Elliott Hughes | b8ee16f | 2014-11-06 11:16:55 -0800 | [diff] [blame] | 1 | /*- |
| 2 | * Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG> |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * |
| 14 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| 15 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 17 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 18 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 19 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 20 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 21 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 22 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 23 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 24 | * SUCH DAMAGE. |
| 25 | */ |
| 26 | |
| 27 | #include <sys/cdefs.h> |
| 28 | __FBSDID("$FreeBSD$"); |
| 29 | |
| 30 | #include <complex.h> |
| 31 | #include <float.h> |
| 32 | |
| 33 | #include "math.h" |
| 34 | #include "math_private.h" |
| 35 | |
| 36 | #undef isinf |
| 37 | #define isinf(x) (fabs(x) == INFINITY) |
| 38 | #undef isnan |
| 39 | #define isnan(x) ((x) != (x)) |
| 40 | #define raise_inexact() do { volatile float junk = 1 + tiny; } while(0) |
| 41 | #undef signbit |
| 42 | #define signbit(x) (__builtin_signbit(x)) |
| 43 | |
| 44 | /* We need that DBL_EPSILON^2/128 is larger than FOUR_SQRT_MIN. */ |
| 45 | static const double |
| 46 | A_crossover = 10, /* Hull et al suggest 1.5, but 10 works better */ |
| 47 | B_crossover = 0.6417, /* suggested by Hull et al */ |
| 48 | FOUR_SQRT_MIN = 0x1p-509, /* >= 4 * sqrt(DBL_MIN) */ |
| 49 | QUARTER_SQRT_MAX = 0x1p509, /* <= sqrt(DBL_MAX) / 4 */ |
| 50 | m_e = 2.7182818284590452e0, /* 0x15bf0a8b145769.0p-51 */ |
| 51 | m_ln2 = 6.9314718055994531e-1, /* 0x162e42fefa39ef.0p-53 */ |
| 52 | pio2_hi = 1.5707963267948966e0, /* 0x1921fb54442d18.0p-52 */ |
| 53 | RECIP_EPSILON = 1 / DBL_EPSILON, |
| 54 | SQRT_3_EPSILON = 2.5809568279517849e-8, /* 0x1bb67ae8584caa.0p-78 */ |
| 55 | SQRT_6_EPSILON = 3.6500241499888571e-8, /* 0x13988e1409212e.0p-77 */ |
| 56 | SQRT_MIN = 0x1p-511; /* >= sqrt(DBL_MIN) */ |
| 57 | |
| 58 | static const volatile double |
| 59 | pio2_lo = 6.1232339957367659e-17; /* 0x11a62633145c07.0p-106 */ |
| 60 | static const volatile float |
| 61 | tiny = 0x1p-100; |
| 62 | |
| 63 | static double complex clog_for_large_values(double complex z); |
| 64 | |
| 65 | /* |
| 66 | * Testing indicates that all these functions are accurate up to 4 ULP. |
| 67 | * The functions casin(h) and cacos(h) are about 2.5 times slower than asinh. |
| 68 | * The functions catan(h) are a little under 2 times slower than atanh. |
| 69 | * |
| 70 | * The code for casinh, casin, cacos, and cacosh comes first. The code is |
| 71 | * rather complicated, and the four functions are highly interdependent. |
| 72 | * |
| 73 | * The code for catanh and catan comes at the end. It is much simpler than |
| 74 | * the other functions, and the code for these can be disconnected from the |
| 75 | * rest of the code. |
| 76 | */ |
| 77 | |
| 78 | /* |
| 79 | * ================================ |
| 80 | * | casinh, casin, cacos, cacosh | |
| 81 | * ================================ |
| 82 | */ |
| 83 | |
| 84 | /* |
| 85 | * The algorithm is very close to that in "Implementing the complex arcsine |
