| /* | 
 |  * Copyright (C) 2008 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include "verifier.h" | 
 |  | 
 | #include <errno.h> | 
 | #include <stdio.h> | 
 | #include <stdlib.h> | 
 | #include <string.h> | 
 |  | 
 | #include <algorithm> | 
 | #include <functional> | 
 | #include <memory> | 
 | #include <vector> | 
 |  | 
 | #include <android-base/logging.h> | 
 | #include <openssl/bn.h> | 
 | #include <openssl/ecdsa.h> | 
 | #include <openssl/obj_mac.h> | 
 |  | 
 | #include "asn1_decoder.h" | 
 | #include "otautil/print_sha1.h" | 
 |  | 
 | static constexpr size_t MiB = 1024 * 1024; | 
 |  | 
 | /* | 
 |  * Simple version of PKCS#7 SignedData extraction. This extracts the | 
 |  * signature OCTET STRING to be used for signature verification. | 
 |  * | 
 |  * For full details, see http://www.ietf.org/rfc/rfc3852.txt | 
 |  * | 
 |  * The PKCS#7 structure looks like: | 
 |  * | 
 |  *   SEQUENCE (ContentInfo) | 
 |  *     OID (ContentType) | 
 |  *     [0] (content) | 
 |  *       SEQUENCE (SignedData) | 
 |  *         INTEGER (version CMSVersion) | 
 |  *         SET (DigestAlgorithmIdentifiers) | 
 |  *         SEQUENCE (EncapsulatedContentInfo) | 
 |  *         [0] (CertificateSet OPTIONAL) | 
 |  *         [1] (RevocationInfoChoices OPTIONAL) | 
 |  *         SET (SignerInfos) | 
 |  *           SEQUENCE (SignerInfo) | 
 |  *             INTEGER (CMSVersion) | 
 |  *             SEQUENCE (SignerIdentifier) | 
 |  *             SEQUENCE (DigestAlgorithmIdentifier) | 
 |  *             SEQUENCE (SignatureAlgorithmIdentifier) | 
 |  *             OCTET STRING (SignatureValue) | 
 |  */ | 
 | static bool read_pkcs7(const uint8_t* pkcs7_der, size_t pkcs7_der_len, | 
 |                        std::vector<uint8_t>* sig_der) { | 
 |   CHECK(sig_der != nullptr); | 
 |   sig_der->clear(); | 
 |  | 
 |   asn1_context ctx(pkcs7_der, pkcs7_der_len); | 
 |  | 
 |   std::unique_ptr<asn1_context> pkcs7_seq(ctx.asn1_sequence_get()); | 
 |   if (pkcs7_seq == nullptr || !pkcs7_seq->asn1_sequence_next()) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   std::unique_ptr<asn1_context> signed_data_app(pkcs7_seq->asn1_constructed_get()); | 
 |   if (signed_data_app == nullptr) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   std::unique_ptr<asn1_context> signed_data_seq(signed_data_app->asn1_sequence_get()); | 
 |   if (signed_data_seq == nullptr || | 
 |       !signed_data_seq->asn1_sequence_next() || | 
 |       !signed_data_seq->asn1_sequence_next() || | 
 |       !signed_data_seq->asn1_sequence_next() || | 
 |       !signed_data_seq->asn1_constructed_skip_all()) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   std::unique_ptr<asn1_context> sig_set(signed_data_seq->asn1_set_get()); | 
 |   if (sig_set == nullptr) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   std::unique_ptr<asn1_context> sig_seq(sig_set->asn1_sequence_get()); | 
 |   if (sig_seq == nullptr || | 
 |       !sig_seq->asn1_sequence_next() || | 
 |       !sig_seq->asn1_sequence_next() || | 
 |       !sig_seq->asn1_sequence_next() || | 
 |       !sig_seq->asn1_sequence_next()) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   const uint8_t* sig_der_ptr; | 
 |   size_t sig_der_length; | 
 |   if (!sig_seq->asn1_octet_string_get(&sig_der_ptr, &sig_der_length)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   sig_der->resize(sig_der_length); | 
 |   std::copy(sig_der_ptr, sig_der_ptr + sig_der_length, sig_der->begin()); | 
