blob: 08de1b5208bd9f57b3f4ba468687b4065557e9e1 [file] [log] [blame]
arovir01b0717b52018-09-05 17:03:25 +01001//
Renato Grottesi77a0fb02023-05-08 12:55:03 +00002// Copyright © 2017-2023 Arm Ltd and Contributors. All rights reserved.
arovir01b0717b52018-09-05 17:03:25 +01003// SPDX-License-Identifier: MIT
4//
5
6#include "HalPolicy.hpp"
7
Matthew Benthamf61c2702019-04-23 16:43:27 +01008#include <armnn/Optional.hpp>
9
10#include "FullyConnected.hpp"
Aron Virginas-Tar573a8fa2019-07-23 14:01:37 +010011#include "Utils.hpp"
arovir015602b192018-10-04 16:15:02 +010012
arovir01b0717b52018-09-05 17:03:25 +010013namespace armnn_driver
14{
15namespace hal_1_0
16{
17
18bool HalPolicy::ConvertOperation(const Operation& operation, const Model& model, ConversionData& data)
19{
20 switch (operation.type)
21 {
22 case V1_0::OperationType::ADD:
Renato Grottesi77a0fb02023-05-08 12:55:03 +000023 return ConvertElementwiseBinary(operation, model, data, armnn::BinaryOperation::Add);
arovir01b0717b52018-09-05 17:03:25 +010024 case V1_0::OperationType::AVERAGE_POOL_2D:
25 return ConvertAveragePool2d(operation, model, data);
26 case V1_0::OperationType::CONCATENATION:
27 return ConvertConcatenation(operation, model, data);
28 case V1_0::OperationType::CONV_2D:
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +010029 return ConvertConv2d(operation, model, data);
Aron Virginas-Tar8edb16d2019-10-01 13:34:59 +010030 case V1_0::OperationType::DEPTH_TO_SPACE:
31 return ConvertDepthToSpace(operation, model, data);
arovir01b0717b52018-09-05 17:03:25 +010032 case V1_0::OperationType::DEPTHWISE_CONV_2D:
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +010033 return ConvertDepthwiseConv2d(operation, model, data);
David Monahanacf479a2019-05-29 14:27:04 +010034 case V1_0::OperationType::DEQUANTIZE:
35 return ConvertDequantize(operation, model, data);
arovir01b0717b52018-09-05 17:03:25 +010036 case V1_0::OperationType::FLOOR:
37 return ConvertFloor(operation, model, data);
38 case V1_0::OperationType::FULLY_CONNECTED:
39 return ConvertFullyConnected(operation, model, data);
40 case V1_0::OperationType::LOCAL_RESPONSE_NORMALIZATION:
41 return ConvertLocalResponseNormalization(operation, model, data);
42 case V1_0::OperationType::LOGISTIC:
43 return ConvertLogistic(operation, model, data);
44 case V1_0::OperationType::LSTM:
45 return ConvertLstm(operation, model, data);
46 case V1_0::OperationType::L2_NORMALIZATION:
47 return ConvertL2Normalization(operation, model, data);
48 case V1_0::OperationType::L2_POOL_2D:
49 return ConvertL2Pool2d(operation, model, data);
50 case V1_0::OperationType::MAX_POOL_2D:
51 return ConvertMaxPool2d(operation, model, data);
52 case V1_0::OperationType::MUL:
Renato Grottesi77a0fb02023-05-08 12:55:03 +000053 return ConvertElementwiseBinary(operation, model, data, armnn::BinaryOperation::Mul);
arovir01b0717b52018-09-05 17:03:25 +010054 case V1_0::OperationType::RELU:
55 return ConvertReLu(operation, model, data);
56 case V1_0::OperationType::RELU1:
57 return ConvertReLu1(operation, model, data);
58 case V1_0::OperationType::RELU6:
59 return ConvertReLu6(operation, model, data);
60 case V1_0::OperationType::SOFTMAX:
61 return ConvertSoftmax(operation, model, data);
Keith Davisa6bc52f2019-06-26 09:39:49 +010062 case V1_0::OperationType::SPACE_TO_DEPTH:
63 return ConvertSpaceToDepth(operation, model, data);
arovir01b0717b52018-09-05 17:03:25 +010064 case V1_0::OperationType::TANH:
65 return ConvertTanH(operation, model, data);
66 case V1_0::OperationType::RESHAPE:
67 return ConvertReshape(operation, model, data);
68 case V1_0::OperationType::RESIZE_BILINEAR:
69 return ConvertResizeBilinear(operation, model, data);
70 default:
71 return Fail("%s: Operation type %s not supported in ArmnnDriver",
72 __func__, toString(operation.type).c_str());
73 }
74}
75
arovir01b0717b52018-09-05 17:03:25 +010076bool HalPolicy::ConvertAveragePool2d(const Operation& operation, const Model& model, ConversionData& data)
77{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +010078 ALOGV("hal_1_0::HalPolicy::ConvertAveragePool2d()");
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +010079 return ConvertPooling2d<hal_1_0::HalPolicy>(operation, __func__, armnn::PoolingAlgorithm::Average, model, data);
arovir01b0717b52018-09-05 17:03:25 +010080}
81
82bool HalPolicy::ConvertConcatenation(const Operation& operation, const Model& model, ConversionData& data)
83{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +010084 ALOGV("hal_1_0::HalPolicy::ConvertConcatenation()");
Mike Kellyb8805202019-07-31 17:25:43 +010085 return ::ConvertConcatenation<hal_1_0::HalPolicy>(operation, model, data);
arovir01b0717b52018-09-05 17:03:25 +010086}
87