| 86 | * and arccosine functions using exception handling" by T. E. Hull, Thomas F. |
| 87 | * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on |
| 88 | * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335, |
| 89 | * http://dl.acm.org/citation.cfm?id=275324. |
| 90 | * |
| 91 | * Throughout we use the convention z = x + I*y. |
| 92 | * |
| 93 | * casinh(z) = sign(x)*log(A+sqrt(A*A-1)) + I*asin(B) |
| 94 | * where |
| 95 | * A = (|z+I| + |z-I|) / 2 |
| 96 | * B = (|z+I| - |z-I|) / 2 = y/A |
| 97 | * |
| 98 | * These formulas become numerically unstable: |
| 99 | * (a) for Re(casinh(z)) when z is close to the line segment [-I, I] (that |
| 100 | * is, Re(casinh(z)) is close to 0); |
| 101 | * (b) for Im(casinh(z)) when z is close to either of the intervals |
| 102 | * [I, I*infinity) or (-I*infinity, -I] (that is, |Im(casinh(z))| is |
| 103 | * close to PI/2). |
| 104 | * |
| 105 | * These numerical problems are overcome by defining |
| 106 | * f(a, b) = (hypot(a, b) - b) / 2 = a*a / (hypot(a, b) + b) / 2 |
| 107 | * Then if A < A_crossover, we use |
| 108 | * log(A + sqrt(A*A-1)) = log1p((A-1) + sqrt((A-1)*(A+1))) |
| 109 | * A-1 = f(x, 1+y) + f(x, 1-y) |
| 110 | * and if B > B_crossover, we use |
| 111 | * asin(B) = atan2(y, sqrt(A*A - y*y)) = atan2(y, sqrt((A+y)*(A-y))) |
| 112 | * A-y = f(x, y+1) + f(x, y-1) |
| 113 | * where without loss of generality we have assumed that x and y are |
| 114 | * non-negative. |
| 115 | * |
| 116 | * Much of the difficulty comes because the intermediate computations may |
| 117 | * produce overflows or underflows. This is dealt with in the paper by Hull |
| 118 | * et al by using exception handling. We do this by detecting when |
| 119 | * computations risk underflow or overflow. The hardest part is handling the |
| 120 | * underflows when computing f(a, b). |
| 121 | * |
| 122 | * Note that the function f(a, b) does not appear explicitly in the paper by |
| 123 | * Hull et al, but the idea may be found on pages 308 and 309. Introducing the |
| 124 | * function f(a, b) allows us to concentrate many of the clever tricks in this |
| 125 | * paper into one function. |
| 126 | */ |
| 127 | |
| 128 | /* |
| 129 | * Function f(a, b, hypot_a_b) = (hypot(a, b) - b) / 2. |
| 130 | * Pass hypot(a, b) as the third argument. |
| 131 | */ |
| 132 | static inline double |
| 133 | f(double a, double b, double hypot_a_b) |
| 134 | { |
| 135 | if (b < 0) |
| 136 | return ((hypot_a_b - b) / 2); |
| 137 | if (b == 0) |
| 138 | return (a / 2); |
| 139 | return (a * a / (hypot_a_b + b) / 2); |
| 140 | } |
| 141 | |
| 142 | /* |
| 143 | * All the hard work is contained in this function. |
| 144 | * x and y are assumed positive or zero, and less than RECIP_EPSILON. |
| 145 | * Upon return: |
| 146 | * rx = Re(casinh(z)) = -Im(cacos(y + I*x)). |
| 147 | * B_is_usable is set to 1 if the value of B is usable. |
| 148 | * If B_is_usable is set to 0, sqrt_A2my2 = sqrt(A*A - y*y), and new_y = y. |
| 149 | * If returning sqrt_A2my2 has potential to result in an underflow, it is |
| 150 | * rescaled, and new_y is similarly rescaled. |
| 151 | */ |
| 152 | static inline void |
| 153 | do_hard_work(double x, double y, double *rx, int *B_is_usable, double *B, |
| 154 | double *sqrt_A2my2, double *new_y) |