 |   return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Looks for an RSA signature embedded in the .ZIP file comment given the path to the zip. Verifies | 
 |  * that it matches one of the given public keys. A callback function can be optionally provided for | 
 |  * posting the progress. | 
 |  * | 
 |  * Returns VERIFY_SUCCESS or VERIFY_FAILURE (if any error is encountered or no key matches the | 
 |  * signature). | 
 |  */ | 
 | int verify_file(const unsigned char* addr, size_t length, const std::vector<Certificate>& keys, | 
 |                 const std::function<void(float)>& set_progress) { | 
 |   if (set_progress) { | 
 |     set_progress(0.0); | 
 |   } | 
 |  | 
 |   // An archive with a whole-file signature will end in six bytes: | 
 |   // | 
 |   //   (2-byte signature start) $ff $ff (2-byte comment size) | 
 |   // | 
 |   // (As far as the ZIP format is concerned, these are part of the archive comment.) We start by | 
 |   // reading this footer, this tells us how far back from the end we have to start reading to find | 
 |   // the whole comment. | 
 |  | 
 | #define FOOTER_SIZE 6 | 
 |  | 
 |   if (length < FOOTER_SIZE) { | 
 |     LOG(ERROR) << "not big enough to contain footer"; | 
 |     return VERIFY_FAILURE; | 
 |   } | 
 |  | 
 |   const unsigned char* footer = addr + length - FOOTER_SIZE; | 
 |  | 
 |   if (footer[2] != 0xff || footer[3] != 0xff) { | 
 |     LOG(ERROR) << "footer is wrong"; | 
 |     return VERIFY_FAILURE; | 
 |   } | 
 |  | 
 |   size_t comment_size = footer[4] + (footer[5] << 8); | 
 |   size_t signature_start = footer[0] + (footer[1] << 8); | 
 |   LOG(INFO) << "comment is " << comment_size << " bytes; signature is " << signature_start | 
 |             << " bytes from end"; | 
 |  | 
 |   if (signature_start > comment_size) { | 
 |     LOG(ERROR) << "signature start: " << signature_start << " is larger than comment size: " | 
 |                << comment_size; | 
 |     return VERIFY_FAILURE; | 
 |   } | 
 |  | 
 |   if (signature_start <= FOOTER_SIZE) { | 
 |     LOG(ERROR) << "Signature start is in the footer"; | 
 |     return VERIFY_FAILURE; | 
 |   } | 
 |  | 
 | #define EOCD_HEADER_SIZE 22 | 
 |  | 
 |   // The end-of-central-directory record is 22 bytes plus any comment length. | 
 |   size_t eocd_size = comment_size + EOCD_HEADER_SIZE; | 
 |  | 
 |   if (length < eocd_size) { | 
 |     LOG(ERROR) << "not big enough to contain EOCD"; | 
 |     return VERIFY_FAILURE; | 
 |   } | 
 |  | 
 |   // Determine how much of the file is covered by the signature. This is everything except the | 
 |   // signature data and length, which includes all of the EOCD except for the comment length field | 
 |   // (2 bytes) and the comment data. | 
 |   size_t signed_len = length - eocd_size + EOCD_HEADER_SIZE - 2; | 
 |  | 
 |   const unsigned char* eocd = addr + length - eocd_size; | 
 |  | 
 |   // If this is really is the EOCD record, it will begin with the magic number $50 $4b $05 $06. | 
 |   if (eocd[0] != 0x50 || eocd[1] != 0x4b || eocd[2] != 0x05 || eocd[3] != 0x06) { | 
 |     LOG(ERROR) << "signature length doesn't match EOCD marker"; | 
 |     return VERIFY_FAILURE; | 
 |   } | 
 |  | 
 |   for (size_t i = 4; i < eocd_size-3; ++i) { | 
 |     if (eocd[i] == 0x50 && eocd[i+1] == 0x4b && eocd[i+2] == 0x05 && eocd[i+3] == 0x06) { | 
 |       // If the sequence $50 $4b $05 $06 appears anywhere after the real one, libziparchive will | 
 |       // find the later (wrong) one, which could be exploitable. Fail the verification if this | 
