The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 1 | /* |
| 2 | |
| 3 | Copyright (c) 2007-2008 Michael G Schwern |
| 4 | |
| 5 | This software originally derived from Paul Sheer's pivotal_gmtime_r.c. |
| 6 | |
| 7 | The MIT License: |
| 8 | |
| 9 | Permission is hereby granted, free of charge, to any person obtaining a copy |
| 10 | of this software and associated documentation files (the "Software"), to deal |
| 11 | in the Software without restriction, including without limitation the rights |
| 12 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 13 | copies of the Software, and to permit persons to whom the Software is |
| 14 | furnished to do so, subject to the following conditions: |
| 15 | |
| 16 | The above copyright notice and this permission notice shall be included in |
| 17 | all copies or substantial portions of the Software. |
| 18 | |
| 19 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 20 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 21 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 22 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 23 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 24 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 25 | THE SOFTWARE. |
| 26 | |
| 27 | */ |
| 28 | |
| 29 | /* See http://code.google.com/p/y2038 for this code's origin */ |
| 30 | |
Elliott Hughes | 8d77bce | 2014-04-22 13:55:58 -0700 | [diff] [blame] | 31 | #if defined(__LP64__) |
| 32 | #error This cruft should be LP32 only! |
| 33 | #endif |
| 34 | |
The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 35 | /* |
| 36 | |
| 37 | Programmers who have available to them 64-bit time values as a 'long |
| 38 | long' type can use localtime64_r() and gmtime64_r() which correctly |
| 39 | converts the time even on 32-bit systems. Whether you have 64-bit time |
| 40 | values will depend on the operating system. |
| 41 | |
| 42 | localtime64_r() is a 64-bit equivalent of localtime_r(). |
| 43 | |
| 44 | gmtime64_r() is a 64-bit equivalent of gmtime_r(). |
| 45 | |
| 46 | */ |
| 47 | |
| 48 | #include <assert.h> |
| 49 | #include <stdlib.h> |
| 50 | #include <stdio.h> |
| 51 | #include <string.h> |
| 52 | #include <time.h> |
| 53 | #include <errno.h> |
| 54 | #include "time64.h" |
| 55 | |
| 56 | /* BIONIC_BEGIN */ |
| 57 | /* the following are here to avoid exposing time64_config.h and |
| 58 | * other types in our public time64.h header |
| 59 | */ |
| 60 | #include "time64_config.h" |
| 61 | |
| 62 | /* Not everyone has gm/localtime_r(), provide a replacement */ |
| 63 | #ifdef HAS_LOCALTIME_R |
| 64 | # define LOCALTIME_R(clock, result) localtime_r(clock, result) |
| 65 | #else |
| 66 | # define LOCALTIME_R(clock, result) fake_localtime_r(clock, result) |
| 67 | #endif |
| 68 | #ifdef HAS_GMTIME_R |
| 69 | # define GMTIME_R(clock, result) gmtime_r(clock, result) |
| 70 | #else |
| 71 | # define GMTIME_R(clock, result) fake_gmtime_r(clock, result) |
| 72 | #endif |
| 73 | |
| 74 | typedef int64_t Int64; |
| 75 | typedef time64_t Time64_T; |
| 76 | typedef int64_t Year; |
| 77 | #define TM tm |
| 78 | /* BIONIC_END */ |
| 79 | |
| 80 | /* Spec says except for stftime() and the _r() functions, these |
| 81 | all return static memory. Stabbings! */ |
| 82 | static struct TM Static_Return_Date; |
| 83 | static char Static_Return_String[35]; |
| 84 | |
| 85 | static const int days_in_month[2][12] = { |
| 86 | {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, |
| 87 | {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, |