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +010088bool HalPolicy::ConvertConv2d(const Operation& operation, const Model& model, ConversionData& data)
89{
90 ALOGV("hal_1_0::HalPolicy::ConvertConv2d()");
Aron Virginas-Tara5e2a452019-07-29 16:13:19 +010091 return ::ConvertConv2d<hal_1_0::HalPolicy>(operation, model, data);
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +010092}
93
Aron Virginas-Tar8edb16d2019-10-01 13:34:59 +010094bool HalPolicy::ConvertDepthToSpace(const Operation& operation, const Model& model, ConversionData& data)
95{
96 ALOGV("hal_1_0::HalPolicy::ConvertDepthToSpace()");
97 return ::ConvertDepthToSpace<hal_1_0::HalPolicy>(operation, model, data);
98}
99
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100100bool HalPolicy::ConvertDepthwiseConv2d(const Operation& operation, const Model& model, ConversionData& data)
101{
102 ALOGV("hal_1_0::HalPolicy::ConvertDepthwiseConv2d()");
Aron Virginas-Tara5e2a452019-07-29 16:13:19 +0100103 return ::ConvertDepthwiseConv2d<hal_1_0::HalPolicy>(operation, model, data);
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100104}
105
David Monahanacf479a2019-05-29 14:27:04 +0100106bool HalPolicy::ConvertDequantize(const Operation& operation, const Model& model, ConversionData& data)
107{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100108 ALOGV("hal_1_0::HalPolicy::ConvertDequantize()");
Mike Kelly46272802019-08-14 17:00:48 +0100109 return ::ConvertDequantize<hal_1_0::HalPolicy>(operation, model, data);
David Monahanacf479a2019-05-29 14:27:04 +0100110}
111
Renato Grottesi77a0fb02023-05-08 12:55:03 +0000112bool HalPolicy::ConvertElementwiseBinary(const Operation& operation,
113 const Model& model,
114 ConversionData& data,
115 armnn::BinaryOperation binaryOperation)
116{
117 ALOGV("hal_1_0::HalPolicy::ConvertElementwiseBinary()");
118 return ::ConvertElementwiseBinary<hal_1_0::HalPolicy>(operation, model, data, binaryOperation);
119}
120
arovir01b0717b52018-09-05 17:03:25 +0100121bool HalPolicy::ConvertFloor(const Operation& operation, const Model& model, ConversionData& data)
122{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100123 ALOGV("hal_1_0::HalPolicy::ConvertFloor()");
Mike Kelly46272802019-08-14 17:00:48 +0100124 return ::ConvertFloor<hal_1_0::HalPolicy>(operation, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100125}
126
127bool HalPolicy::ConvertFullyConnected(const Operation& operation, const Model& model, ConversionData& data)
128{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100129 ALOGV("hal_1_0::HalPolicy::ConvertFullyConnected()");
Mike Kelly46272802019-08-14 17:00:48 +0100130 return ::ConvertFullyConnected<hal_1_0::HalPolicy>(operation, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100131}
132
133bool HalPolicy::ConvertLocalResponseNormalization(const Operation& operation,
134 const Model& model,
135 ConversionData& data)
136{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100137 ALOGV("hal_1_0::HalPolicy::ConvertLocalResponseNormalization()");
Mike Kelly46272802019-08-14 17:00:48 +0100138 return ::ConvertLocalResponseNormalization<hal_1_0::HalPolicy>(operation, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100139}
140
141bool HalPolicy::ConvertLogistic(const Operation& operation, const Model& model, ConversionData& data)
142{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100143 ALOGV("hal_1_0::HalPolicy::ConvertLogistic()");
Mike Kelly46272802019-08-14 17:00:48 +0100144 return ::ConvertLogistic<hal_1_0::HalPolicy>(operation, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100145}
146
147bool HalPolicy::ConvertLstm(const Operation& operation, const Model& model, ConversionData& data)
148{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100149 ALOGV("hal_1_0::HalPolicy::ConvertLstm()");
150
arovir01b0717b52018-09-05 17:03:25 +0100151 // Inputs:
152 // 00: The input: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, input_size], where
153 // “batch_size” corresponds to the batching dimension, and “input_size” is the size of the input.
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100154 LayerInputHandle input = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 0, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100155 if (!input.IsValid())
156 {
157 return Fail("%s: Could not read input 0: input", __func__);
158 }
159 // 18: The output state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size].
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100160 LayerInputHandle outputStateIn = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 18, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100161 if (!outputStateIn.IsValid())
162 {
163 return Fail("%s: Could not read input 18: outputStateIn", __func__);
164 }
165 // 19: The cell state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units].