| 155 | { |
| 156 | double R, S, A; /* A, B, R, and S are as in Hull et al. */ |
| 157 | double Am1, Amy; /* A-1, A-y. */ |
| 158 | |
| 159 | R = hypot(x, y + 1); /* |z+I| */ |
| 160 | S = hypot(x, y - 1); /* |z-I| */ |
| 161 | |
| 162 | /* A = (|z+I| + |z-I|) / 2 */ |
| 163 | A = (R + S) / 2; |
| 164 | /* |
| 165 | * Mathematically A >= 1. There is a small chance that this will not |
| 166 | * be so because of rounding errors. So we will make certain it is |
| 167 | * so. |
| 168 | */ |
| 169 | if (A < 1) |
| 170 | A = 1; |
| 171 | |
| 172 | if (A < A_crossover) { |
| 173 | /* |
| 174 | * Am1 = fp + fm, where fp = f(x, 1+y), and fm = f(x, 1-y). |
| 175 | * rx = log1p(Am1 + sqrt(Am1*(A+1))) |
| 176 | */ |
| 177 | if (y == 1 && x < DBL_EPSILON * DBL_EPSILON / 128) { |
| 178 | /* |
| 179 | * fp is of order x^2, and fm = x/2. |
| 180 | * A = 1 (inexactly). |
| 181 | */ |
| 182 | *rx = sqrt(x); |
| 183 | } else if (x >= DBL_EPSILON * fabs(y - 1)) { |
| 184 | /* |
| 185 | * Underflow will not occur because |
| 186 | * x >= DBL_EPSILON^2/128 >= FOUR_SQRT_MIN |
| 187 | */ |
| 188 | Am1 = f(x, 1 + y, R) + f(x, 1 - y, S); |
| 189 | *rx = log1p(Am1 + sqrt(Am1 * (A + 1))); |
| 190 | } else if (y < 1) { |
| 191 | /* |
| 192 | * fp = x*x/(1+y)/4, fm = x*x/(1-y)/4, and |
| 193 | * A = 1 (inexactly). |
| 194 | */ |
| 195 | *rx = x / sqrt((1 - y) * (1 + y)); |
| 196 | } else { /* if (y > 1) */ |
| 197 | /* |
| 198 | * A-1 = y-1 (inexactly). |
| 199 | */ |
| 200 | *rx = log1p((y - 1) + sqrt((y - 1) * (y + 1))); |
| 201 | } |
| 202 | } else { |
| 203 | *rx = log(A + sqrt(A * A - 1)); |
| 204 | } |
| 205 | |
| 206 | *new_y = y; |
| 207 | |
| 208 | if (y < FOUR_SQRT_MIN) { |
| 209 | /* |
| 210 | * Avoid a possible underflow caused by y/A. For casinh this |
| 211 | * would be legitimate, but will be picked up by invoking atan2 |
| 212 | * later on. For cacos this would not be legitimate. |
| 213 | */ |
| 214 | *B_is_usable = 0; |
| 215 | *sqrt_A2my2 = A * (2 / DBL_EPSILON); |
| 216 | *new_y = y * (2 / DBL_EPSILON); |
| 217 | return; |
| 218 | } |
| 219 | |
| 220 | /* B = (|z+I| - |z-I|) / 2 = y/A */ |
| 221 | *B = y / A; |
| 222 | *B_is_usable = 1; |
| 223 | |
| 224 | if (*B > B_crossover) { |
| 225 | *B_is_usable = 0; |
| 226 | /* |
| 227 | * Amy = fp + fm, where fp = f(x, y+1), and fm = f(x, y-1). |
| 228 | * sqrt_A2my2 = sqrt(Amy*(A+y)) |
| 229 | */ |
| 230 | if (y == 1 && x < DBL_EPSILON / 128) { |
| 231 | /* |
| 232 | * fp is of order x^2, and fm = x/2. |
| 233 | * A = 1 (inexactly). |
| 234 | */ |
| 235 | *sqrt_A2my2 = sqrt(x) * sqrt((A + y) / 2); |
| 236 | } else if (x >= DBL_EPSILON * fabs(y - 1)) { |
| 237 | /* |
| 238 | * Underflow will not occur because |
| 239 | * x >= DBL_EPSILON/128 >= FOUR_SQRT_MIN |
| 240 | * and |
| 241 | * x >= DBL_EPSILON^2 >= FOUR_SQRT_MIN |
| 242 | */ |
| 243 | Amy = f(x, y + 1, R) + f(x, y - 1, S); |
| 244 | *sqrt_A2my2 = sqrt(Amy * (A + y)); |
| 245 | } else if (y > 1) { |
| 246 | /* |
| 247 | * fp = x*x/(y+1)/4, fm = x*x/(y-1)/4, and |
| 248 | * A = y (inexactly). |
| 249 | * |
| 250 | * y < RECIP_EPSILON. So the following |
| 251 | * scaling should avoid any underflow problems. |
| 252 | */ |
| 253 | *sqrt_A2my2 = x * (4 / DBL_EPSILON / DBL_EPSILON) * y / |
| 254 | sqrt((y + 1) * (y - 1)); |