| 88 | }; |
| 89 | |
| 90 | static const int julian_days_by_month[2][12] = { |
| 91 | {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}, |
| 92 | {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335}, |
| 93 | }; |
| 94 | |
| 95 | static char const wday_name[7][3] = { |
| 96 | "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" |
| 97 | }; |
| 98 | |
| 99 | static char const mon_name[12][3] = { |
| 100 | "Jan", "Feb", "Mar", "Apr", "May", "Jun", |
| 101 | "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" |
| 102 | }; |
| 103 | |
| 104 | static const int length_of_year[2] = { 365, 366 }; |
| 105 | |
| 106 | /* Some numbers relating to the gregorian cycle */ |
| 107 | static const Year years_in_gregorian_cycle = 400; |
| 108 | #define days_in_gregorian_cycle ((365 * 400) + 100 - 4 + 1) |
| 109 | static const Time64_T seconds_in_gregorian_cycle = days_in_gregorian_cycle * 60LL * 60LL * 24LL; |
| 110 | |
| 111 | /* Year range we can trust the time funcitons with */ |
| 112 | #define MAX_SAFE_YEAR 2037 |
| 113 | #define MIN_SAFE_YEAR 1971 |
| 114 | |
| 115 | /* 28 year Julian calendar cycle */ |
| 116 | #define SOLAR_CYCLE_LENGTH 28 |
| 117 | |
| 118 | /* Year cycle from MAX_SAFE_YEAR down. */ |
| 119 | static const int safe_years_high[SOLAR_CYCLE_LENGTH] = { |
| 120 | 2016, 2017, 2018, 2019, |
| 121 | 2020, 2021, 2022, 2023, |
| 122 | 2024, 2025, 2026, 2027, |
| 123 | 2028, 2029, 2030, 2031, |
| 124 | 2032, 2033, 2034, 2035, |
| 125 | 2036, 2037, 2010, 2011, |
| 126 | 2012, 2013, 2014, 2015 |
| 127 | }; |
| 128 | |
| 129 | /* Year cycle from MIN_SAFE_YEAR up */ |
| 130 | static const int safe_years_low[SOLAR_CYCLE_LENGTH] = { |
| 131 | 1996, 1997, 1998, 1971, |
| 132 | 1972, 1973, 1974, 1975, |
| 133 | 1976, 1977, 1978, 1979, |
| 134 | 1980, 1981, 1982, 1983, |
| 135 | 1984, 1985, 1986, 1987, |
| 136 | 1988, 1989, 1990, 1991, |
| 137 | 1992, 1993, 1994, 1995, |
| 138 | }; |
| 139 | |
The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 140 | /* Let's assume people are going to be looking for dates in the future. |
| 141 | Let's provide some cheats so you can skip ahead. |
| 142 | This has a 4x speed boost when near 2008. |
| 143 | */ |
| 144 | /* Number of days since epoch on Jan 1st, 2008 GMT */ |
| 145 | #define CHEAT_DAYS (1199145600 / 24 / 60 / 60) |
| 146 | #define CHEAT_YEARS 108 |
| 147 | |
| 148 | #define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0) |
| 149 | #define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a)) |
| 150 | |
| 151 | #ifdef USE_SYSTEM_LOCALTIME |
| 152 | # define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \ |
| 153 | (a) <= SYSTEM_LOCALTIME_MAX && \ |
| 154 | (a) >= SYSTEM_LOCALTIME_MIN \ |
| 155 | ) |
| 156 | #else |
| 157 | # define SHOULD_USE_SYSTEM_LOCALTIME(a) (0) |
| 158 | #endif |
| 159 | |
| 160 | #ifdef USE_SYSTEM_GMTIME |
| 161 | # define SHOULD_USE_SYSTEM_GMTIME(a) ( \ |
| 162 | (a) <= SYSTEM_GMTIME_MAX && \ |
| 163 | (a) >= SYSTEM_GMTIME_MIN \ |
| 164 | ) |
| 165 | #else |
| 166 | # define SHOULD_USE_SYSTEM_GMTIME(a) (0) |
| 167 | #endif |
| 168 | |
| 169 | /* Multi varadic macros are a C99 thing, alas */ |
| 170 | #ifdef TIME_64_DEBUG |
| 171 | # define TRACE(format) (fprintf(stderr, format)) |
| 172 | # define TRACE1(format, var1) (fprintf(stderr, format, var1)) |
| 173 | # define TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2)) |
| 174 | # define TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3)) |
| 175 | #else |