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100166 LayerInputHandle cellStateIn = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 19, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100167 if (!cellStateIn.IsValid())
168 {
169 return Fail("%s: Could not read input 19: cellStateIn", __func__);
170 }
171
172 // Get the mandatory input tensors:
173 // 02: The input-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
174 // [num_units, input_size].
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100175 const ConstTensorPin inputToForgetWeightsPin =
176 ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 2, model, data);
177 // 03: The input-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
178 // [num_units, input_size].
179 const ConstTensorPin inputToCellWeightsPin =
180 ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 3, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100181 // 04: The input-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
182 // [num_units, input_size].
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100183 const ConstTensorPin inputToOutputWeightsPin =
184 ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 4, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100185 // 06: The recurrent-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
186 // [num_units, output_size].
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100187 const ConstTensorPin recurrentToForgetWeightsPin =
188 ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 6, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100189 // 07: The recurrent-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
190 // [num_units, output_size].
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100191 const ConstTensorPin recurrentToCellWeightsPin =
192 ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 7, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100193 // 08: The recurrent-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
194 // [num_units, output_size].
195 const ConstTensorPin recurrentToOutputWeightsPin =
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100196 ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 8, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100197 // 13: The forget gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100198 const ConstTensorPin forgetGateBiasPin =
199 ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 13, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100200 // 14: The cell bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100201 const ConstTensorPin cellBiasPin =
202 ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 14, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100203 // 15: The output gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100204 const ConstTensorPin outputGateBiasPin =
205 ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 15, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100206
207 if (!inputToForgetWeightsPin.IsValid() ||
208 !inputToCellWeightsPin.IsValid() ||
209 !inputToOutputWeightsPin.IsValid() ||
210 !recurrentToForgetWeightsPin.IsValid() ||
211 !recurrentToCellWeightsPin.IsValid() ||
212 !recurrentToOutputWeightsPin.IsValid() ||
213 !forgetGateBiasPin.IsValid() ||
214 !cellBiasPin.IsValid() ||
215 !outputGateBiasPin.IsValid())
216 {
217 return Fail("%s: Operation has invalid tensor inputs", __func__);
218 }
219
220 // Get the optional input tensors:
221 // 01: The input-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
222 // [num_units, input_size], where “num_units” corresponds to the number of cell units.
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100223 const ConstTensorPin inputToInputWeightsPin =
224 ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
225 1,
226 model,
227 data,
228 g_DontPermute,
229 nullptr,
230 true);
231
arovir01b0717b52018-09-05 17:03:25 +0100232 // 05: The recurrent-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
233 // [num_units, output_size], where “output_size” corresponds to either the number of cell units (i.e.,
234 // “num_units”), or the second dimension of the “projection_weights”, if defined.
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100235 const ConstTensorPin recurrentToInputWeightsPin =
236 ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
237 5,
238 model,
239 data,
240 g_DontPermute,
241 nullptr,
242 true);
243
arovir01b0717b52018-09-05 17:03:25 +0100244 // 09: The cell-to-input weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100245 const ConstTensorPin cellToInputWeightsPin =
246 ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
247 9,
248 model,
249 data,
250 g_DontPermute,
251 nullptr,
252 true);
253
arovir01b0717b52018-09-05 17:03:25 +0100254 // 10: The cell-to-forget weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100255 const ConstTensorPin cellToForgetWeightsPin =
256 ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
257 10,
258 model,
259 data,
260 g_DontPermute,
261 nullptr,
262 true);
263
arovir01b0717b52018-09-05 17:03:25 +0100264 // 11: The cell-to-output weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100265 const ConstTensorPin cellToOutputWeightsPin =
266 ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
267 11,
268 model,
269 data,
270 g_DontPermute,
271 nullptr,
272 true);
273
arovir01b0717b52018-09-05 17:03:25 +0100274 // 12: The input gate bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100275 const ConstTensorPin inputGateBiasPin =
276 ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
277 12,
278 model,
279 data,
280 g_DontPermute,
281 nullptr,
282 true);
283
arovir01b0717b52018-09-05 17:03:25 +0100284 // 16: The projection weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
285 // [output_size, num_units].
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100286 const ConstTensorPin projectionWeightsPin =
287 ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
288 16,
289 model,
290 data,
291 g_DontPermute,
292 nullptr,
293 true);
294
arovir01b0717b52018-09-05 17:03:25 +0100295 // 17: The projection bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [output_size].