| 255 | *new_y = y * (4 / DBL_EPSILON / DBL_EPSILON); |
| 256 | } else { /* if (y < 1) */ |
| 257 | /* |
| 258 | * fm = 1-y >= DBL_EPSILON, fp is of order x^2, and |
| 259 | * A = 1 (inexactly). |
| 260 | */ |
| 261 | *sqrt_A2my2 = sqrt((1 - y) * (1 + y)); |
| 262 | } |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | /* |
| 267 | * casinh(z) = z + O(z^3) as z -> 0 |
| 268 | * |
| 269 | * casinh(z) = sign(x)*clog(sign(x)*z) + O(1/z^2) as z -> infinity |
| 270 | * The above formula works for the imaginary part as well, because |
| 271 | * Im(casinh(z)) = sign(x)*atan2(sign(x)*y, fabs(x)) + O(y/z^3) |
| 272 | * as z -> infinity, uniformly in y |
| 273 | */ |
| 274 | double complex |
| 275 | casinh(double complex z) |
| 276 | { |
| 277 | double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y; |
| 278 | int B_is_usable; |
| 279 | double complex w; |
| 280 | |
| 281 | x = creal(z); |
| 282 | y = cimag(z); |
| 283 | ax = fabs(x); |
| 284 | ay = fabs(y); |
| 285 | |
| 286 | if (isnan(x) || isnan(y)) { |
| 287 | /* casinh(+-Inf + I*NaN) = +-Inf + I*NaN */ |
| 288 | if (isinf(x)) |
| 289 | return (cpack(x, y + y)); |
| 290 | /* casinh(NaN + I*+-Inf) = opt(+-)Inf + I*NaN */ |
| 291 | if (isinf(y)) |
| 292 | return (cpack(y, x + x)); |
| 293 | /* casinh(NaN + I*0) = NaN + I*0 */ |
| 294 | if (y == 0) |
| 295 | return (cpack(x + x, y)); |
| 296 | /* |
| 297 | * All other cases involving NaN return NaN + I*NaN. |
| 298 | * C99 leaves it optional whether to raise invalid if one of |
| 299 | * the arguments is not NaN, so we opt not to raise it. |
| 300 | */ |
| 301 | return (cpack(x + 0.0L + (y + 0), x + 0.0L + (y + 0))); |
| 302 | } |
| 303 | |
| 304 | if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) { |
| 305 | /* clog...() will raise inexact unless x or y is infinite. */ |
| 306 | if (signbit(x) == 0) |
| 307 | w = clog_for_large_values(z) + m_ln2; |
| 308 | else |
| 309 | w = clog_for_large_values(-z) + m_ln2; |
| 310 | return (cpack(copysign(creal(w), x), copysign(cimag(w), y))); |
| 311 | } |
| 312 | |
| 313 | /* Avoid spuriously raising inexact for z = 0. */ |
| 314 | if (x == 0 && y == 0) |
| 315 | return (z); |
| 316 | |
| 317 | /* All remaining cases are inexact. */ |
| 318 | raise_inexact(); |
| 319 | |
| 320 | if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4) |
| 321 | return (z); |
| 322 | |
| 323 | do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y); |
| 324 | if (B_is_usable) |
| 325 | ry = asin(B); |
| 326 | else |
| 327 | ry = atan2(new_y, sqrt_A2my2); |
| 328 | return (cpack(copysign(rx, x), copysign(ry, y))); |
| 329 | } |
| 330 | |
| 331 | /* |
| 332 | * casin(z) = reverse(casinh(reverse(z))) |
| 333 | * where reverse(x + I*y) = y + I*x = I*conj(z). |
| 334 | */ |
| 335 | double complex |
| 336 | casin(double complex z) |
| 337 | { |
| 338 | double complex w = casinh(cpack(cimag(z), creal(z))); |
| 339 | |
| 340 | return (cpack(cimag(w), creal(w))); |
| 341 | } |
| 342 | |
| 343 | /* |
| 344 | * cacos(z) = PI/2 - casin(z) |
| 345 | * but do the computation carefully so cacos(z) is accurate when z is |
| 346 | * close to 1. |
| 347 | * |
| 348 | * cacos(z) = PI/2 - z + O(z^3) as z -> 0 |
| 349 | * |
| 350 | * cacos(z) = -sign(y)*I*clog(z) + O(1/z^2) as z -> infinity |