| 176 | # define TRACE(format) ((void)0) |
| 177 | # define TRACE1(format, var1) ((void)0) |
| 178 | # define TRACE2(format, var1, var2) ((void)0) |
| 179 | # define TRACE3(format, var1, var2, var3) ((void)0) |
| 180 | #endif |
| 181 | |
| 182 | |
| 183 | static int is_exception_century(Year year) |
| 184 | { |
| 185 | int is_exception = ((year % 100 == 0) && !(year % 400 == 0)); |
| 186 | TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no"); |
| 187 | |
| 188 | return(is_exception); |
| 189 | } |
| 190 | |
| 191 | |
| 192 | /* timegm() is not in the C or POSIX spec, but it is such a useful |
| 193 | extension I would be remiss in leaving it out. Also I need it |
| 194 | for localtime64() |
| 195 | */ |
| 196 | Time64_T timegm64(const struct TM *date) { |
| 197 | Time64_T days = 0; |
| 198 | Time64_T seconds = 0; |
| 199 | Year year; |
| 200 | Year orig_year = (Year)date->tm_year; |
| 201 | int cycles = 0; |
| 202 | |
| 203 | if( orig_year > 100 ) { |
| 204 | cycles = (orig_year - 100) / 400; |
| 205 | orig_year -= cycles * 400; |
| 206 | days += (Time64_T)cycles * days_in_gregorian_cycle; |
| 207 | } |
| 208 | else if( orig_year < -300 ) { |
| 209 | cycles = (orig_year - 100) / 400; |
| 210 | orig_year -= cycles * 400; |
| 211 | days += (Time64_T)cycles * days_in_gregorian_cycle; |
| 212 | } |
| 213 | TRACE3("# timegm/ cycles: %d, days: %lld, orig_year: %lld\n", cycles, days, orig_year); |
| 214 | |
| 215 | if( orig_year > 70 ) { |
| 216 | year = 70; |
| 217 | while( year < orig_year ) { |
| 218 | days += length_of_year[IS_LEAP(year)]; |
| 219 | year++; |
| 220 | } |
| 221 | } |
| 222 | else if ( orig_year < 70 ) { |
| 223 | year = 69; |
| 224 | do { |
| 225 | days -= length_of_year[IS_LEAP(year)]; |
| 226 | year--; |
| 227 | } while( year >= orig_year ); |
| 228 | } |
| 229 | |
| 230 | |
| 231 | days += julian_days_by_month[IS_LEAP(orig_year)][date->tm_mon]; |
| 232 | days += date->tm_mday - 1; |
| 233 | |
| 234 | seconds = days * 60 * 60 * 24; |
| 235 | |
| 236 | seconds += date->tm_hour * 60 * 60; |
| 237 | seconds += date->tm_min * 60; |
| 238 | seconds += date->tm_sec; |
| 239 | |
| 240 | return(seconds); |
| 241 | } |
| 242 | |
| 243 | |
Elliott Hughes | 066eb0b | 2014-07-01 10:48:23 -0700 | [diff] [blame] | 244 | #if !defined(NDEBUG) |
The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 245 | static int check_tm(struct TM *tm) |
| 246 | { |
| 247 | /* Don't forget leap seconds */ |
| 248 | assert(tm->tm_sec >= 0); |
| 249 | assert(tm->tm_sec <= 61); |
| 250 | |
| 251 | assert(tm->tm_min >= 0); |
| 252 | assert(tm->tm_min <= 59); |
| 253 | |
| 254 | assert(tm->tm_hour >= 0); |
| 255 | assert(tm->tm_hour <= 23); |
| 256 | |
| 257 | assert(tm->tm_mday >= 1); |
| 258 | assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]); |
| 259 | |
| 260 | assert(tm->tm_mon >= 0); |
| 261 | assert(tm->tm_mon <= 11); |
| 262 | |
| 263 | assert(tm->tm_wday >= 0); |
| 264 | assert(tm->tm_wday <= 6); |
Elliott Hughes | 8d77bce | 2014-04-22 13:55:58 -0700 | [diff] [blame] | 265 | |
The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 266 | assert(tm->tm_yday >= 0); |
| 267 | assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]); |
| 268 | |
| 269 | #ifdef HAS_TM_TM_GMTOFF |
| 270 | assert(tm->tm_gmtoff >= -24 * 60 * 60); |
| 271 | assert(tm->tm_gmtoff <= 24 * 60 * 60); |
| 272 | #endif |
| 273 | |
| 274 | return 1; |
| 275 | } |
Elliott Hughes | 066eb0b | 2014-07-01 10:48:23 -0700 | [diff] [blame] | 276 | #endif |
The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 277 | |