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100296 const ConstTensorPin projectionBiasPin =
297 ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
298 17,
299 model,
300 data,
301 g_DontPermute,
302 nullptr,
303 true);
arovir01b0717b52018-09-05 17:03:25 +0100304
305 if ((!inputToInputWeightsPin.IsValid() && !inputToInputWeightsPin.IsOptional()) ||
306 (!recurrentToInputWeightsPin.IsValid() && !recurrentToInputWeightsPin.IsOptional()) ||
307 (!cellToInputWeightsPin.IsValid() && !cellToInputWeightsPin.IsOptional()) ||
308 (!cellToForgetWeightsPin.IsValid() && !cellToForgetWeightsPin.IsOptional()) ||
309 (!cellToOutputWeightsPin.IsValid() && !cellToOutputWeightsPin.IsOptional()) ||
310 (!inputGateBiasPin.IsValid() && !inputGateBiasPin.IsOptional()) ||
311 (!projectionWeightsPin.IsValid() && !projectionWeightsPin.IsOptional()) ||
312 (!projectionBiasPin.IsValid() && !projectionBiasPin.IsOptional()))
313 {
314 return Fail("%s: Operation has invalid tensor inputs", __func__);
315 }
316
317 // Get the mandatory input scalars (actually 1-D tensors of size 1):
318 // 20: The activation function: A value indicating the activation function:
319 // 0: None; 1: Relu; 3: Relu6; 4: Tanh; 6: Sigmoid.
320 // 21: The clipping threshold: for the cell state, such that values are bound within [-cell_clip, cell_clip].
321 // If set to 0.0 then clipping is disabled.
322 // 22: The clipping threshold: for the output from the projection layer, such that values are bound within
323 // [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
324 ActivationFn activation;
325 float cellClip;
326 float projClip;
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100327 if (!GetInputActivationFunctionFromTensor<hal_1_0::HalPolicy>(operation, 20, activation, model, data) ||
328 !GetInputScalar<hal_1_0::HalPolicy>(operation, 21, OperandType::FLOAT32, cellClip, model, data) ||
329 !GetInputScalar<hal_1_0::HalPolicy>(operation, 22, OperandType::FLOAT32, projClip, model, data))
arovir01b0717b52018-09-05 17:03:25 +0100330 {
331 return Fail("%s: Operation has invalid scalar inputs", __func__);
332 }
333
334 // Outputs:
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100335 // 00: The scratch buffer: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units * 4]
336 // with CIFG, or [batch_size, num_units * 3] without CIFG.
337 const Operand* scratchBuffer = GetOutputOperand<hal_1_0::HalPolicy>(operation, 0, model);
arovir01b0717b52018-09-05 17:03:25 +0100338 if (!scratchBuffer)
339 {
340 return Fail("%s: Could not read output 0: scratchBuffer", __func__);
341 }
342 // 01: The output state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size].
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100343 const Operand* outputStateOut = GetOutputOperand<hal_1_0::HalPolicy>(operation, 1, model);
arovir01b0717b52018-09-05 17:03:25 +0100344 if (!outputStateOut)
345 {
346 return Fail("%s: Could not read output 1: outputStateOut", __func__);
347 }
348 // 02: The cell state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units].
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100349 const Operand* cellStateOut = GetOutputOperand<hal_1_0::HalPolicy>(operation, 2, model);
arovir01b0717b52018-09-05 17:03:25 +0100350 if (!cellStateOut)
351 {
352 return Fail("%s: Could not read output 2: cellStateOut", __func__);
353 }
354 // 03: The output: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size]. This is
355 // effectively the same as the current “output state (out)” value.
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100356 const Operand* output = GetOutputOperand<hal_1_0::HalPolicy>(operation, 3, model);
arovir01b0717b52018-09-05 17:03:25 +0100357 if (!output)
358 {
359 return Fail("%s: Could not read output 3: output", __func__);
360 }
361
362 // set the params structure for the AddLstmLayer call
363 armnn::LstmInputParams params;
364 params.m_InputToInputWeights = inputToInputWeightsPin.GetConstTensorPtr();
365 params.m_InputToForgetWeights = inputToForgetWeightsPin.GetConstTensorPtr();
366 params.m_InputToCellWeights = inputToCellWeightsPin.GetConstTensorPtr();
367 params.m_InputToOutputWeights = inputToOutputWeightsPin.GetConstTensorPtr();
368 params.m_RecurrentToInputWeights = recurrentToInputWeightsPin.GetConstTensorPtr();
369 params.m_RecurrentToForgetWeights = recurrentToForgetWeightsPin.GetConstTensorPtr();
370 params.m_RecurrentToCellWeights = recurrentToCellWeightsPin.GetConstTensorPtr();
371 params.m_RecurrentToOutputWeights = recurrentToOutputWeightsPin.GetConstTensorPtr();
372 params.m_CellToInputWeights = cellToInputWeightsPin.GetConstTensorPtr();