| 351 | * The above formula works for the real part as well, because |
| 352 | * Re(cacos(z)) = atan2(fabs(y), x) + O(y/z^3) |
| 353 | * as z -> infinity, uniformly in y |
| 354 | */ |
| 355 | double complex |
| 356 | cacos(double complex z) |
| 357 | { |
| 358 | double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x; |
| 359 | int sx, sy; |
| 360 | int B_is_usable; |
| 361 | double complex w; |
| 362 | |
| 363 | x = creal(z); |
| 364 | y = cimag(z); |
| 365 | sx = signbit(x); |
| 366 | sy = signbit(y); |
| 367 | ax = fabs(x); |
| 368 | ay = fabs(y); |
| 369 | |
| 370 | if (isnan(x) || isnan(y)) { |
| 371 | /* cacos(+-Inf + I*NaN) = NaN + I*opt(-)Inf */ |
| 372 | if (isinf(x)) |
| 373 | return (cpack(y + y, -INFINITY)); |
| 374 | /* cacos(NaN + I*+-Inf) = NaN + I*-+Inf */ |
| 375 | if (isinf(y)) |
| 376 | return (cpack(x + x, -y)); |
| 377 | /* cacos(0 + I*NaN) = PI/2 + I*NaN with inexact */ |
| 378 | if (x == 0) |
| 379 | return (cpack(pio2_hi + pio2_lo, y + y)); |
| 380 | /* |
| 381 | * All other cases involving NaN return NaN + I*NaN. |
| 382 | * C99 leaves it optional whether to raise invalid if one of |
| 383 | * the arguments is not NaN, so we opt not to raise it. |
| 384 | */ |
| 385 | return (cpack(x + 0.0L + (y + 0), x + 0.0L + (y + 0))); |
| 386 | } |
| 387 | |
| 388 | if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) { |
| 389 | /* clog...() will raise inexact unless x or y is infinite. */ |
| 390 | w = clog_for_large_values(z); |
| 391 | rx = fabs(cimag(w)); |
| 392 | ry = creal(w) + m_ln2; |
| 393 | if (sy == 0) |
| 394 | ry = -ry; |
| 395 | return (cpack(rx, ry)); |
| 396 | } |
| 397 | |
| 398 | /* Avoid spuriously raising inexact for z = 1. */ |
| 399 | if (x == 1 && y == 0) |
| 400 | return (cpack(0, -y)); |
| 401 | |
| 402 | /* All remaining cases are inexact. */ |
| 403 | raise_inexact(); |
| 404 | |
| 405 | if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4) |
| 406 | return (cpack(pio2_hi - (x - pio2_lo), -y)); |
| 407 | |
| 408 | do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x); |
| 409 | if (B_is_usable) { |
| 410 | if (sx == 0) |
| 411 | rx = acos(B); |
| 412 | else |
| 413 | rx = acos(-B); |
| 414 | } else { |
| 415 | if (sx == 0) |
| 416 | rx = atan2(sqrt_A2mx2, new_x); |
| 417 | else |
| 418 | rx = atan2(sqrt_A2mx2, -new_x); |
| 419 | } |
| 420 | if (sy == 0) |
| 421 | ry = -ry; |
| 422 | return (cpack(rx, ry)); |
| 423 | } |
| 424 | |
| 425 | /* |
| 426 | * cacosh(z) = I*cacos(z) or -I*cacos(z) |
| 427 | * where the sign is chosen so Re(cacosh(z)) >= 0. |
| 428 | */ |
| 429 | double complex |
| 430 | cacosh(double complex z) |
| 431 | { |
| 432 | double complex w; |
| 433 | double rx, ry; |
| 434 | |
| 435 | w = cacos(z); |
| 436 | rx = creal(w); |
| 437 | ry = cimag(w); |
| 438 | /* cacosh(NaN + I*NaN) = NaN + I*NaN */ |
| 439 | if (isnan(rx) && isnan(ry)) |
| 440 | return (cpack(ry, rx)); |
| 441 | /* cacosh(NaN + I*+-Inf) = +Inf + I*NaN */ |
| 442 | /* cacosh(+-Inf + I*NaN) = +Inf + I*NaN */ |
| 443 | if (isnan(rx)) |
| 444 | return (cpack(fabs(ry), rx)); |
| 445 | /* cacosh(0 + I*NaN) = NaN + I*NaN */ |
| 446 | if (isnan(ry)) |
| 447 | return (cpack(ry, ry)); |
| 448 | return (cpack(fabs(ry), copysign(rx, cimag(z)))); |
| 449 | } |
| 450 | |
| 451 | /* |