| 278 | |
| 279 | /* The exceptional centuries without leap years cause the cycle to |
| 280 | shift by 16 |
| 281 | */ |
| 282 | static Year cycle_offset(Year year) |
| 283 | { |
| 284 | const Year start_year = 2000; |
| 285 | Year year_diff = year - start_year; |
| 286 | Year exceptions; |
| 287 | |
| 288 | if( year > start_year ) |
| 289 | year_diff--; |
| 290 | |
| 291 | exceptions = year_diff / 100; |
| 292 | exceptions -= year_diff / 400; |
| 293 | |
| 294 | TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n", |
| 295 | year, exceptions, year_diff); |
| 296 | |
| 297 | return exceptions * 16; |
| 298 | } |
| 299 | |
| 300 | /* For a given year after 2038, pick the latest possible matching |
| 301 | year in the 28 year calendar cycle. |
| 302 | |
| 303 | A matching year... |
| 304 | 1) Starts on the same day of the week. |
| 305 | 2) Has the same leap year status. |
| 306 | |
| 307 | This is so the calendars match up. |
| 308 | |
| 309 | Also the previous year must match. When doing Jan 1st you might |
| 310 | wind up on Dec 31st the previous year when doing a -UTC time zone. |
| 311 | |
| 312 | Finally, the next year must have the same start day of week. This |
| 313 | is for Dec 31st with a +UTC time zone. |
| 314 | It doesn't need the same leap year status since we only care about |
| 315 | January 1st. |
| 316 | */ |
| 317 | static int safe_year(const Year year) |
| 318 | { |
| 319 | int safe_year = 0; |
| 320 | Year year_cycle; |
| 321 | |
| 322 | if( year >= MIN_SAFE_YEAR && year <= MAX_SAFE_YEAR ) { |
| 323 | return (int)year; |
| 324 | } |
| 325 | |
| 326 | year_cycle = year + cycle_offset(year); |
| 327 | |
| 328 | /* safe_years_low is off from safe_years_high by 8 years */ |
| 329 | if( year < MIN_SAFE_YEAR ) |
| 330 | year_cycle -= 8; |
| 331 | |
| 332 | /* Change non-leap xx00 years to an equivalent */ |
| 333 | if( is_exception_century(year) ) |
| 334 | year_cycle += 11; |
| 335 | |
| 336 | /* Also xx01 years, since the previous year will be wrong */ |
| 337 | if( is_exception_century(year - 1) ) |
| 338 | year_cycle += 17; |
| 339 | |
| 340 | year_cycle %= SOLAR_CYCLE_LENGTH; |
| 341 | if( year_cycle < 0 ) |
| 342 | year_cycle = SOLAR_CYCLE_LENGTH + year_cycle; |
| 343 | |
| 344 | assert( year_cycle >= 0 ); |
| 345 | assert( year_cycle < SOLAR_CYCLE_LENGTH ); |
| 346 | if( year < MIN_SAFE_YEAR ) |
| 347 | safe_year = safe_years_low[year_cycle]; |
| 348 | else if( year > MAX_SAFE_YEAR ) |
| 349 | safe_year = safe_years_high[year_cycle]; |
| 350 | else |
| 351 | assert(0); |
| 352 | |
| 353 | TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n", |
| 354 | year, year_cycle, safe_year); |
| 355 | |
| 356 | assert(safe_year <= MAX_SAFE_YEAR && safe_year >= MIN_SAFE_YEAR); |
| 357 | |
| 358 | return safe_year; |
| 359 | } |
| 360 | |
| 361 | |
Jim Huang | 8b2707a | 2010-10-15 02:15:54 +0800 | [diff] [blame] | 362 | static void copy_tm_to_TM(const struct tm *src, struct TM *dest) { |
The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 363 | if( src == NULL ) { |
| 364 | memset(dest, 0, sizeof(*dest)); |
| 365 | } |
| 366 | else { |
| 367 | # ifdef USE_TM64 |
| 368 | dest->tm_sec = src->tm_sec; |
| 369 | dest->tm_min = src->tm_min; |
| 370 | dest->tm_hour = src->tm_hour; |
| 371 | dest->tm_mday = src->tm_mday; |
| 372 | dest->tm_mon = src->tm_mon; |
| 373 | dest->tm_year = (Year)src->tm_year; |
| 374 | dest->tm_wday = src->tm_wday; |
| 375 | dest->tm_yday = src->tm_yday; |
| 376 | dest->tm_isdst = src->tm_isdst; |