373 params.m_CellToForgetWeights = cellToForgetWeightsPin.GetConstTensorPtr();
374 params.m_CellToOutputWeights = cellToOutputWeightsPin.GetConstTensorPtr();
375 params.m_InputGateBias = inputGateBiasPin.GetConstTensorPtr();
376 params.m_ForgetGateBias = forgetGateBiasPin.GetConstTensorPtr();
377 params.m_CellBias = cellBiasPin.GetConstTensorPtr();
378 params.m_OutputGateBias = outputGateBiasPin.GetConstTensorPtr();
379 params.m_ProjectionWeights = projectionWeightsPin.GetConstTensorPtr();
380 params.m_ProjectionBias = projectionBiasPin.GetConstTensorPtr();
381
382 // set the layer descriptor
383 armnn::LstmDescriptor desc;
384 desc.m_ActivationFunc = activation;
385 desc.m_ClippingThresCell = cellClip;
386 desc.m_ClippingThresProj = projClip;
387 desc.m_CifgEnabled = (params.m_InputToInputWeights == nullptr ||
388 params.m_RecurrentToInputWeights == nullptr ||
389 params.m_InputGateBias == nullptr);
390 desc.m_PeepholeEnabled = (params.m_CellToForgetWeights != nullptr ||
391 params.m_CellToOutputWeights != nullptr);
392 desc.m_ProjectionEnabled = (params.m_ProjectionWeights != nullptr);
393
394 // validate the optional input groups
395 if (desc.m_CifgEnabled &&
396 (params.m_InputToInputWeights != nullptr ||
397 params.m_RecurrentToInputWeights != nullptr ||
398 params.m_InputGateBias != nullptr))
399 {
400 return Fail("%s: All, or none, of input-to-input weights, recurrent-to-input weights,"
401 " and input gate bias must be provided", __func__);
402 }
403
404 if (!desc.m_ProjectionEnabled && params.m_ProjectionBias != nullptr)
405 {
406 return Fail("%s: projection bias should not be provided without projection weights", __func__);
407 }
408
409 if (desc.m_PeepholeEnabled &&
410 (params.m_CellToForgetWeights == nullptr ||
411 params.m_CellToOutputWeights == nullptr ||
412 (!desc.m_CifgEnabled && params.m_CellToInputWeights == nullptr)))
413 {
414 return Fail("%s: All, or none, of cell-to-forget weights and cell-to-output weights must be provided"
415 " and, if CIFG is not enabled, cell-to-input weights must also be provided", __func__);
416 }
417
418 // Check if the layer is supported
419 // Inputs
420 const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
421 const armnn::TensorInfo& outputStateInInfo = outputStateIn.GetTensorInfo();
422 const armnn::TensorInfo& cellStateInInfo = cellStateIn.GetTensorInfo();
423
424 // Outputs
425 const armnn::TensorInfo& scratchBufferInfo = GetTensorInfoForOperand(*scratchBuffer);
426 const armnn::TensorInfo& outputStateOutInfo = GetTensorInfoForOperand(*outputStateOut);
427 const armnn::TensorInfo& cellStateOutInfo = GetTensorInfoForOperand(*cellStateOut);
428 const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
429
430 // Basic parameters
Ferran Balaguer177fa0b2019-07-02 17:34:46 +0100431 armnn::LstmInputParamsInfo paramsInfo;
432 paramsInfo.m_InputToForgetWeights = &(params.m_InputToForgetWeights->GetInfo());
433 paramsInfo.m_InputToCellWeights = &(params.m_InputToCellWeights->GetInfo());
434 paramsInfo.m_InputToOutputWeights = &(params.m_InputToOutputWeights->GetInfo());
435 paramsInfo.m_RecurrentToForgetWeights = &(params.m_RecurrentToForgetWeights->GetInfo());
436 paramsInfo.m_RecurrentToCellWeights = &(params.m_RecurrentToCellWeights->GetInfo());
437 paramsInfo.m_RecurrentToOutputWeights = &(params.m_RecurrentToOutputWeights->GetInfo());
438 paramsInfo.m_ForgetGateBias = &(params.m_ForgetGateBias->GetInfo());
439 paramsInfo.m_CellBias = &(params.m_CellBias->GetInfo());
440 paramsInfo.m_OutputGateBias = &(params.m_OutputGateBias->GetInfo());
arovir01b0717b52018-09-05 17:03:25 +0100441
Ferran Balaguerd30093c2019-07-09 17:04:47 +0100442 // Optional parameters
arovir01b0717b52018-09-05 17:03:25 +0100443 if(!desc.m_CifgEnabled)
444 {
Ferran Balaguer177fa0b2019-07-02 17:34:46 +0100445 paramsInfo.m_InputToInputWeights = &(params.m_InputToInputWeights->GetInfo());
446 paramsInfo.m_RecurrentToInputWeights = &(params.m_RecurrentToInputWeights->GetInfo());
arovir01b0717b52018-09-05 17:03:25 +0100447 if (params.m_CellToInputWeights != nullptr)
448 {
Ferran Balaguer177fa0b2019-07-02 17:34:46 +0100449 paramsInfo.m_CellToInputWeights = &(params.m_CellToInputWeights->GetInfo());
arovir01b0717b52018-09-05 17:03:25 +0100450 }
Ferran Balaguer177fa0b2019-07-02 17:34:46 +0100451 paramsInfo.m_InputGateBias = &(params.m_InputGateBias->GetInfo());
arovir01b0717b52018-09-05 17:03:25 +0100452 }
453
454 if(desc.m_ProjectionEnabled)
455 {
Ferran Balaguer177fa0b2019-07-02 17:34:46 +0100456 paramsInfo.m_ProjectionWeights = &(params.m_ProjectionWeights->GetInfo());