| 452 | * Optimized version of clog() for |z| finite and larger than ~RECIP_EPSILON. |
| 453 | */ |
| 454 | static double complex |
| 455 | clog_for_large_values(double complex z) |
| 456 | { |
| 457 | double x, y; |
| 458 | double ax, ay, t; |
| 459 | |
| 460 | x = creal(z); |
| 461 | y = cimag(z); |
| 462 | ax = fabs(x); |
| 463 | ay = fabs(y); |
| 464 | if (ax < ay) { |
| 465 | t = ax; |
| 466 | ax = ay; |
| 467 | ay = t; |
| 468 | } |
| 469 | |
| 470 | /* |
| 471 | * Avoid overflow in hypot() when x and y are both very large. |
| 472 | * Divide x and y by E, and then add 1 to the logarithm. This depends |
| 473 | * on E being larger than sqrt(2). |
| 474 | * Dividing by E causes an insignificant loss of accuracy; however |
| 475 | * this method is still poor since it is uneccessarily slow. |
| 476 | */ |
| 477 | if (ax > DBL_MAX / 2) |
| 478 | return (cpack(log(hypot(x / m_e, y / m_e)) + 1, atan2(y, x))); |
| 479 | |
| 480 | /* |
| 481 | * Avoid overflow when x or y is large. Avoid underflow when x or |
| 482 | * y is small. |
| 483 | */ |
| 484 | if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN) |
| 485 | return (cpack(log(hypot(x, y)), atan2(y, x))); |
| 486 | |
| 487 | return (cpack(log(ax * ax + ay * ay) / 2, atan2(y, x))); |
| 488 | } |
| 489 | |
| 490 | /* |
| 491 | * ================= |
| 492 | * | catanh, catan | |
| 493 | * ================= |
| 494 | */ |
| 495 | |
| 496 | /* |
| 497 | * sum_squares(x,y) = x*x + y*y (or just x*x if y*y would underflow). |
| 498 | * Assumes x*x and y*y will not overflow. |
| 499 | * Assumes x and y are finite. |
| 500 | * Assumes y is non-negative. |
| 501 | * Assumes fabs(x) >= DBL_EPSILON. |
| 502 | */ |
| 503 | static inline double |
| 504 | sum_squares(double x, double y) |
| 505 | { |
| 506 | |
| 507 | /* Avoid underflow when y is small. */ |
| 508 | if (y < SQRT_MIN) |
| 509 | return (x * x); |
| 510 | |
| 511 | return (x * x + y * y); |
| 512 | } |
| 513 | |
| 514 | /* |
| 515 | * real_part_reciprocal(x, y) = Re(1/(x+I*y)) = x/(x*x + y*y). |
| 516 | * Assumes x and y are not NaN, and one of x and y is larger than |
| 517 | * RECIP_EPSILON. We avoid unwarranted underflow. It is important to not use |
| 518 | * the code creal(1/z), because the imaginary part may produce an unwanted |
| 519 | * underflow. |
| 520 | * This is only called in a context where inexact is always raised before |
| 521 | * the call, so no effort is made to avoid or force inexact. |
| 522 | */ |
| 523 | static inline double |
| 524 | real_part_reciprocal(double x, double y) |
| 525 | { |
| 526 | double scale; |
| 527 | uint32_t hx, hy; |
| 528 | int32_t ix, iy; |
| 529 | |
| 530 | /* |
| 531 | * This code is inspired by the C99 document n1124.pdf, Section G.5.1, |
| 532 | * example 2. |
| 533 | */ |
| 534 | GET_HIGH_WORD(hx, x); |
| 535 | ix = hx & 0x7ff00000; |
| 536 | GET_HIGH_WORD(hy, y); |
| 537 | iy = hy & 0x7ff00000; |
| 538 | #define BIAS (DBL_MAX_EXP - 1) |
| 539 | /* XXX more guard digits are useful iff there is extra precision. */ |
| 540 | #define CUTOFF (DBL_MANT_DIG / 2 + 1) /* just half or 1 guard digit */ |
| 541 | if (ix - iy >= CUTOFF << 20 || isinf(x)) |
| 542 | return (1 / x); /* +-Inf -> +-0 is special */ |
| 543 | if (iy - ix >= CUTOFF << 20) |
| 544 | return (x / y / y); /* should avoid double div, but hard */ |