| 377 | |
| 378 | # ifdef HAS_TM_TM_GMTOFF |
| 379 | dest->tm_gmtoff = src->tm_gmtoff; |
| 380 | # endif |
| 381 | |
| 382 | # ifdef HAS_TM_TM_ZONE |
| 383 | dest->tm_zone = src->tm_zone; |
| 384 | # endif |
| 385 | |
| 386 | # else |
| 387 | /* They're the same type */ |
| 388 | memcpy(dest, src, sizeof(*dest)); |
| 389 | # endif |
| 390 | } |
| 391 | } |
| 392 | |
| 393 | |
Jim Huang | 8b2707a | 2010-10-15 02:15:54 +0800 | [diff] [blame] | 394 | static void copy_TM_to_tm(const struct TM *src, struct tm *dest) { |
The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 395 | if( src == NULL ) { |
| 396 | memset(dest, 0, sizeof(*dest)); |
| 397 | } |
| 398 | else { |
| 399 | # ifdef USE_TM64 |
| 400 | dest->tm_sec = src->tm_sec; |
| 401 | dest->tm_min = src->tm_min; |
| 402 | dest->tm_hour = src->tm_hour; |
| 403 | dest->tm_mday = src->tm_mday; |
| 404 | dest->tm_mon = src->tm_mon; |
| 405 | dest->tm_year = (int)src->tm_year; |
| 406 | dest->tm_wday = src->tm_wday; |
| 407 | dest->tm_yday = src->tm_yday; |
| 408 | dest->tm_isdst = src->tm_isdst; |
| 409 | |
| 410 | # ifdef HAS_TM_TM_GMTOFF |
| 411 | dest->tm_gmtoff = src->tm_gmtoff; |
| 412 | # endif |
| 413 | |
| 414 | # ifdef HAS_TM_TM_ZONE |
| 415 | dest->tm_zone = src->tm_zone; |
| 416 | # endif |
| 417 | |
| 418 | # else |
| 419 | /* They're the same type */ |
| 420 | memcpy(dest, src, sizeof(*dest)); |
| 421 | # endif |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | |
| 426 | /* Simulate localtime_r() to the best of our ability */ |
| 427 | struct tm * fake_localtime_r(const time_t *clock, struct tm *result) { |
| 428 | const struct tm *static_result = localtime(clock); |
| 429 | |
| 430 | assert(result != NULL); |
| 431 | |
| 432 | if( static_result == NULL ) { |
| 433 | memset(result, 0, sizeof(*result)); |
| 434 | return NULL; |
| 435 | } |
| 436 | else { |
| 437 | memcpy(result, static_result, sizeof(*result)); |
| 438 | return result; |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | |
| 443 | |
| 444 | /* Simulate gmtime_r() to the best of our ability */ |
| 445 | struct tm * fake_gmtime_r(const time_t *clock, struct tm *result) { |
| 446 | const struct tm *static_result = gmtime(clock); |
| 447 | |
| 448 | assert(result != NULL); |
| 449 | |
| 450 | if( static_result == NULL ) { |
| 451 | memset(result, 0, sizeof(*result)); |
| 452 | return NULL; |
| 453 | } |
| 454 | else { |
| 455 | memcpy(result, static_result, sizeof(*result)); |
| 456 | return result; |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | |
| 461 | static Time64_T seconds_between_years(Year left_year, Year right_year) { |
| 462 | int increment = (left_year > right_year) ? 1 : -1; |
| 463 | Time64_T seconds = 0; |
| 464 | int cycles; |
| 465 | |
| 466 | if( left_year > 2400 ) { |
| 467 | cycles = (left_year - 2400) / 400; |
| 468 | left_year -= cycles * 400; |
| 469 | seconds += cycles * seconds_in_gregorian_cycle; |
| 470 | } |
| 471 | else if( left_year < 1600 ) { |
| 472 | cycles = (left_year - 1600) / 400; |
| 473 | left_year += cycles * 400; |
| 474 | seconds += cycles * seconds_in_gregorian_cycle; |
| 475 | } |
| 476 | |
| 477 | while( left_year != right_year ) { |
| 478 | seconds += length_of_year[IS_LEAP(right_year - 1900)] * 60 * 60 * 24; |
| 479 | right_year += increment; |
| 480 | } |
| 481 | |
| 482 | return seconds * increment; |
| 483 | } |
| 484 | |
| 485 | |
| 486 | Time64_T mktime64(const struct TM *input_date) { |
| 487 | struct tm safe_date; |
| 488 | struct TM date; |