arovir01b0717b52018-09-05 17:03:25 +0100457 if (params.m_ProjectionBias != nullptr)
458 {
Ferran Balaguer177fa0b2019-07-02 17:34:46 +0100459 paramsInfo.m_ProjectionBias = &(params.m_ProjectionBias->GetInfo());
arovir01b0717b52018-09-05 17:03:25 +0100460 }
461 }
462
463 if(desc.m_PeepholeEnabled)
464 {
Ferran Balaguer177fa0b2019-07-02 17:34:46 +0100465 paramsInfo.m_CellToForgetWeights = &(params.m_CellToForgetWeights->GetInfo());
466 paramsInfo.m_CellToOutputWeights = &(params.m_CellToOutputWeights->GetInfo());
arovir01b0717b52018-09-05 17:03:25 +0100467 }
468
Ferran Balaguerd30093c2019-07-09 17:04:47 +0100469 bool isSupported = false;
Renato Grottesi77a0fb02023-05-08 12:55:03 +0000470 armnn::BackendId setBackend;
Ferran Balaguerd30093c2019-07-09 17:04:47 +0100471 FORWARD_LAYER_SUPPORT_FUNC(__func__,
472 IsLstmSupported,
473 data.m_Backends,
474 isSupported,
Renato Grottesi77a0fb02023-05-08 12:55:03 +0000475 setBackend,
Ferran Balaguerd30093c2019-07-09 17:04:47 +0100476 inputInfo,
477 outputStateInInfo,
478 cellStateInInfo,
479 scratchBufferInfo,
480 outputStateOutInfo,
481 cellStateOutInfo,
482 outputInfo,
483 desc,
484 paramsInfo);
485 if (!isSupported)
arovir01b0717b52018-09-05 17:03:25 +0100486 {
487 return false;
488 }
489
490 // Add the layer
491 armnn::IConnectableLayer* layer = data.m_Network->AddLstmLayer(desc, params, "Lstm");
Renato Grottesi77a0fb02023-05-08 12:55:03 +0000492 layer->SetBackendId(setBackend);
arovir01b0717b52018-09-05 17:03:25 +0100493
494 input.Connect(layer->GetInputSlot(0));
495 outputStateIn.Connect(layer->GetInputSlot(1));
496 cellStateIn.Connect(layer->GetInputSlot(2));
497
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100498 return (SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 0, *layer, 0, model, data) &&
499 SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 1, *layer, 1, model, data) &&
500 SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 2, *layer, 2, model, data) &&
501 SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 3, *layer, 3, model, data));
arovir01b0717b52018-09-05 17:03:25 +0100502}
503
504bool HalPolicy::ConvertL2Normalization(const Operation& operation, const Model& model, ConversionData& data)
505{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100506 ALOGV("hal_1_0::HalPolicy::ConvertL2Normalization()");
Mike Kelly46272802019-08-14 17:00:48 +0100507 return ::ConvertL2Normalization<hal_1_0::HalPolicy>(operation, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100508}
509
510bool HalPolicy::ConvertL2Pool2d(const Operation& operation, const Model& model, ConversionData& data)
511{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100512 ALOGV("hal_1_0::HalPolicy::ConvertL2Pool2d()");
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100513 return ConvertPooling2d<hal_1_0::HalPolicy>(operation, __func__, armnn::PoolingAlgorithm::L2, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100514}
515
516bool HalPolicy::ConvertMaxPool2d(const Operation& operation, const Model& model, ConversionData& data)
517{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100518 ALOGV("hal_1_0::HalPolicy::ConvertMaxPool2d()");
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100519 return ConvertPooling2d<hal_1_0::HalPolicy>(operation, __func__, armnn::PoolingAlgorithm::Max, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100520}
521
arovir01b0717b52018-09-05 17:03:25 +0100522bool HalPolicy::ConvertReLu(const Operation& operation, const Model& model, ConversionData& data)
523{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100524 ALOGV("hal_1_0::HalPolicy::ConvertReLu()");
Sadik Armagan61113162019-07-25 09:09:40 +0100525 return ::ConvertReLu<hal_1_0::HalPolicy>(operation, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100526}
527
528bool HalPolicy::ConvertReLu1(const Operation& operation, const Model& model, ConversionData& data)
529{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100530 ALOGV("hal_1_0::HalPolicy::ConvertReLu1()");
Sadik Armagan61113162019-07-25 09:09:40 +0100531 return ::ConvertReLu1<hal_1_0::HalPolicy>(operation, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100532}
533
534bool HalPolicy::ConvertReLu6(const Operation& operation, const Model& model, ConversionData& data)
535{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100536 ALOGV("hal_1_0::HalPolicy::ConvertReLu6()");
Sadik Armagan61113162019-07-25 09:09:40 +0100537 return ::ConvertReLu6<hal_1_0::HalPolicy>(operation, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100538}
539
540bool HalPolicy::ConvertSoftmax(const Operation& operation, const Model& model, ConversionData& data)
