The Android Open Source Project | a27d2ba | 2008-10-21 07:00:00 -0700 | [diff] [blame] | 1 | |
| 2 | /* @(#)k_rem_pio2.c 1.3 95/01/18 */ |
| 3 | /* |
| 4 | * ==================================================== |
| 5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 6 | * |
| 7 | * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| 8 | * Permission to use, copy, modify, and distribute this |
| 9 | * software is freely granted, provided that this notice |
| 10 | * is preserved. |
| 11 | * ==================================================== |
| 12 | */ |
| 13 | |
| 14 | #ifndef lint |
| 15 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/k_rem_pio2.c,v 1.7 2005/02/04 18:26:06 das Exp $"; |
| 16 | #endif |
| 17 | |
| 18 | /* |
| 19 | * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) |
| 20 | * double x[],y[]; int e0,nx,prec; int ipio2[]; |
| 21 | * |
| 22 | * __kernel_rem_pio2 return the last three digits of N with |
| 23 | * y = x - N*pi/2 |
| 24 | * so that |y| < pi/2. |
| 25 | * |
| 26 | * The method is to compute the integer (mod 8) and fraction parts of |
| 27 | * (2/pi)*x without doing the full multiplication. In general we |
| 28 | * skip the part of the product that are known to be a huge integer ( |
| 29 | * more accurately, = 0 mod 8 ). Thus the number of operations are |
| 30 | * independent of the exponent of the input. |
| 31 | * |
| 32 | * (2/pi) is represented by an array of 24-bit integers in ipio2[]. |
| 33 | * |
| 34 | * Input parameters: |
| 35 | * x[] The input value (must be positive) is broken into nx |
| 36 | * pieces of 24-bit integers in double precision format. |
| 37 | * x[i] will be the i-th 24 bit of x. The scaled exponent |
| 38 | * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 |
| 39 | * match x's up to 24 bits. |
| 40 | * |
| 41 | * Example of breaking a double positive z into x[0]+x[1]+x[2]: |
| 42 | * e0 = ilogb(z)-23 |
| 43 | * z = scalbn(z,-e0) |
| 44 | * for i = 0,1,2 |
| 45 | * x[i] = floor(z) |
| 46 | * z = (z-x[i])*2**24 |
| 47 | * |
| 48 | * |
| 49 | * y[] ouput result in an array of double precision numbers. |
| 50 | * The dimension of y[] is: |
| 51 | * 24-bit precision 1 |
| 52 | * 53-bit precision 2 |
| 53 | * 64-bit precision 2 |
| 54 | * 113-bit precision 3 |
| 55 | * The actual value is the sum of them. Thus for 113-bit |
| 56 | * precison, one may have to do something like: |
| 57 | * |
| 58 | * long double t,w,r_head, r_tail; |
| 59 | * t = (long double)y[2] + (long double)y[1]; |
| 60 | * w = (long double)y[0]; |
| 61 | * r_head = t+w; |
| 62 | * r_tail = w - (r_head - t); |
| 63 | * |
| 64 | * e0 The exponent of x[0] |
| 65 | * |
| 66 | * nx dimension of x[] |
| 67 | * |
| 68 | * prec an integer indicating the precision: |
| 69 | * 0 24 bits (single) |
| 70 | * 1 53 bits (double) |
| 71 | * 2 64 bits (extended) |
| 72 | * 3 113 bits (quad) |
| 73 | * |
| 74 | * ipio2[] |
| 75 | * integer array, contains the (24*i)-th to (24*i+23)-th |
| 76 | * bit of 2/pi after binary point. The corresponding |
| 77 | * floating value is |
| 78 | * |
| 79 | * ipio2[i] * 2^(-24(i+1)). |
| 80 | * |
| 81 | * External function: |
| 82 | * double scalbn(), floor(); |
| 83 | * |
| 84 | * |
| 85 | * Here is the description of some local variables: |
| 86 | * |
| 87 | * jk jk+1 is the initial number of terms of ipio2[] needed |
| 88 | * in the computation. The recommended value is 2,3,4, |
| 89 | * 6 for single, double, extended,and quad. |
| 90 | * |
| 91 | * jz local integer variable indicating the number of |
| 92 | * terms of ipio2[] used. |