| 545 | if (ix <= (BIAS + DBL_MAX_EXP / 2 - CUTOFF) << 20) |
| 546 | return (x / (x * x + y * y)); |
| 547 | scale = 1; |
| 548 | SET_HIGH_WORD(scale, 0x7ff00000 - ix); /* 2**(1-ilogb(x)) */ |
| 549 | x *= scale; |
| 550 | y *= scale; |
| 551 | return (x / (x * x + y * y) * scale); |
| 552 | } |
| 553 | |
| 554 | /* |
| 555 | * catanh(z) = log((1+z)/(1-z)) / 2 |
| 556 | * = log1p(4*x / |z-1|^2) / 4 |
| 557 | * + I * atan2(2*y, (1-x)*(1+x)-y*y) / 2 |
| 558 | * |
| 559 | * catanh(z) = z + O(z^3) as z -> 0 |
| 560 | * |
| 561 | * catanh(z) = 1/z + sign(y)*I*PI/2 + O(1/z^3) as z -> infinity |
| 562 | * The above formula works for the real part as well, because |
| 563 | * Re(catanh(z)) = x/|z|^2 + O(x/z^4) |
| 564 | * as z -> infinity, uniformly in x |
| 565 | */ |
| 566 | double complex |
| 567 | catanh(double complex z) |
| 568 | { |
| 569 | double x, y, ax, ay, rx, ry; |
| 570 | |
| 571 | x = creal(z); |
| 572 | y = cimag(z); |
| 573 | ax = fabs(x); |
| 574 | ay = fabs(y); |
| 575 | |
| 576 | /* This helps handle many cases. */ |
| 577 | if (y == 0 && ax <= 1) |
| 578 | return (cpack(atanh(x), y)); |
| 579 | |
| 580 | /* To ensure the same accuracy as atan(), and to filter out z = 0. */ |
| 581 | if (x == 0) |
| 582 | return (cpack(x, atan(y))); |
| 583 | |
| 584 | if (isnan(x) || isnan(y)) { |
| 585 | /* catanh(+-Inf + I*NaN) = +-0 + I*NaN */ |
| 586 | if (isinf(x)) |
| 587 | return (cpack(copysign(0, x), y + y)); |
| 588 | /* catanh(NaN + I*+-Inf) = sign(NaN)0 + I*+-PI/2 */ |
| 589 | if (isinf(y)) |
| 590 | return (cpack(copysign(0, x), |
| 591 | copysign(pio2_hi + pio2_lo, y))); |
| 592 | /* |
| 593 | * All other cases involving NaN return NaN + I*NaN. |
| 594 | * C99 leaves it optional whether to raise invalid if one of |
| 595 | * the arguments is not NaN, so we opt not to raise it. |
| 596 | */ |
| 597 | return (cpack(x + 0.0L + (y + 0), x + 0.0L + (y + 0))); |
| 598 | } |
| 599 | |
| 600 | if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) |
| 601 | return (cpack(real_part_reciprocal(x, y), |
| 602 | copysign(pio2_hi + pio2_lo, y))); |
| 603 | |
| 604 | if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) { |
| 605 | /* |
| 606 | * z = 0 was filtered out above. All other cases must raise |
| 607 | * inexact, but this is the only only that needs to do it |
| 608 | * explicitly. |
| 609 | */ |
| 610 | raise_inexact(); |
| 611 | return (z); |
| 612 | } |
| 613 | |
| 614 | if (ax == 1 && ay < DBL_EPSILON) |
| 615 | rx = (m_ln2 - log(ay)) / 2; |
| 616 | else |
| 617 | rx = log1p(4 * ax / sum_squares(ax - 1, ay)) / 4; |
| 618 | |
| 619 | if (ax == 1) |
| 620 | ry = atan2(2, -ay) / 2; |
| 621 | else if (ay < DBL_EPSILON) |
| 622 | ry = atan2(2 * ay, (1 - ax) * (1 + ax)) / 2; |
| 623 | else |
| 624 | ry = atan2(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2; |
| 625 | |
| 626 | return (cpack(copysign(rx, x), copysign(ry, y))); |
| 627 | } |
| 628 | |
| 629 | /* |
| 630 | * catan(z) = reverse(catanh(reverse(z))) |
| 631 | * where reverse(x + I*y) = y + I*x = I*conj(z). |
| 632 | */ |
| 633 | double complex |
| 634 | catan(double complex z) |
| 635 | { |
| 636 | double complex w = catanh(cpack(cimag(z), creal(z))); |
| 637 | |
| 638 | return (cpack(cimag(w), creal(w))); |
| 639 | } |