blob: ee3120a3749bd40c757f189f846dadcbdc195931 [file] [log] [blame]
George Landerda55ef92015-11-19 12:05:06 +00001/*
Szabolcs Nagy1b945972018-05-14 14:46:40 +01002 * Single-precision log function.
George Landerda55ef92015-11-19 12:05:06 +00003 *
Szabolcs Nagy11253b02018-11-12 11:10:57 +00004 * Copyright (c) 2017-2018, Arm Limited.
5 * SPDX-License-Identifier: MIT
George Landerda55ef92015-11-19 12:05:06 +00006 */
7
George Landerda55ef92015-11-19 12:05:06 +00008#include <math.h>
Szabolcs Nagy86067a72017-08-11 15:35:12 +01009#include <stdint.h>
10#include "math_config.h"
George Landerda55ef92015-11-19 12:05:06 +000011
Szabolcs Nagy86067a72017-08-11 15:35:12 +010012/*
13LOGF_TABLE_BITS = 4
14LOGF_POLY_ORDER = 4
15
16ULP error: 0.818 (nearest rounding.)
17Relative error: 1.957 * 2^-26 (before rounding.)
18*/
19
20#define T __logf_data.tab
21#define A __logf_data.poly
22#define Ln2 __logf_data.ln2
23#define N (1 << LOGF_TABLE_BITS)
24#define OFF 0x3f330000
George Landerda55ef92015-11-19 12:05:06 +000025
26float
Szabolcs Nagy0d51c042018-04-25 13:26:22 +010027logf (float x)
George Landerda55ef92015-11-19 12:05:06 +000028{
Szabolcs Nagy86067a72017-08-11 15:35:12 +010029 /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
30 double_t z, r, r2, y, y0, invc, logc;
31 uint32_t ix, iz, tmp;
32 int k, i;
George Landerda55ef92015-11-19 12:05:06 +000033
Szabolcs Nagy86067a72017-08-11 15:35:12 +010034 ix = asuint (x);
35#if WANT_ROUNDING
36 /* Fix sign of zero with downward rounding when x==1. */
Szabolcs Nagyb21378a2018-05-11 13:29:44 +010037 if (unlikely (ix == 0x3f800000))
Szabolcs Nagy86067a72017-08-11 15:35:12 +010038 return 0;
39#endif
Szabolcs Nagyb21378a2018-05-11 13:29:44 +010040 if (unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000))
George Landerda55ef92015-11-19 12:05:06 +000041 {
Szabolcs Nagy86067a72017-08-11 15:35:12 +010042 /* x < 0x1p-126 or inf or nan. */
43 if (ix * 2 == 0)
44 return __math_divzerof (1);
45 if (ix == 0x7f800000) /* log(inf) == inf. */
46 return x;
47 if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
48 return __math_invalidf (x);
49 /* x is subnormal, normalize it. */
50 ix = asuint (x * 0x1p23f);
51 ix -= 23 << 23;
George Landerda55ef92015-11-19 12:05:06 +000052 }
53
Szabolcs Nagy86067a72017-08-11 15:35:12 +010054 /* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
55 The range is split into N subintervals.
56 The ith subinterval contains z and c is near its center. */
57 tmp = ix - OFF;
58 i = (tmp >> (23 - LOGF_TABLE_BITS)) % N;
59 k = (int32_t) tmp >> 23; /* arithmetic shift */
60 iz = ix - (tmp & 0x1ff << 23);
61 invc = T[i].invc;
62 logc = T[i].logc;
63 z = (double_t) asfloat (iz);
George Landerda55ef92015-11-19 12:05:06 +000064
Szabolcs Nagy86067a72017-08-11 15:35:12 +010065 /* log(x) = log1p(z/c-1) + log(c) + k*Ln2 */
66 r = z * invc - 1;
67 y0 = logc + (double_t) k * Ln2;
George Landerda55ef92015-11-19 12:05:06 +000068
Szabolcs Nagy86067a72017-08-11 15:35:12 +010069 /* Pipelined polynomial evaluation to approximate log1p(r). */
70 r2 = r * r;
71 y = A[1] * r + A[2];
72 y = A[0] * r2 + y;
73 y = y * r2 + (y0 + r);
Szabolcs Nagy04884bd2018-12-07 14:58:51 +000074 return eval_as_float (y);
George Landerda55ef92015-11-19 12:05:06 +000075}
Szabolcs Nagyb7d568d2018-06-06 12:26:56 +010076#if USE_GLIBC_ABI
77strong_alias (logf, __logf_finite)
78hidden_alias (logf, __ieee754_logf)
79#endif