541{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100542 ALOGV("hal_1_0::HalPolicy::ConvertSoftmax()");
543
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100544 LayerInputHandle input = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 0, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100545 if (!input.IsValid())
546 {
547 return Fail("%s: Operation has invalid inputs", __func__);
548 }
549
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100550 const Operand* outputOperand = GetOutputOperand<hal_1_0::HalPolicy>(operation, 0, model);
arovir01b0717b52018-09-05 17:03:25 +0100551 if (!outputOperand)
552 {
553 return Fail("%s: Operation has no outputs", __func__);
554 }
555
Aron Virginas-Tarb7421e52019-07-26 13:14:39 +0100556 const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand);
Aron Virginas-Tar573a8fa2019-07-23 14:01:37 +0100557 if (IsDynamicTensor(outputInfo))
Aron Virginas-Tar366e0a62019-07-10 13:01:41 +0100558 {
Aron Virginas-Tarb7421e52019-07-26 13:14:39 +0100559 return Fail("%s: Dynamic output tensors are not supported", __func__);
Aron Virginas-Tar366e0a62019-07-10 13:01:41 +0100560 }
arovir01b0717b52018-09-05 17:03:25 +0100561
562 armnn::SoftmaxDescriptor desc;
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100563 if (!GetInputFloat32<hal_1_0::HalPolicy>(operation, 1, desc.m_Beta, model, data))
arovir01b0717b52018-09-05 17:03:25 +0100564 {
565 return Fail("%s: Operation has invalid inputs", __func__);
566 }
567
Ferran Balaguerd30093c2019-07-09 17:04:47 +0100568 bool isSupported = false;
Renato Grottesi77a0fb02023-05-08 12:55:03 +0000569 armnn::BackendId setBackend;
Ferran Balaguerd30093c2019-07-09 17:04:47 +0100570 FORWARD_LAYER_SUPPORT_FUNC(__func__,
571 IsSoftmaxSupported,
572 data.m_Backends,
573 isSupported,
Renato Grottesi77a0fb02023-05-08 12:55:03 +0000574 setBackend,
Ferran Balaguerd30093c2019-07-09 17:04:47 +0100575 input.GetTensorInfo(),
576 outputInfo,
577 desc);
578 if (!isSupported)
arovir01b0717b52018-09-05 17:03:25 +0100579 {
580 return false;
581 }
582
583 armnn::IConnectableLayer* layer = data.m_Network->AddSoftmaxLayer(desc);
Renato Grottesi77a0fb02023-05-08 12:55:03 +0000584 layer->SetBackendId(setBackend);
585 if (!layer)
586 {
587 return Fail("%s: Could not add the SoftmaxLayer", __func__);
588 }
arovir01b0717b52018-09-05 17:03:25 +0100589 input.Connect(layer->GetInputSlot(0));
590
Aron Virginas-Tarb7421e52019-07-26 13:14:39 +0100591 return SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 0, *layer, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100592}
593
Keith Davisa6bc52f2019-06-26 09:39:49 +0100594bool HalPolicy::ConvertSpaceToDepth(const Operation& operation, const Model& model, ConversionData& data)
595{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100596 ALOGV("hal_1_0::HalPolicy::ConvertSpaceToDepth()");
Keith Davisa6bc52f2019-06-26 09:39:49 +0100597
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100598 LayerInputHandle input = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 0, model, data);
Keith Davisa6bc52f2019-06-26 09:39:49 +0100599 if (!input.IsValid() )
600 {
601 return Fail("%s: Operation has invalid inputs", __func__);
602 }
603
604 const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
605 unsigned int rank = inputInfo.GetNumDimensions();
606
607 if (rank != 4)
608 {
609 return Fail("%s: Only inputs with rank 4 are supported", __func__);
610 }
611
612 armnn::SpaceToDepthDescriptor desc;
Keith Davisa6bc52f2019-06-26 09:39:49 +0100613
614 GetInputScalar<hal_1_0::HalPolicy>(operation, 1, OperandType::INT32, desc.m_BlockSize, model, data);
615
616 if (desc.m_BlockSize <= 1)
617 {
618 return Fail("%s: Block size must be at least 1 in all dimensions");
619 }
620
621 const Operand* output = GetOutputOperand<hal_1_0::HalPolicy>(operation, 0, model);
622 if (!output)
623 {
624 return Fail("%s: Could not read output 0", __func__);
625 }
626
627 const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
Aron Virginas-Tara3609cc2019-07-29 10:50:25 +0100628 if (IsDynamicTensor(outputInfo))
629 {
630 return Fail("%s: Dynamic output tensors are not supported", __func__);
631 }
Ferran Balaguerd30093c2019-07-09 17:04:47 +0100632
633 bool isSupported = false;
Renato Grottesi77a0fb02023-05-08 12:55:03 +0000634 armnn::BackendId setBackend;
Ferran Balaguerd30093c2019-07-09 17:04:47 +0100635 FORWARD_LAYER_SUPPORT_FUNC(__func__,
636 IsSpaceToDepthSupported,
637 data.m_Backends,
638 isSupported,
Renato Grottesi77a0fb02023-05-08 12:55:03 +0000639 setBackend,
Ferran Balaguerd30093c2019-07-09 17:04:47 +0100640 inputInfo,