| 93 | * |
| 94 | * jx nx - 1 |
| 95 | * |
| 96 | * jv index for pointing to the suitable ipio2[] for the |
| 97 | * computation. In general, we want |
| 98 | * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 |
| 99 | * is an integer. Thus |
| 100 | * e0-3-24*jv >= 0 or (e0-3)/24 >= jv |
| 101 | * Hence jv = max(0,(e0-3)/24). |
| 102 | * |
| 103 | * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. |
| 104 | * |
| 105 | * q[] double array with integral value, representing the |
| 106 | * 24-bits chunk of the product of x and 2/pi. |
| 107 | * |
| 108 | * q0 the corresponding exponent of q[0]. Note that the |
| 109 | * exponent for q[i] would be q0-24*i. |
| 110 | * |
| 111 | * PIo2[] double precision array, obtained by cutting pi/2 |
| 112 | * into 24 bits chunks. |
| 113 | * |
| 114 | * f[] ipio2[] in floating point |
| 115 | * |
| 116 | * iq[] integer array by breaking up q[] in 24-bits chunk. |
| 117 | * |
| 118 | * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] |
| 119 | * |
| 120 | * ih integer. If >0 it indicates q[] is >= 0.5, hence |
| 121 | * it also indicates the *sign* of the result. |
| 122 | * |
| 123 | */ |
| 124 | |
| 125 | |
| 126 | /* |
| 127 | * Constants: |
| 128 | * The hexadecimal values are the intended ones for the following |
| 129 | * constants. The decimal values may be used, provided that the |
| 130 | * compiler will convert from decimal to binary accurately enough |
| 131 | * to produce the hexadecimal values shown. |
| 132 | */ |
| 133 | |
| 134 | #include "math.h" |
| 135 | #include "math_private.h" |
| 136 | |
| 137 | static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ |
| 138 | |
| 139 | static const double PIo2[] = { |
| 140 | 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ |
| 141 | 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ |
| 142 | 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ |
| 143 | 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ |
| 144 | 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ |
| 145 | 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ |
| 146 | 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ |
| 147 | 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ |
| 148 | }; |
| 149 | |
| 150 | static const double |
| 151 | zero = 0.0, |
| 152 | one = 1.0, |
| 153 | two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
| 154 | twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ |
| 155 | |
| 156 | int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) |
| 157 | { |
| 158 | int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; |
| 159 | double z,fw,f[20],fq[20],q[20]; |
| 160 | |
| 161 | /* initialize jk*/ |
| 162 | jk = init_jk[prec]; |
| 163 | jp = jk; |
| 164 | |
| 165 | /* determine jx,jv,q0, note that 3>q0 */ |
| 166 | jx = nx-1; |
| 167 | jv = (e0-3)/24; if(jv<0) jv=0; |
| 168 | q0 = e0-24*(jv+1); |
| 169 | |
| 170 | /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ |
| 171 | j = jv-jx; m = jx+jk; |
| 172 | for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; |
| 173 | |
| 174 | /* compute q[0],q[1],...q[jk] */ |
| 175 | for (i=0;i<=jk;i++) { |
| 176 | for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; |
| 177 | } |
| 178 | |
| 179 | jz = jk; |
| 180 | recompute: |
| 181 | /* distill q[] into iq[] reversingly */ |
| 182 | for(i=0,j=jz,z=q[jz];j>0;i++,j--) { |
| 183 | fw = (double)((int32_t)(twon24* z)); |
| 184 | iq[i] = (int32_t)(z-two24*fw); |
| 185 | z = q[j-1]+fw; |
| 186 | } |
| 187 | |
| 188 | /* compute n */ |