| 489 | Time64_T time; |
| 490 | Year year = input_date->tm_year + 1900; |
| 491 | |
| 492 | if( MIN_SAFE_YEAR <= year && year <= MAX_SAFE_YEAR ) { |
| 493 | copy_TM_to_tm(input_date, &safe_date); |
| 494 | return (Time64_T)mktime(&safe_date); |
| 495 | } |
| 496 | |
| 497 | /* Have to make the year safe in date else it won't fit in safe_date */ |
| 498 | date = *input_date; |
| 499 | date.tm_year = safe_year(year) - 1900; |
| 500 | copy_TM_to_tm(&date, &safe_date); |
| 501 | |
| 502 | time = (Time64_T)mktime(&safe_date); |
| 503 | |
| 504 | time += seconds_between_years(year, (Year)(safe_date.tm_year + 1900)); |
| 505 | |
| 506 | return time; |
| 507 | } |
| 508 | |
| 509 | |
| 510 | /* Because I think mktime() is a crappy name */ |
| 511 | Time64_T timelocal64(const struct TM *date) { |
| 512 | return mktime64(date); |
| 513 | } |
| 514 | |
| 515 | |
| 516 | struct TM *gmtime64_r (const Time64_T *in_time, struct TM *p) |
| 517 | { |
| 518 | int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday; |
| 519 | Time64_T v_tm_tday; |
| 520 | int leap; |
| 521 | Time64_T m; |
| 522 | Time64_T time = *in_time; |
| 523 | Year year = 70; |
| 524 | int cycles = 0; |
| 525 | |
| 526 | assert(p != NULL); |
| 527 | |
| 528 | /* Use the system gmtime() if time_t is small enough */ |
| 529 | if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) { |
| 530 | time_t safe_time = *in_time; |
| 531 | struct tm safe_date; |
| 532 | GMTIME_R(&safe_time, &safe_date); |
| 533 | |
| 534 | copy_tm_to_TM(&safe_date, p); |
| 535 | assert(check_tm(p)); |
| 536 | |
| 537 | return p; |
| 538 | } |
| 539 | |
| 540 | #ifdef HAS_TM_TM_GMTOFF |
| 541 | p->tm_gmtoff = 0; |
| 542 | #endif |
| 543 | p->tm_isdst = 0; |
| 544 | |
| 545 | #ifdef HAS_TM_TM_ZONE |
| 546 | p->tm_zone = "UTC"; |
| 547 | #endif |
| 548 | |
| 549 | v_tm_sec = (int)(time % 60); |
| 550 | time /= 60; |
| 551 | v_tm_min = (int)(time % 60); |
| 552 | time /= 60; |
| 553 | v_tm_hour = (int)(time % 24); |
| 554 | time /= 24; |
| 555 | v_tm_tday = time; |
| 556 | |
| 557 | WRAP (v_tm_sec, v_tm_min, 60); |
| 558 | WRAP (v_tm_min, v_tm_hour, 60); |
| 559 | WRAP (v_tm_hour, v_tm_tday, 24); |
| 560 | |
| 561 | v_tm_wday = (int)((v_tm_tday + 4) % 7); |
| 562 | if (v_tm_wday < 0) |
| 563 | v_tm_wday += 7; |
| 564 | m = v_tm_tday; |
| 565 | |
| 566 | if (m >= CHEAT_DAYS) { |
| 567 | year = CHEAT_YEARS; |
| 568 | m -= CHEAT_DAYS; |
| 569 | } |
| 570 | |
| 571 | if (m >= 0) { |
| 572 | /* Gregorian cycles, this is huge optimization for distant times */ |
| 573 | cycles = (int)(m / (Time64_T) days_in_gregorian_cycle); |
| 574 | if( cycles ) { |
| 575 | m -= (cycles * (Time64_T) days_in_gregorian_cycle); |
| 576 | year += (cycles * years_in_gregorian_cycle); |
| 577 | } |
| 578 | |
| 579 | /* Years */ |
| 580 | leap = IS_LEAP (year); |
| 581 | while (m >= (Time64_T) length_of_year[leap]) { |
| 582 | m -= (Time64_T) length_of_year[leap]; |
| 583 | year++; |
| 584 | leap = IS_LEAP (year); |
| 585 | } |
| 586 | |
| 587 | /* Months */ |
| 588 | v_tm_mon = 0; |
| 589 | while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) { |
| 590 | m -= (Time64_T) days_in_month[leap][v_tm_mon]; |
| 591 | v_tm_mon++; |
| 592 | } |
| 593 | } else { |
| 594 | year--; |
| 595 | |
| 596 | /* Gregorian cycles */ |
| 597 | cycles = (int)((m / (Time64_T) days_in_gregorian_cycle) + 1); |
| 598 | if( cycles ) { |
| 599 | m -= (cycles * (Time64_T) days_in_gregorian_cycle); |
| 600 | year += (cycles * years_in_gregorian_cycle); |
| 601 | } |
| 602 | |
