193 | |
| 1194 | // Filter relocations to locate any that are NONE-type. These will occur |
| 1195 | // if padding was turned on for packing. |
| 1196 | for (size_t i = 0; i < relocations.size(); ++i) { |
| 1197 | const Rel& relocation = relocations[i]; |
| 1198 | if (ELF_R_TYPE(relocation.r_info) != ELF::kNoRelocationCode) { |
| 1199 | other_relocations.push_back(relocation); |
| 1200 | } else { |
| 1201 | ++padding; |
| 1202 | } |
| 1203 | } |
| 1204 | LOG(INFO) << "Relative : " << relative_relocations.size() << " entries"; |
| 1205 | LOG(INFO) << "Other : " << other_relocations.size() << " entries"; |
| 1206 | |
| 1207 | // If we found the same number of null relocation entries in the dynamic |
| 1208 | // relocations section as we hold as unpacked relative relocations, then |
| 1209 | // this is a padded file. |
| 1210 | const bool is_padded = padding == relative_relocations.size(); |
| 1211 | |
| 1212 | // Unless padded, report by how much we expand the file. |
| 1213 | if (!is_padded) { |
| 1214 | // Calculate the size of the hole we will open up when we rewrite |
| 1215 | // dynamic relocations. |
| 1216 | ssize_t hole_size = |
| 1217 | relative_relocations.size() * sizeof(relative_relocations[0]); |
| 1218 | |
| 1219 | // Adjust the hole size for the padding added to preserve alignment. |
| 1220 | hole_size -= padding * sizeof(other_relocations[0]); |
| 1221 | LOG(INFO) << "Expansion : " << hole_size << " bytes"; |
| 1222 | } |
| 1223 | |
| 1224 | // Rewrite the current dynamic relocations section to be the relative |
| 1225 | // relocations followed by other relocations. This is the usual order in |
| 1226 | // which we find them after linking, so this action will normally put the |
| 1227 | // entire dynamic relocations section back to its pre-split-and-packed state. |
| 1228 | relocations.assign(relative_relocations.begin(), relative_relocations.end()); |
| 1229 | relocations.insert(relocations.end(), |
| 1230 | other_relocations.begin(), other_relocations.end()); |
| 1231 | const void* section_data = &relocations[0]; |
| 1232 | const size_t bytes = relocations.size() * sizeof(relocations[0]); |
| 1233 | LOG(INFO) << "Total : " << relocations.size() << " entries"; |
| 1234 | ResizeSection<Rel>(elf_, relocations_section_, bytes); |
| 1235 | RewriteSectionData(relocations_section_, section_data, bytes); |
| 1236 | |
| 1237 | // Nearly empty the current packed android relocations section. Leaves a |
| 1238 | // four-byte stub so that some data remains allocated to the section. |
| 1239 | // This is a convenience which allows us to re-pack this file again without |
| 1240 | // having to remove the section and then add a new small one with objcopy. |
| 1241 | // The way we resize sections relies on there being some data in a section. |
| 1242 | ResizeSection<Rel>( |
| 1243 | elf_, android_relocations_section_, sizeof(kStubIdentifier)); |
| 1244 | RewriteSectionData( |
| 1245 | android_relocations_section_, &kStubIdentifier, sizeof(kStubIdentifier)); |
| 1246 | |
| 1247 | // Rewrite .dynamic to remove two tags describing packed android relocations. |
| 1248 | data = GetSectionData(dynamic_section_); |
| 1249 | const ELF::Dyn* dynamic_base = reinterpret_cast<ELF::Dyn*>(data->d_buf); |
| 1250 | std::vector<ELF::Dyn> dynamics( |
| 1251 | dynamic_base, |
| 1252 | dynamic_base + data->d_size / sizeof(dynamics[0])); |
| 1253 | RemoveDynamicEntry(DT_ANDROID_REL_OFFSET, &dynamics); |
| 1254 | RemoveDynamicEntry(DT_ANDROID_REL_SIZE, &dynamics); |
| 1255 | const void* dynamics_data = &dynamics[0]; |
| 1256 | const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]); |
| 1257 | RewriteSectionData(dynamic_section_, dynamics_data, dynamics_bytes); |
| 1258 | |
| 1259 | Flush(); |
| 1260 | return true; |
| 1261 | } |
| 1262 | |
| 1263 | // Flush rewritten shared object file data. |
| 1264 | void ElfFile::Flush() { |
| 1265 | // Flag all ELF data held in memory as needing to be written back to the |
| 1266 | // file, and tell libelf that we have controlled the file layout. |
| 1267 | elf_flagelf(elf_, ELF_C_SET, ELF_F_DIRTY); |
| 1268 | elf_flagelf(elf_, ELF_C_SET, ELF_F_LAYOUT); |
| 1269 | |
| 1270 | // Write ELF data back to disk. |
| 1271 | const off_t file_bytes = elf_update(elf_, ELF_C_WRITE); |
| 1272 | CHECK(file_bytes > 0); |
| 1273 | VLOG(1) << "elf_update returned: " << file_bytes; |
| 1274 | |
| 1275 | // Clean up libelf, and truncate the output file to the number of bytes |
| 1276 | // written by elf_update(). |
| 1277 | elf_end(elf_); |
| 1278 | elf_ = NULL; |
| 1279 | const int truncate = ftruncate(fd_, file_bytes); |
| 1280 | CHECK(truncate == 0); |
| 1281 | } |
| 1282 | |
| 1283 | } // namespace relocation_packer |