The Android Open Source Project | a27d2ba | 2008-10-21 07:00:00 -0700 | [diff] [blame] | 1 | /* @(#)k_tan.c 1.5 04/04/22 SMI */ |
| 2 | |
| 3 | /* |
| 4 | * ==================================================== |
| 5 | * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved. |
| 6 | * |
| 7 | * Permission to use, copy, modify, and distribute this |
| 8 | * software is freely granted, provided that this notice |
| 9 | * is preserved. |
| 10 | * ==================================================== |
| 11 | */ |
| 12 | |
| 13 | /* INDENT OFF */ |
| 14 | #ifndef lint |
| 15 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/k_tan.c,v 1.12 2005/11/02 14:01:45 bde Exp $"; |
| 16 | #endif |
| 17 | |
| 18 | /* __kernel_tan( x, y, k ) |
| 19 | * kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854 |
| 20 | * Input x is assumed to be bounded by ~pi/4 in magnitude. |
| 21 | * Input y is the tail of x. |
| 22 | * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned. |
| 23 | * |
| 24 | * Algorithm |
| 25 | * 1. Since tan(-x) = -tan(x), we need only to consider positive x. |
| 26 | * 2. Callers must return tan(-0) = -0 without calling here since our |
| 27 | * odd polynomial is not evaluated in a way that preserves -0. |
| 28 | * Callers may do the optimization tan(x) ~ x for tiny x. |
| 29 | * 3. tan(x) is approximated by a odd polynomial of degree 27 on |
| 30 | * [0,0.67434] |
| 31 | * 3 27 |
| 32 | * tan(x) ~ x + T1*x + ... + T13*x |
| 33 | * where |
| 34 | * |
| 35 | * |tan(x) 2 4 26 | -59.2 |
| 36 | * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 |
| 37 | * | x | |
| 38 | * |
| 39 | * Note: tan(x+y) = tan(x) + tan'(x)*y |
| 40 | * ~ tan(x) + (1+x*x)*y |
| 41 | * Therefore, for better accuracy in computing tan(x+y), let |
| 42 | * 3 2 2 2 2 |
| 43 | * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |
| 44 | * then |
| 45 | * 3 2 |
| 46 | * tan(x+y) = x + (T1*x + (x *(r+y)+y)) |
| 47 | * |
| 48 | * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then |
| 49 | * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) |
| 50 | * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) |
| 51 | */ |
| 52 | |
| 53 | #include "math.h" |
| 54 | #include "math_private.h" |
| 55 | static const double xxx[] = { |
| 56 | 3.33333333333334091986e-01, /* 3FD55555, 55555563 */ |
| 57 | 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */ |
| 58 | 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */ |
| 59 | 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */ |
| 60 | 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */ |
| 61 | 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */ |
| 62 | 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */ |
| 63 | 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */ |
| 64 | 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */ |
| 65 | 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */ |
| 66 | 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */ |
| 67 | -1.85586374855275456654e-05, /* BEF375CB, DB605373 */ |
| 68 | 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */ |
| 69 | /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */ |
| 70 | /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */ |
| 71 | /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */ |
| 72 | }; |
| 73 | #define one xxx[13] |
| 74 | #define pio4 xxx[14] |
| 75 | #define pio4lo xxx[15] |
| 76 | #define T xxx |
| 77 | /* INDENT ON */ |
| 78 | |
| 79 | double |
| 80 | __kernel_tan(double x, double y, int iy) { |
| 81 | double z, r, v, w, s; |
| 82 | int32_t ix, hx; |
| 83 | |
| 84 | GET_HIGH_WORD(hx,x); |
| 85 | ix = hx & 0x7fffffff; /* high word of |x| */ |
| 86 | if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */ |
| 87 | if (hx < 0) { |
| 88 | x = -x; |
| 89 | y = -y; |
| 90 | } |
| 91 | z = pio4 - x; |
| 92 | w = pio4lo - y; |
| 93 | x = z + w; |
| 94 | y = 0.0; |
| 95 | } |
| 96 | z = x * x; |
| 97 | w = z * z; |
| 98 | /* |
| 99 | * Break x^5*(T[1]+x^2*T[2]+...) into |
| 100 | * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + |
| 101 | * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) |
| 102 | */ |
| 103 | r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + |
| 104 | w * T[11])))); |
| 105 | v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + |
| 106 | w * T[12]))))); |
| 107 | s = z * x; |
| 108 | r = y + z * (s * (r + v) + y); |
| 109 | r += T[0] * s; |
| 110 | w = x + r; |
| 111 | if (ix >= 0x3FE59428) { |
| 112 | v = (double) iy; |
| 113 | return (double) (1 - ((hx >> 30) & 2)) * |
| 114 | (v - 2.0 * (x - (w * w / (w + v) - r))); |
| 115 | } |
| 116 | if (iy == 1) |
| 117 | return w; |
| 118 | else { |
| 119 | /* |
| 120 | * if allow error up to 2 ulp, simply return |
| 121 | * -1.0 / (x+r) here |
| 122 | */ |
| 123 | /* compute -1.0 / (x+r) accurately */ |
| 124 | double a, t; |
| 125 | z = w; |
| 126 | SET_LOW_WORD(z,0); |
| 127 | v = r - (z - x); /* z+v = r+x */ |
| 128 | t = a = -1.0 / w; /* a = -1.0/w */ |
| 129 | SET_LOW_WORD(t,0); |
| 130 | s = 1.0 + t * z; |
| 131 | return t + a * (s + t * v); |
| 132 | } |
| 133 | } |