The Android Open Source Project | a27d2ba | 2008-10-21 07:00:00 -0700 | [diff] [blame^] | 1 | /* @(#)s_log1p.c 5.1 93/09/24 */ |
| 2 | /* |
| 3 | * ==================================================== |
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 | * |
| 6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 7 | * Permission to use, copy, modify, and distribute this |
| 8 | * software is freely granted, provided that this notice |
| 9 | * is preserved. |
| 10 | * ==================================================== |
| 11 | */ |
| 12 | |
| 13 | #ifndef lint |
| 14 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_log1p.c,v 1.8 2005/12/04 12:28:33 bde Exp $"; |
| 15 | #endif |
| 16 | |
| 17 | /* double log1p(double x) |
| 18 | * |
| 19 | * Method : |
| 20 | * 1. Argument Reduction: find k and f such that |
| 21 | * 1+x = 2^k * (1+f), |
| 22 | * where sqrt(2)/2 < 1+f < sqrt(2) . |
| 23 | * |
| 24 | * Note. If k=0, then f=x is exact. However, if k!=0, then f |
| 25 | * may not be representable exactly. In that case, a correction |
| 26 | * term is need. Let u=1+x rounded. Let c = (1+x)-u, then |
| 27 | * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), |
| 28 | * and add back the correction term c/u. |
| 29 | * (Note: when x > 2**53, one can simply return log(x)) |
| 30 | * |
| 31 | * 2. Approximation of log1p(f). |
| 32 | * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
| 33 | * = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
| 34 | * = 2s + s*R |
| 35 | * We use a special Reme algorithm on [0,0.1716] to generate |
| 36 | * a polynomial of degree 14 to approximate R The maximum error |
| 37 | * of this polynomial approximation is bounded by 2**-58.45. In |
| 38 | * other words, |
| 39 | * 2 4 6 8 10 12 14 |
| 40 | * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s |
| 41 | * (the values of Lp1 to Lp7 are listed in the program) |
| 42 | * and |
| 43 | * | 2 14 | -58.45 |
| 44 | * | Lp1*s +...+Lp7*s - R(z) | <= 2 |
| 45 | * | | |
| 46 | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
| 47 | * In order to guarantee error in log below 1ulp, we compute log |
| 48 | * by |
| 49 | * log1p(f) = f - (hfsq - s*(hfsq+R)). |
| 50 | * |
| 51 | * 3. Finally, log1p(x) = k*ln2 + log1p(f). |
| 52 | * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) |
| 53 | * Here ln2 is split into two floating point number: |
| 54 | * ln2_hi + ln2_lo, |
| 55 | * where n*ln2_hi is always exact for |n| < 2000. |
| 56 | * |
| 57 | * Special cases: |
| 58 | * log1p(x) is NaN with signal if x < -1 (including -INF) ; |
| 59 | * log1p(+INF) is +INF; log1p(-1) is -INF with signal; |
| 60 | * log1p(NaN) is that NaN with no signal. |
| 61 | * |
| 62 | * Accuracy: |
| 63 | * according to an error analysis, the error is always less than |
| 64 | * 1 ulp (unit in the last place). |
| 65 | * |
| 66 | * Constants: |
| 67 | * The hexadecimal values are the intended ones for the following |
| 68 | * constants. The decimal values may be used, provided that the |
| 69 | * compiler will convert from decimal to binary accurately enough |
| 70 | * to produce the hexadecimal values shown. |
| 71 | * |
| 72 | * Note: Assuming log() return accurate answer, the following |
| 73 | * algorithm can be used to compute log1p(x) to within a few ULP: |
| 74 | * |
| 75 | * u = 1+x; |
| 76 | * if(u==1.0) return x ; else |
| 77 | * return log(u)*(x/(u-1.0)); |
| 78 | * |
| 79 | * See HP-15C Advanced Functions Handbook, p.193. |
| 80 | */ |
| 81 | |
| 82 | #include "math.h" |
| 83 | #include "math_private.h" |
| 84 | |
| 85 | static const double |
| 86 | ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ |
| 87 | ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ |
| 88 | two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ |
| 89 | Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
| 90 | Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
| 91 | Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
| 92 | Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
| 93 | Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
| 94 | Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
| 95 | Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
| 96 | |
| 97 | static const double zero = 0.0; |
| 98 | |
| 99 | double |
| 100 | log1p(double x) |
| 101 | { |
| 102 | double hfsq,f,c,s,z,R,u; |
| 103 | int32_t k,hx,hu,ax; |
| 104 | |
| 105 | GET_HIGH_WORD(hx,x); |
| 106 | ax = hx&0x7fffffff; |
| 107 | |
| 108 | k = 1; |
| 109 | if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */ |
| 110 | if(ax>=0x3ff00000) { /* x <= -1.0 */ |
| 111 | if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */ |
| 112 | else return (x-x)/(x-x); /* log1p(x<-1)=NaN */ |
| 113 | } |
| 114 | if(ax<0x3e200000) { /* |x| < 2**-29 */ |
| 115 | if(two54+x>zero /* raise inexact */ |
| 116 | &&ax<0x3c900000) /* |x| < 2**-54 */ |
| 117 | return x; |
| 118 | else |
| 119 | return x - x*x*0.5; |
| 120 | } |
| 121 | if(hx>0||hx<=((int32_t)0xbfd2bec4)) { |
| 122 | k=0;f=x;hu=1;} /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ |
| 123 | } |
| 124 | if (hx >= 0x7ff00000) return x+x; |
| 125 | if(k!=0) { |
| 126 | if(hx<0x43400000) { |
| 127 | u = 1.0+x; |
| 128 | GET_HIGH_WORD(hu,u); |
| 129 | k = (hu>>20)-1023; |
| 130 | c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */ |
| 131 | c /= u; |
| 132 | } else { |
| 133 | u = x; |
| 134 | GET_HIGH_WORD(hu,u); |
| 135 | k = (hu>>20)-1023; |
| 136 | c = 0; |
| 137 | } |
| 138 | hu &= 0x000fffff; |
| 139 | /* |
| 140 | * The approximation to sqrt(2) used in thresholds is not |
| 141 | * critical. However, the ones used above must give less |
| 142 | * strict bounds than the one here so that the k==0 case is |
| 143 | * never reached from here, since here we have committed to |
| 144 | * using the correction term but don't use it if k==0. |
| 145 | */ |
| 146 | if(hu<0x6a09e) { /* u ~< sqrt(2) */ |
| 147 | SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */ |
| 148 | } else { |
| 149 | k += 1; |
| 150 | SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */ |
| 151 | hu = (0x00100000-hu)>>2; |
| 152 | } |
| 153 | f = u-1.0; |
| 154 | } |
| 155 | hfsq=0.5*f*f; |
| 156 | if(hu==0) { /* |f| < 2**-20 */ |
| 157 | if(f==zero) if(k==0) return zero; |
| 158 | else {c += k*ln2_lo; return k*ln2_hi+c;} |
| 159 | R = hfsq*(1.0-0.66666666666666666*f); |
| 160 | if(k==0) return f-R; else |
| 161 | return k*ln2_hi-((R-(k*ln2_lo+c))-f); |
| 162 | } |
| 163 | s = f/(2.0+f); |
| 164 | z = s*s; |
| 165 | R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7)))))); |
| 166 | if(k==0) return f-(hfsq-s*(hfsq+R)); else |
| 167 | return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f); |
| 168 | } |