 |       // sequence occurs anywhere after the real one. | 
 |       LOG(ERROR) << "EOCD marker occurs after start of EOCD"; | 
 |       return VERIFY_FAILURE; | 
 |     } | 
 |   } | 
 |  | 
 |   bool need_sha1 = false; | 
 |   bool need_sha256 = false; | 
 |   for (const auto& key : keys) { | 
 |     switch (key.hash_len) { | 
 |       case SHA_DIGEST_LENGTH: need_sha1 = true; break; | 
 |       case SHA256_DIGEST_LENGTH: need_sha256 = true; break; | 
 |     } | 
 |   } | 
 |  | 
 |   SHA_CTX sha1_ctx; | 
 |   SHA256_CTX sha256_ctx; | 
 |   SHA1_Init(&sha1_ctx); | 
 |   SHA256_Init(&sha256_ctx); | 
 |  | 
 |   double frac = -1.0; | 
 |   size_t so_far = 0; | 
 |   while (so_far < signed_len) { | 
 |     // On a Nexus 5X, experiment showed 16MiB beat 1MiB by 6% faster for a | 
 |     // 1196MiB full OTA and 60% for an 89MiB incremental OTA. | 
 |     // http://b/28135231. | 
 |     size_t size = std::min(signed_len - so_far, 16 * MiB); | 
 |  | 
 |     if (need_sha1) SHA1_Update(&sha1_ctx, addr + so_far, size); | 
 |     if (need_sha256) SHA256_Update(&sha256_ctx, addr + so_far, size); | 
 |     so_far += size; | 
 |  | 
 |     if (set_progress) { | 
 |       double f = so_far / (double)signed_len; | 
 |       if (f > frac + 0.02 || size == so_far) { | 
 |         set_progress(f); | 
 |         frac = f; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   uint8_t sha1[SHA_DIGEST_LENGTH]; | 
 |   SHA1_Final(sha1, &sha1_ctx); | 
 |   uint8_t sha256[SHA256_DIGEST_LENGTH]; | 
 |   SHA256_Final(sha256, &sha256_ctx); | 
 |  | 
 |   const uint8_t* signature = eocd + eocd_size - signature_start; | 
 |   size_t signature_size = signature_start - FOOTER_SIZE; | 
 |  | 
 |   LOG(INFO) << "signature (offset: " << std::hex << (length - signature_start) << ", length: " | 
 |             << signature_size << "): " << print_hex(signature, signature_size); | 
 |  | 
 |   std::vector<uint8_t> sig_der; | 
 |   if (!read_pkcs7(signature, signature_size, &sig_der)) { | 
 |     LOG(ERROR) << "Could not find signature DER block"; | 
 |     return VERIFY_FAILURE; | 
 |   } | 
 |  | 
 |   // Check to make sure at least one of the keys matches the signature. Since any key can match, | 
 |   // we need to try each before determining a verification failure has happened. | 
 |   size_t i = 0; | 
 |   for (const auto& key : keys) { | 
 |     const uint8_t* hash; | 
 |     int hash_nid; | 
 |     switch (key.hash_len) { | 
 |       case SHA_DIGEST_LENGTH: | 
 |         hash = sha1; | 
 |         hash_nid = NID_sha1; | 
 |         break; | 
 |       case SHA256_DIGEST_LENGTH: | 
 |         hash = sha256; | 
 |         hash_nid = NID_sha256; | 
 |         break; | 
 |       default: | 
 |         continue; | 
 |     } | 
 |  | 
 |     // The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that the signing tool appends | 
 |     // after the signature itself. | 
 |     if (key.key_type == Certificate::KEY_TYPE_RSA) { | 
 |       if (!RSA_verify(hash_nid, hash, key.hash_len, sig_der.data(), sig_der.size(), | 
 |                       key.rsa.get())) { | 
 |         LOG(INFO) << "failed to verify against RSA key " << i; | 
 |         continue; | 
 |       } | 
 |  | 
 |       LOG(INFO) << "whole-file signature verified against RSA key " << i; | 
 |       return VERIFY_SUCCESS; | 
 |     } else if (key.key_type == Certificate::KEY_TYPE_EC && key.hash_len == SHA256_DIGEST_LENGTH) { | 
