George Lander | da55ef9 | 2015-11-19 12:05:06 +0000 | [diff] [blame] | 1 | /* |
Szabolcs Nagy | 1b94597 | 2018-05-14 14:46:40 +0100 | [diff] [blame] | 2 | * random.c - random number generator for producing mathlib test cases |
George Lander | da55ef9 | 2015-11-19 12:05:06 +0000 | [diff] [blame] | 3 | * |
Szabolcs Nagy | 11253b0 | 2018-11-12 11:10:57 +0000 | [diff] [blame] | 4 | * Copyright (c) 1998-2018, Arm Limited. |
| 5 | * SPDX-License-Identifier: MIT |
George Lander | da55ef9 | 2015-11-19 12:05:06 +0000 | [diff] [blame] | 6 | */ |
| 7 | |
| 8 | #include "types.h" |
| 9 | #include "random.h" |
| 10 | |
| 11 | static uint32 seedbuf[55]; |
| 12 | static int seedptr; |
| 13 | |
| 14 | void seed_random(uint32 seed) { |
| 15 | int i; |
| 16 | |
| 17 | seedptr = 0; |
| 18 | for (i = 0; i < 55; i++) { |
| 19 | seed = seed % 44488 * 48271 - seed / 44488 * 3399; |
| 20 | seedbuf[i] = seed - 1; |
| 21 | } |
| 22 | } |
| 23 | |
| 24 | uint32 base_random(void) { |
| 25 | seedptr %= 55; |
| 26 | seedbuf[seedptr] += seedbuf[(seedptr+31)%55]; |
| 27 | return seedbuf[seedptr++]; |
| 28 | } |
| 29 | |
| 30 | uint32 random32(void) { |
| 31 | uint32 a, b, b1, b2; |
| 32 | a = base_random(); |
| 33 | b = base_random(); |
| 34 | for (b1 = 0x80000000, b2 = 1; b1 > b2; b1 >>= 1, b2 <<= 1) { |
| 35 | uint32 b3 = b1 | b2; |
| 36 | if ((b & b3) != 0 && (b & b3) != b3) |
| 37 | b ^= b3; |
| 38 | } |
| 39 | return a ^ b; |
| 40 | } |
| 41 | |
| 42 | /* |
| 43 | * random_upto: generate a uniformly randomised number in the range |
| 44 | * 0,...,limit-1. (Precondition: limit > 0.) |
| 45 | * |
| 46 | * random_upto_biased: generate a number in the same range, but with |
| 47 | * the probability skewed towards the high end by means of taking the |
| 48 | * maximum of 8*bias+1 samples from the uniform distribution on the |
| 49 | * same range. (I don't know why bias is given in that curious way - |
| 50 | * historical reasons, I expect.) |
| 51 | * |
| 52 | * For speed, I separate the implementation of random_upto into the |
| 53 | * two stages of (a) generate a bitmask which reduces a 32-bit random |
| 54 | * number to within a factor of two of the right range, (b) repeatedly |
| 55 | * generate numbers in that range until one is small enough. Splitting |
| 56 | * it up like that means that random_upto_biased can do (a) only once |
| 57 | * even when it does (b) lots of times. |
| 58 | */ |
| 59 | |
| 60 | static uint32 random_upto_makemask(uint32 limit) { |
| 61 | uint32 mask = 0xFFFFFFFF; |
| 62 | int i; |
| 63 | for (i = 16; i > 0; i >>= 1) |
| 64 | if ((limit & (mask >> i)) == limit) |
| 65 | mask >>= i; |
| 66 | return mask; |
| 67 | } |
| 68 | |
| 69 | static uint32 random_upto_internal(uint32 limit, uint32 mask) { |
| 70 | uint32 ret; |
| 71 | do { |
| 72 | ret = random32() & mask; |
| 73 | } while (ret > limit); |
| 74 | return ret; |
| 75 | } |
| 76 | |
| 77 | uint32 random_upto(uint32 limit) { |
| 78 | uint32 mask = random_upto_makemask(limit); |
| 79 | return random_upto_internal(limit, mask); |
| 80 | } |
| 81 | |
| 82 | uint32 random_upto_biased(uint32 limit, int bias) { |
| 83 | uint32 mask = random_upto_makemask(limit); |
| 84 | |
| 85 | uint32 ret = random_upto_internal(limit, mask); |
| 86 | while (bias--) { |
| 87 | uint32 tmp; |
| 88 | tmp = random_upto_internal(limit, mask); if (tmp < ret) ret = tmp; |
| 89 | tmp = random_upto_internal(limit, mask); if (tmp < ret) ret = tmp; |
| 90 | tmp = random_upto_internal(limit, mask); if (tmp < ret) ret = tmp; |
| 91 | tmp = random_upto_internal(limit, mask); if (tmp < ret) ret = tmp; |
| 92 | tmp = random_upto_internal(limit, mask); if (tmp < ret) ret = tmp; |
| 93 | tmp = random_upto_internal(limit, mask); if (tmp < ret) ret = tmp; |
| 94 | tmp = random_upto_internal(limit, mask); if (tmp < ret) ret = tmp; |
| 95 | tmp = random_upto_internal(limit, mask); if (tmp < ret) ret = tmp; |
| 96 | } |
| 97 | |
| 98 | return ret; |
| 99 | } |