blob: acb629e6846cf3b94f665bca351d93098fb543a3 [file] [log] [blame]
Szabolcs Nagy86067a72017-08-11 15:35:12 +01001/*
Szabolcs Nagy1b945972018-05-14 14:46:40 +01002 * Single-precision log2 function.
Szabolcs Nagy86067a72017-08-11 15:35:12 +01003 *
Szabolcs Nagy11253b02018-11-12 11:10:57 +00004 * Copyright (c) 2017-2018, Arm Limited.
5 * SPDX-License-Identifier: MIT
Szabolcs Nagy86067a72017-08-11 15:35:12 +01006 */
7
8#include <math.h>
9#include <stdint.h>
10#include "math_config.h"
11
12/*
13LOG2F_TABLE_BITS = 4
14LOG2F_POLY_ORDER = 4
15
16ULP error: 0.752 (nearest rounding.)
17Relative error: 1.9 * 2^-26 (before rounding.)
18*/
19
20#define N (1 << LOG2F_TABLE_BITS)
21#define T __log2f_data.tab
22#define A __log2f_data.poly
23#define OFF 0x3f330000
24
25float
Szabolcs Nagy0d51c042018-04-25 13:26:22 +010026log2f (float x)
Szabolcs Nagy86067a72017-08-11 15:35:12 +010027{
28 /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
29 double_t z, r, r2, p, y, y0, invc, logc;
30 uint32_t ix, iz, top, tmp;
31 int k, i;
32
33 ix = asuint (x);
34#if WANT_ROUNDING
35 /* Fix sign of zero with downward rounding when x==1. */
Szabolcs Nagyb21378a2018-05-11 13:29:44 +010036 if (unlikely (ix == 0x3f800000))
Szabolcs Nagy86067a72017-08-11 15:35:12 +010037 return 0;
38#endif
Szabolcs Nagyb21378a2018-05-11 13:29:44 +010039 if (unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000))
Szabolcs Nagy86067a72017-08-11 15:35:12 +010040 {
41 /* x < 0x1p-126 or inf or nan. */
42 if (ix * 2 == 0)
43 return __math_divzerof (1);
44 if (ix == 0x7f800000) /* log2(inf) == inf. */
45 return x;
46 if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
47 return __math_invalidf (x);
48 /* x is subnormal, normalize it. */
49 ix = asuint (x * 0x1p23f);
50 ix -= 23 << 23;
51 }
52
53 /* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
54 The range is split into N subintervals.
55 The ith subinterval contains z and c is near its center. */
56 tmp = ix - OFF;
57 i = (tmp >> (23 - LOG2F_TABLE_BITS)) % N;
58 top = tmp & 0xff800000;
59 iz = ix - top;
60 k = (int32_t) tmp >> 23; /* arithmetic shift */
61 invc = T[i].invc;
62 logc = T[i].logc;
63 z = (double_t) asfloat (iz);
64
65 /* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
66 r = z * invc - 1;
67 y0 = logc + (double_t) k;
68
69 /* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */
70 r2 = r * r;
71 y = A[1] * r + A[2];
72 y = A[0] * r2 + y;
73 p = A[3] * r + y0;
74 y = y * r2 + p;
Szabolcs Nagy04884bd2018-12-07 14:58:51 +000075 return eval_as_float (y);
Szabolcs Nagy86067a72017-08-11 15:35:12 +010076}
Szabolcs Nagyb7d568d2018-06-06 12:26:56 +010077#if USE_GLIBC_ABI
78strong_alias (log2f, __log2f_finite)
79hidden_alias (log2f, __ieee754_log2f)
80#endif