 |       if (!ECDSA_verify(0, hash, key.hash_len, sig_der.data(), sig_der.size(), key.ec.get())) { | 
 |         LOG(INFO) << "failed to verify against EC key " << i; | 
 |         continue; | 
 |       } | 
 |  | 
 |       LOG(INFO) << "whole-file signature verified against EC key " << i; | 
 |       return VERIFY_SUCCESS; | 
 |     } else { | 
 |       LOG(INFO) << "Unknown key type " << key.key_type; | 
 |     } | 
 |     i++; | 
 |   } | 
 |  | 
 |   if (need_sha1) { | 
 |     LOG(INFO) << "SHA-1 digest: " << print_hex(sha1, SHA_DIGEST_LENGTH); | 
 |   } | 
 |   if (need_sha256) { | 
 |     LOG(INFO) << "SHA-256 digest: " << print_hex(sha256, SHA256_DIGEST_LENGTH); | 
 |   } | 
 |   LOG(ERROR) << "failed to verify whole-file signature"; | 
 |   return VERIFY_FAILURE; | 
 | } | 
 |  | 
 | std::unique_ptr<RSA, RSADeleter> parse_rsa_key(FILE* file, uint32_t exponent) { | 
 |     // Read key length in words and n0inv. n0inv is a precomputed montgomery | 
 |     // parameter derived from the modulus and can be used to speed up | 
 |     // verification. n0inv is 32 bits wide here, assuming the verification logic | 
 |     // uses 32 bit arithmetic. However, BoringSSL may use a word size of 64 bits | 
 |     // internally, in which case we don't have a valid n0inv. Thus, we just | 
 |     // ignore the montgomery parameters and have BoringSSL recompute them | 
 |     // internally. If/When the speedup from using the montgomery parameters | 
 |     // becomes relevant, we can add more sophisticated code here to obtain a | 
 |     // 64-bit n0inv and initialize the montgomery parameters in the key object. | 
 |     uint32_t key_len_words = 0; | 
 |     uint32_t n0inv = 0; | 
 |     if (fscanf(file, " %i , 0x%x", &key_len_words, &n0inv) != 2) { | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     if (key_len_words > 8192 / 32) { | 
 |         LOG(ERROR) << "key length (" << key_len_words << ") too large"; | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     // Read the modulus. | 
 |     std::unique_ptr<uint32_t[]> modulus(new uint32_t[key_len_words]); | 
 |     if (fscanf(file, " , { %u", &modulus[0]) != 1) { | 
 |         return nullptr; | 
 |     } | 
 |     for (uint32_t i = 1; i < key_len_words; ++i) { | 
 |         if (fscanf(file, " , %u", &modulus[i]) != 1) { | 
 |             return nullptr; | 
 |         } | 
 |     } | 
 |  | 
 |     // Cconvert from little-endian array of little-endian words to big-endian | 
 |     // byte array suitable as input for BN_bin2bn. | 
 |     std::reverse((uint8_t*)modulus.get(), | 
 |                  (uint8_t*)(modulus.get() + key_len_words)); | 
 |  | 
 |     // The next sequence of values is the montgomery parameter R^2. Since we | 
 |     // generally don't have a valid |n0inv|, we ignore this (see comment above). | 
 |     uint32_t rr_value; | 
 |     if (fscanf(file, " } , { %u", &rr_value) != 1) { | 
 |         return nullptr; | 
 |     } | 
 |     for (uint32_t i = 1; i < key_len_words; ++i) { | 
 |         if (fscanf(file, " , %u", &rr_value) != 1) { | 
 |             return nullptr; | 
 |         } | 
 |     } | 
 |     if (fscanf(file, " } } ") != 0) { | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     // Initialize the key. | 
 |     std::unique_ptr<RSA, RSADeleter> key(RSA_new()); | 
 |     if (!key) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     key->n = BN_bin2bn((uint8_t*)modulus.get(), | 
 |                        key_len_words * sizeof(uint32_t), NULL); | 