| 603 | /* Years */ |
| 604 | leap = IS_LEAP (year); |
| 605 | while (m < (Time64_T) -length_of_year[leap]) { |
| 606 | m += (Time64_T) length_of_year[leap]; |
| 607 | year--; |
| 608 | leap = IS_LEAP (year); |
| 609 | } |
| 610 | |
| 611 | /* Months */ |
| 612 | v_tm_mon = 11; |
| 613 | while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) { |
| 614 | m += (Time64_T) days_in_month[leap][v_tm_mon]; |
| 615 | v_tm_mon--; |
| 616 | } |
| 617 | m += (Time64_T) days_in_month[leap][v_tm_mon]; |
| 618 | } |
| 619 | |
| 620 | p->tm_year = year; |
| 621 | if( p->tm_year != year ) { |
| 622 | #ifdef EOVERFLOW |
| 623 | errno = EOVERFLOW; |
| 624 | #endif |
| 625 | return NULL; |
| 626 | } |
| 627 | |
| 628 | /* At this point m is less than a year so casting to an int is safe */ |
| 629 | p->tm_mday = (int) m + 1; |
| 630 | p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m; |
| 631 | p->tm_sec = v_tm_sec; |
| 632 | p->tm_min = v_tm_min; |
| 633 | p->tm_hour = v_tm_hour; |
| 634 | p->tm_mon = v_tm_mon; |
| 635 | p->tm_wday = v_tm_wday; |
| 636 | |
| 637 | assert(check_tm(p)); |
| 638 | |
| 639 | return p; |
| 640 | } |
| 641 | |
| 642 | |
| 643 | struct TM *localtime64_r (const Time64_T *time, struct TM *local_tm) |
| 644 | { |
| 645 | time_t safe_time; |
| 646 | struct tm safe_date; |
| 647 | struct TM gm_tm; |
| 648 | Year orig_year; |
| 649 | int month_diff; |
| 650 | |
| 651 | assert(local_tm != NULL); |
| 652 | |
| 653 | /* Use the system localtime() if time_t is small enough */ |
| 654 | if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) { |
| 655 | safe_time = *time; |
| 656 | |
| 657 | TRACE1("Using system localtime for %lld\n", *time); |
| 658 | |
| 659 | LOCALTIME_R(&safe_time, &safe_date); |
| 660 | |
| 661 | copy_tm_to_TM(&safe_date, local_tm); |
| 662 | assert(check_tm(local_tm)); |
| 663 | |
| 664 | return local_tm; |
| 665 | } |
| 666 | |
| 667 | if( gmtime64_r(time, &gm_tm) == NULL ) { |
| 668 | TRACE1("gmtime64_r returned null for %lld\n", *time); |
| 669 | return NULL; |
| 670 | } |
| 671 | |
| 672 | orig_year = gm_tm.tm_year; |
| 673 | |
| 674 | if (gm_tm.tm_year > (2037 - 1900) || |
| 675 | gm_tm.tm_year < (1970 - 1900) |
| 676 | ) |
| 677 | { |
| 678 | TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year); |
| 679 | gm_tm.tm_year = safe_year((Year)(gm_tm.tm_year + 1900)) - 1900; |
| 680 | } |
| 681 | |
| 682 | safe_time = timegm64(&gm_tm); |
| 683 | if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) { |
| 684 | TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time); |
| 685 | return NULL; |
| 686 | } |
| 687 | |
| 688 | copy_tm_to_TM(&safe_date, local_tm); |
| 689 | |
| 690 | local_tm->tm_year = orig_year; |
| 691 | if( local_tm->tm_year != orig_year ) { |
| 692 | TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n", |
| 693 | (Year)local_tm->tm_year, (Year)orig_year); |
| 694 | |
| 695 | #ifdef EOVERFLOW |
| 696 | errno = EOVERFLOW; |
| 697 | #endif |
| 698 | return NULL; |
| 699 | } |
| 700 | |
| 701 | |
| 702 | month_diff = local_tm->tm_mon - gm_tm.tm_mon; |
| 703 | |
| 704 | /* When localtime is Dec 31st previous year and |
| 705 | gmtime is Jan 1st next year. |
| 706 | */ |
| 707 | if( month_diff == 11 ) { |
| 708 | local_tm->tm_year--; |
| 709 | } |
| 710 | |
| 711 | /* When localtime is Jan 1st, next year and |
| 712 | gmtime is Dec 31st, previous year. |
| 713 | */ |
| 714 | if( month_diff == -11 ) { |
| 715 | local_tm->tm_year++; |
| 716 | } |
| 717 | |
| 718 | /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st |