641 outputInfo,
642 desc);
643 if (!isSupported)
Keith Davisa6bc52f2019-06-26 09:39:49 +0100644 {
645 return false;
646 }
647
648 armnn::IConnectableLayer* const layer = data.m_Network->AddSpaceToDepthLayer(desc);
Renato Grottesi77a0fb02023-05-08 12:55:03 +0000649 layer->SetBackendId(setBackend);
650 if (!layer)
651 {
652 return Fail("%s: Could not add the SpaceToDepthLayer", __func__);
653 }
Keith Davisa6bc52f2019-06-26 09:39:49 +0100654 input.Connect(layer->GetInputSlot(0));
655
656 return SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 0, *layer, model, data);
657}
658
arovir01b0717b52018-09-05 17:03:25 +0100659bool HalPolicy::ConvertTanH(const Operation& operation, const Model& model, ConversionData& data)
660{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100661 ALOGV("hal_1_0::HalPolicy::ConvertTanH()");
Sadik Armagan61113162019-07-25 09:09:40 +0100662 return ::ConvertTanH<hal_1_0::HalPolicy>(operation, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100663}
664
665bool HalPolicy::ConvertReshape(const Operation& operation, const Model& model, ConversionData& data)
666{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100667 ALOGV("hal_1_0::HalPolicy::ConvertReshape()");
Mike Kelly46272802019-08-14 17:00:48 +0100668 return ::ConvertReshape<hal_1_0::HalPolicy>(operation, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100669}
670
671bool HalPolicy::ConvertResizeBilinear(const Operation& operation, const Model& model, ConversionData& data)
672{
Aron Virginas-Tar29404fb2019-07-24 13:55:31 +0100673 ALOGV("hal_1_0::HalPolicy::ConvertResizeBilinear()");
674
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100675 LayerInputHandle input = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 0, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100676 if (!input.IsValid())
677 {
678 return Fail("%s: Could not read input 0", __func__);
679 }
680
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100681 const Operand* output = GetOutputOperand<hal_1_0::HalPolicy>(operation, 0, model);
arovir01b0717b52018-09-05 17:03:25 +0100682 if (!output)
683 {
684 return Fail("%s: Could not read output 0", __func__);
685 }
686
Aron Virginas-Tara3609cc2019-07-29 10:50:25 +0100687 const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
arovir01b0717b52018-09-05 17:03:25 +0100688 const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
689
Aron Virginas-Tara3609cc2019-07-29 10:50:25 +0100690 if (IsDynamicTensor(outputInfo))
691 {
692 return Fail("%s: Dynamic output tensors are not supported", __func__);
693 }
694
Aron Virginas-Tara5daf862019-07-01 19:07:20 +0100695 armnn::ResizeDescriptor desc;
696 desc.m_Method = armnn::ResizeMethod::Bilinear;
Mohamed Nour Abouelseoud81afa302018-10-29 14:32:55 +0000697 desc.m_DataLayout = armnn::DataLayout::NHWC;
arovir01b0717b52018-09-05 17:03:25 +0100698
Ferran Balaguerd30093c2019-07-09 17:04:47 +0100699 bool isSupported = false;
Renato Grottesi77a0fb02023-05-08 12:55:03 +0000700 armnn::BackendId setBackend;
Ferran Balaguerd30093c2019-07-09 17:04:47 +0100701 FORWARD_LAYER_SUPPORT_FUNC(__func__,
702 IsResizeSupported,
703 data.m_Backends,
704 isSupported,
Renato Grottesi77a0fb02023-05-08 12:55:03 +0000705 setBackend,
Ferran Balaguerd30093c2019-07-09 17:04:47 +0100706 inputInfo,
707 outputInfo,
708 desc);
709 if (!isSupported)
arovir01b0717b52018-09-05 17:03:25 +0100710 {
711 return false;
712 }
713
Aron Virginas-Tar535607d2019-07-03 15:46:15 +0100714 if (!GetInputScalar<hal_1_0::HalPolicy>(operation, 1, OperandType::INT32, desc.m_TargetWidth, model, data) ||
715 !GetInputScalar<hal_1_0::HalPolicy>(operation, 2, OperandType::INT32, desc.m_TargetHeight, model, data))
arovir01b0717b52018-09-05 17:03:25 +0100716 {
717 return Fail("%s: Operation has invalid inputs", __func__);
718 }
719
Aron Virginas-Tara5daf862019-07-01 19:07:20 +0100720 armnn::IConnectableLayer* layer = data.m_Network->AddResizeLayer(desc);
Renato Grottesi77a0fb02023-05-08 12:55:03 +0000721 layer->SetBackendId(setBackend);
722 if (!layer)
723 {
724 return Fail("%s: Could not add the ResizeLayer", __func__);
725 }
Mohamed Nour Abouelseoud81afa302018-10-29 14:32:55 +0000726 layer->GetOutputSlot(0).SetTensorInfo(outputInfo);
727 input.Connect(layer->GetInputSlot(0));
arovir01b0717b52018-09-05 17:03:25 +0100728
Aron Virginas-Tarcd700e42019-06-14 14:54:52 +0100729 return SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 0, *layer, model, data);
arovir01b0717b52018-09-05 17:03:25 +0100730
731}
732
733} // namespace hal_1_0
Matteo Martincigh58f71092018-09-25 15:58:52 +0100734} // namespace armnn_driver