 |     if (!key->n) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     key->e = BN_new(); | 
 |     if (!key->e || !BN_set_word(key->e, exponent)) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     return key; | 
 | } | 
 |  | 
 | struct BNDeleter { | 
 |   void operator()(BIGNUM* bn) const { | 
 |     BN_free(bn); | 
 |   } | 
 | }; | 
 |  | 
 | std::unique_ptr<EC_KEY, ECKEYDeleter> parse_ec_key(FILE* file) { | 
 |     uint32_t key_len_bytes = 0; | 
 |     if (fscanf(file, " %i", &key_len_bytes) != 1) { | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     std::unique_ptr<EC_GROUP, void (*)(EC_GROUP*)> group( | 
 |         EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1), EC_GROUP_free); | 
 |     if (!group) { | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     // Verify that |key_len| matches the group order. | 
 |     if (key_len_bytes != BN_num_bytes(EC_GROUP_get0_order(group.get()))) { | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     // Read the public key coordinates. Note that the byte order in the file is | 
 |     // little-endian, so we convert to big-endian here. | 
 |     std::unique_ptr<uint8_t[]> bytes(new uint8_t[key_len_bytes]); | 
 |     std::unique_ptr<BIGNUM, BNDeleter> point[2]; | 
 |     for (int i = 0; i < 2; ++i) { | 
 |         unsigned int byte = 0; | 
 |         if (fscanf(file, " , { %u", &byte) != 1) { | 
 |             return nullptr; | 
 |         } | 
 |         bytes[key_len_bytes - 1] = byte; | 
 |  | 
 |         for (size_t i = 1; i < key_len_bytes; ++i) { | 
 |             if (fscanf(file, " , %u", &byte) != 1) { | 
 |                 return nullptr; | 
 |             } | 
 |             bytes[key_len_bytes - i - 1] = byte; | 
 |         } | 
 |  | 
 |         point[i].reset(BN_bin2bn(bytes.get(), key_len_bytes, nullptr)); | 
 |         if (!point[i]) { | 
 |             return nullptr; | 
 |         } | 
 |  | 
 |         if (fscanf(file, " }") != 0) { | 
 |             return nullptr; | 
 |         } | 
 |     } | 
 |  | 
 |     if (fscanf(file, " } ") != 0) { | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     // Create and initialize the key. | 
 |     std::unique_ptr<EC_KEY, ECKEYDeleter> key(EC_KEY_new()); | 
 |     if (!key || !EC_KEY_set_group(key.get(), group.get()) || | 
 |         !EC_KEY_set_public_key_affine_coordinates(key.get(), point[0].get(), | 
 |                                                   point[1].get())) { | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     return key; | 
 | } | 
 |  | 
 | // Reads a file containing one or more public keys as produced by | 
 | // DumpPublicKey:  this is an RSAPublicKey struct as it would appear | 
 | // as a C source literal, eg: | 
 | // | 
 | //  "{64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}" | 
 | // | 
 | // For key versions newer than the original 2048-bit e=3 keys | 
 | // supported by Android, the string is preceded by a version | 
 | // identifier, eg: | 
 | // | 
 | //  "v2 {64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}" | 
 | // | 
 | // (Note that the braces and commas in this example are actual | 
 | // characters the parser expects to find in the file; the ellipses | 
 | // indicate more numbers omitted from this example.) | 
 | // | 
 | // The file may contain multiple keys in this format, separated by | 
 | // commas.  The last key must not be followed by a comma. | 
 | // | 
 | // A Certificate is a pair of an RSAPublicKey and a particular hash | 