| 719 | in a non-leap xx00. There is one point in the cycle |
| 720 | we can't account for which the safe xx00 year is a leap |
| 721 | year. So we need to correct for Dec 31st comming out as |
| 722 | the 366th day of the year. |
| 723 | */ |
| 724 | if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 ) |
| 725 | local_tm->tm_yday--; |
| 726 | |
| 727 | assert(check_tm(local_tm)); |
| 728 | |
| 729 | return local_tm; |
| 730 | } |
| 731 | |
| 732 | |
Jim Huang | 8b2707a | 2010-10-15 02:15:54 +0800 | [diff] [blame] | 733 | static int valid_tm_wday( const struct TM* date ) { |
The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 734 | if( 0 <= date->tm_wday && date->tm_wday <= 6 ) |
| 735 | return 1; |
| 736 | else |
| 737 | return 0; |
| 738 | } |
| 739 | |
Jim Huang | 8b2707a | 2010-10-15 02:15:54 +0800 | [diff] [blame] | 740 | static int valid_tm_mon( const struct TM* date ) { |
The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 741 | if( 0 <= date->tm_mon && date->tm_mon <= 11 ) |
| 742 | return 1; |
| 743 | else |
| 744 | return 0; |
| 745 | } |
| 746 | |
| 747 | |
| 748 | char *asctime64_r( const struct TM* date, char *result ) { |
| 749 | /* I figure everything else can be displayed, even hour 25, but if |
| 750 | these are out of range we walk off the name arrays */ |
Dan Albert | b0fd556 | 2014-10-07 11:07:53 -0700 | [diff] [blame^] | 751 | if (!valid_tm_wday(date) || !valid_tm_mon(date)) { |
The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 752 | return NULL; |
Dan Albert | b0fd556 | 2014-10-07 11:07:53 -0700 | [diff] [blame^] | 753 | } |
The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 754 | |
Dan Albert | b0fd556 | 2014-10-07 11:07:53 -0700 | [diff] [blame^] | 755 | /* Docs state this function does not support years beyond 9999. */ |
| 756 | if (1900 + date->tm_year > 9999) { |
| 757 | return NULL; |
| 758 | } |
| 759 | |
| 760 | /* |
| 761 | * The IBM docs for this function state that the result buffer can be |
| 762 | * assumed to be at least 26 bytes wide. The docs also state that this is |
| 763 | * only valid for years <= 9999, so we know this format string will not |
| 764 | * print more than that many characters. |
| 765 | * |
| 766 | * http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.bpxbd00/asctimer.htm |
| 767 | */ |
| 768 | snprintf(result, 26, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n", |
The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 769 | wday_name[date->tm_wday], |
| 770 | mon_name[date->tm_mon], |
| 771 | date->tm_mday, date->tm_hour, |
| 772 | date->tm_min, date->tm_sec, |
| 773 | 1900 + date->tm_year); |
| 774 | |
| 775 | return result; |
| 776 | } |
| 777 | |
| 778 | |
| 779 | char *ctime64_r( const Time64_T* time, char* result ) { |
| 780 | struct TM date; |
| 781 | |
| 782 | localtime64_r( time, &date ); |
| 783 | return asctime64_r( &date, result ); |
| 784 | } |
| 785 | |
| 786 | |
| 787 | /* Non-thread safe versions of the above */ |
| 788 | struct TM *localtime64(const Time64_T *time) { |
| 789 | return localtime64_r(time, &Static_Return_Date); |
| 790 | } |
| 791 | |
| 792 | struct TM *gmtime64(const Time64_T *time) { |
| 793 | return gmtime64_r(time, &Static_Return_Date); |
| 794 | } |
| 795 | |
| 796 | char *asctime64( const struct TM* date ) { |
| 797 | return asctime64_r( date, Static_Return_String ); |
| 798 | } |
| 799 | |
| 800 | char *ctime64( const Time64_T* time ) { |
| 801 | return asctime64(localtime64(time)); |
| 802 | } |