| 189 | z = scalbn(z,q0); /* actual value of z */ |
| 190 | z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ |
| 191 | n = (int32_t) z; |
| 192 | z -= (double)n; |
| 193 | ih = 0; |
| 194 | if(q0>0) { /* need iq[jz-1] to determine n */ |
| 195 | i = (iq[jz-1]>>(24-q0)); n += i; |
| 196 | iq[jz-1] -= i<<(24-q0); |
| 197 | ih = iq[jz-1]>>(23-q0); |
| 198 | } |
| 199 | else if(q0==0) ih = iq[jz-1]>>23; |
| 200 | else if(z>=0.5) ih=2; |
| 201 | |
| 202 | if(ih>0) { /* q > 0.5 */ |
| 203 | n += 1; carry = 0; |
| 204 | for(i=0;i<jz ;i++) { /* compute 1-q */ |
| 205 | j = iq[i]; |
| 206 | if(carry==0) { |
| 207 | if(j!=0) { |
| 208 | carry = 1; iq[i] = 0x1000000- j; |
| 209 | } |
| 210 | } else iq[i] = 0xffffff - j; |
| 211 | } |
| 212 | if(q0>0) { /* rare case: chance is 1 in 12 */ |
| 213 | switch(q0) { |
| 214 | case 1: |
| 215 | iq[jz-1] &= 0x7fffff; break; |
| 216 | case 2: |
| 217 | iq[jz-1] &= 0x3fffff; break; |
| 218 | } |
| 219 | } |
| 220 | if(ih==2) { |
| 221 | z = one - z; |
| 222 | if(carry!=0) z -= scalbn(one,q0); |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | /* check if recomputation is needed */ |
| 227 | if(z==zero) { |
| 228 | j = 0; |
| 229 | for (i=jz-1;i>=jk;i--) j |= iq[i]; |
| 230 | if(j==0) { /* need recomputation */ |
| 231 | for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ |
| 232 | |
| 233 | for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ |
| 234 | f[jx+i] = (double) ipio2[jv+i]; |
| 235 | for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; |
| 236 | q[i] = fw; |
| 237 | } |
| 238 | jz += k; |
| 239 | goto recompute; |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | /* chop off zero terms */ |
| 244 | if(z==0.0) { |
| 245 | jz -= 1; q0 -= 24; |
| 246 | while(iq[jz]==0) { jz--; q0-=24;} |
| 247 | } else { /* break z into 24-bit if necessary */ |
| 248 | z = scalbn(z,-q0); |
| 249 | if(z>=two24) { |
| 250 | fw = (double)((int32_t)(twon24*z)); |
| 251 | iq[jz] = (int32_t)(z-two24*fw); |
| 252 | jz += 1; q0 += 24; |
| 253 | iq[jz] = (int32_t) fw; |
| 254 | } else iq[jz] = (int32_t) z ; |
| 255 | } |
| 256 | |
| 257 | /* convert integer "bit" chunk to floating-point value */ |
| 258 | fw = scalbn(one,q0); |
| 259 | for(i=jz;i>=0;i--) { |
| 260 | q[i] = fw*(double)iq[i]; fw*=twon24; |
| 261 | } |
| 262 | |
| 263 | /* compute PIo2[0,...,jp]*q[jz,...,0] */ |
| 264 | for(i=jz;i>=0;i--) { |
| 265 | for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; |
| 266 | fq[jz-i] = fw; |
| 267 | } |
| 268 | |
| 269 | /* compress fq[] into y[] */ |
| 270 | switch(prec) { |
| 271 | case 0: |
| 272 | fw = 0.0; |
| 273 | for (i=jz;i>=0;i--) fw += fq[i]; |
| 274 | y[0] = (ih==0)? fw: -fw; |
| 275 | break; |
| 276 | case 1: |
| 277 | case 2: |
| 278 | fw = 0.0; |
| 279 | for (i=jz;i>=0;i--) fw += fq[i]; |
| 280 | y[0] = (ih==0)? fw: -fw; |
| 281 | fw = fq[0]-fw; |
| 282 | for (i=1;i<=jz;i++) fw += fq[i]; |
| 283 | y[1] = (ih==0)? fw: -fw; |
| 284 | break; |
| 285 | case 3: /* painful */ |
| 286 | for (i=jz;i>0;i--) { |
| 287 | fw = fq[i-1]+fq[i]; |
| 288 | fq[i] += fq[i-1]-fw; |
| 289 | fq[i-1] = fw; |
| 290 | } |
| 291 | for (i=jz;i>1;i--) { |
| 292 | fw = fq[i-1]+fq[i]; |
| 293 | fq[i] += fq[i-1]-fw; |
| 294 | fq[i-1] = fw; |
| 295 | } |
| 296 | for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; |
| 297 | if(ih==0) { |
| 298 | y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; |
| 299 | } else { |
| 300 | y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; |
| 301 | } |
| 302 | } |
| 303 | return n&7; |
| 304 | } |