 | // (we support SHA-1 and SHA-256; we store the hash length to signify | 
 | // which is being used).  The hash used is implied by the version number. | 
 | // | 
 | //       1: 2048-bit RSA key with e=3 and SHA-1 hash | 
 | //       2: 2048-bit RSA key with e=65537 and SHA-1 hash | 
 | //       3: 2048-bit RSA key with e=3 and SHA-256 hash | 
 | //       4: 2048-bit RSA key with e=65537 and SHA-256 hash | 
 | //       5: 256-bit EC key using the NIST P-256 curve parameters and SHA-256 hash | 
 | // | 
 | // Returns true on success, and appends the found keys (at least one) to certs. | 
 | // Otherwise returns false if the file failed to parse, or if it contains zero | 
 | // keys. The contents in certs would be unspecified on failure. | 
 | bool load_keys(const char* filename, std::vector<Certificate>& certs) { | 
 |   std::unique_ptr<FILE, decltype(&fclose)> f(fopen(filename, "re"), fclose); | 
 |   if (!f) { | 
 |     PLOG(ERROR) << "error opening " << filename; | 
 |     return false; | 
 |   } | 
 |  | 
 |   while (true) { | 
 |     certs.emplace_back(0, Certificate::KEY_TYPE_RSA, nullptr, nullptr); | 
 |     Certificate& cert = certs.back(); | 
 |     uint32_t exponent = 0; | 
 |  | 
 |     char start_char; | 
 |     if (fscanf(f.get(), " %c", &start_char) != 1) return false; | 
 |     if (start_char == '{') { | 
 |       // a version 1 key has no version specifier. | 
 |       cert.key_type = Certificate::KEY_TYPE_RSA; | 
 |       exponent = 3; | 
 |       cert.hash_len = SHA_DIGEST_LENGTH; | 
 |     } else if (start_char == 'v') { | 
 |       int version; | 
 |       if (fscanf(f.get(), "%d {", &version) != 1) return false; | 
 |       switch (version) { | 
 |         case 2: | 
 |           cert.key_type = Certificate::KEY_TYPE_RSA; | 
 |           exponent = 65537; | 
 |           cert.hash_len = SHA_DIGEST_LENGTH; | 
 |           break; | 
 |         case 3: | 
 |           cert.key_type = Certificate::KEY_TYPE_RSA; | 
 |           exponent = 3; | 
 |           cert.hash_len = SHA256_DIGEST_LENGTH; | 
 |           break; | 
 |         case 4: | 
 |           cert.key_type = Certificate::KEY_TYPE_RSA; | 
 |           exponent = 65537; | 
 |           cert.hash_len = SHA256_DIGEST_LENGTH; | 
 |           break; | 
 |         case 5: | 
 |           cert.key_type = Certificate::KEY_TYPE_EC; | 
 |           cert.hash_len = SHA256_DIGEST_LENGTH; | 
 |           break; | 
 |         default: | 
 |           return false; | 
 |       } | 
 |     } | 
 |  | 
 |     if (cert.key_type == Certificate::KEY_TYPE_RSA) { | 
 |       cert.rsa = parse_rsa_key(f.get(), exponent); | 
 |       if (!cert.rsa) { | 
 |         return false; | 
 |       } | 
 |  | 
 |       LOG(INFO) << "read key e=" << exponent << " hash=" << cert.hash_len; | 
 |     } else if (cert.key_type == Certificate::KEY_TYPE_EC) { | 
 |       cert.ec = parse_ec_key(f.get()); | 
 |       if (!cert.ec) { | 
 |         return false; | 
 |       } | 
 |     } else { | 
 |       LOG(ERROR) << "Unknown key type " << cert.key_type; | 
 |       return false; | 
 |     } | 
 |  | 
 |     // if the line ends in a comma, this file has more keys. | 
 |     int ch = fgetc(f.get()); | 
 |     if (ch == ',') { | 
 |       // more keys to come. | 
 |       continue; | 
 |     } else if (ch == EOF) { | 
 |       break; | 
 |     } else { | 
 |       LOG(ERROR) << "unexpected character between keys"; | 
 |       return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } |