Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Header for sinf, cosf and sincosf. |
| 3 | * |
| 4 | * Copyright (c) 2018, Arm Limited. |
Szabolcs Nagy | 11253b0 | 2018-11-12 11:10:57 +0000 | [diff] [blame] | 5 | * SPDX-License-Identifier: MIT |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 6 | */ |
| 7 | |
| 8 | #include <stdint.h> |
| 9 | #include <math.h> |
| 10 | #include "math_config.h" |
| 11 | |
Wilco Dijkstra | b2fc989 | 2018-08-08 15:03:29 +0100 | [diff] [blame] | 12 | /* 2PI * 2^-64. */ |
| 13 | static const double pi63 = 0x1.921FB54442D18p-62; |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 14 | /* PI / 4. */ |
| 15 | static const double pio4 = 0x1.921FB54442D18p-1; |
| 16 | |
Wilco Dijkstra | b2fc989 | 2018-08-08 15:03:29 +0100 | [diff] [blame] | 17 | /* The constants and polynomials for sine and cosine. */ |
Wilco Dijkstra | 3262ef2 | 2018-07-04 17:45:15 +0100 | [diff] [blame] | 18 | typedef struct |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 19 | { |
Wilco Dijkstra | b2fc989 | 2018-08-08 15:03:29 +0100 | [diff] [blame] | 20 | double sign[4]; /* Sign of sine in quadrants 0..3. */ |
| 21 | double hpi_inv; /* 2 / PI ( * 2^24 if !TOINT_INTRINSICS). */ |
| 22 | double hpi; /* PI / 2. */ |
| 23 | double c0, c1, c2, c3, c4; /* Cosine polynomial. */ |
| 24 | double s1, s2, s3; /* Sine polynomial. */ |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 25 | } sincos_t; |
| 26 | |
Wilco Dijkstra | b2fc989 | 2018-08-08 15:03:29 +0100 | [diff] [blame] | 27 | /* Polynomial data (the cosine polynomial is negated in the 2nd entry). */ |
Wilco Dijkstra | 3262ef2 | 2018-07-04 17:45:15 +0100 | [diff] [blame] | 28 | extern const sincos_t __sincosf_table[2] HIDDEN; |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 29 | |
Wilco Dijkstra | b2fc989 | 2018-08-08 15:03:29 +0100 | [diff] [blame] | 30 | /* Table with 4/PI to 192 bit precision. */ |
Wilco Dijkstra | 3262ef2 | 2018-07-04 17:45:15 +0100 | [diff] [blame] | 31 | extern const uint32_t __inv_pio4[] HIDDEN; |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 32 | |
Szabolcs Nagy | fce0997 | 2018-07-09 17:36:39 +0100 | [diff] [blame] | 33 | /* Top 12 bits of the float representation with the sign bit cleared. */ |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 34 | static inline uint32_t |
| 35 | abstop12 (float x) |
| 36 | { |
| 37 | return (asuint (x) >> 20) & 0x7ff; |
| 38 | } |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 39 | |
| 40 | /* Compute the sine and cosine of inputs X and X2 (X squared), using the |
| 41 | polynomial P and store the results in SINP and COSP. N is the quadrant, |
| 42 | if odd the cosine and sine polynomials are swapped. */ |
| 43 | static inline void |
Wilco Dijkstra | 3262ef2 | 2018-07-04 17:45:15 +0100 | [diff] [blame] | 44 | sincosf_poly (double x, double x2, const sincos_t *p, int n, float *sinp, |
| 45 | float *cosp) |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 46 | { |
| 47 | double x3, x4, x5, x6, s, c, c1, c2, s1; |
| 48 | |
| 49 | x4 = x2 * x2; |
| 50 | x3 = x2 * x; |
| 51 | c2 = p->c3 + x2 * p->c4; |
| 52 | s1 = p->s2 + x2 * p->s3; |
| 53 | |
| 54 | /* Swap sin/cos result based on quadrant. */ |
| 55 | float *tmp = (n & 1 ? cosp : sinp); |
| 56 | cosp = (n & 1 ? sinp : cosp); |
| 57 | sinp = tmp; |
| 58 | |
| 59 | c1 = p->c0 + x2 * p->c1; |
| 60 | x5 = x3 * x2; |
| 61 | x6 = x4 * x2; |
| 62 | |
| 63 | s = x + x3 * p->s1; |
| 64 | c = c1 + x4 * p->c2; |
| 65 | |
| 66 | *sinp = s + x5 * s1; |
| 67 | *cosp = c + x6 * c2; |
| 68 | } |
| 69 | |
| 70 | /* Return the sine of inputs X and X2 (X squared) using the polynomial P. |
| 71 | N is the quadrant, and if odd the cosine polynomial is used. */ |
| 72 | static inline float |
Wilco Dijkstra | 3262ef2 | 2018-07-04 17:45:15 +0100 | [diff] [blame] | 73 | sinf_poly (double x, double x2, const sincos_t *p, int n) |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 74 | { |
| 75 | double x3, x4, x6, x7, s, c, c1, c2, s1; |
| 76 | |
| 77 | if ((n & 1) == 0) |
| 78 | { |
| 79 | x3 = x * x2; |
| 80 | s1 = p->s2 + x2 * p->s3; |
| 81 | |
| 82 | x7 = x3 * x2; |
| 83 | s = x + x3 * p->s1; |
| 84 | |
| 85 | return s + x7 * s1; |
| 86 | } |
| 87 | else |
| 88 | { |
| 89 | x4 = x2 * x2; |
| 90 | c2 = p->c3 + x2 * p->c4; |
| 91 | c1 = p->c0 + x2 * p->c1; |
| 92 | |
| 93 | x6 = x4 * x2; |
| 94 | c = c1 + x4 * p->c2; |
| 95 | |
| 96 | return c + x6 * c2; |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | /* Fast range reduction using single multiply-subtract. Return the modulo of |
| 101 | X as a value between -PI/4 and PI/4 and store the quadrant in NP. |
| 102 | The values for PI/2 and 2/PI are accessed via P. Since PI/2 as a double |
| 103 | is accurate to 55 bits and the worst-case cancellation happens at 6 * PI/4, |
Wilco Dijkstra | b2fc989 | 2018-08-08 15:03:29 +0100 | [diff] [blame] | 104 | the result is accurate for |X| <= 120.0. */ |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 105 | static inline double |
Wilco Dijkstra | 3262ef2 | 2018-07-04 17:45:15 +0100 | [diff] [blame] | 106 | reduce_fast (double x, const sincos_t *p, int *np) |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 107 | { |
| 108 | double r; |
| 109 | #if TOINT_INTRINSICS |
Wilco Dijkstra | b2fc989 | 2018-08-08 15:03:29 +0100 | [diff] [blame] | 110 | /* Use fast round and lround instructions when available. */ |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 111 | r = x * p->hpi_inv; |
| 112 | *np = converttoint (r); |
| 113 | return x - roundtoint (r) * p->hpi; |
| 114 | #else |
Wilco Dijkstra | b2fc989 | 2018-08-08 15:03:29 +0100 | [diff] [blame] | 115 | /* Use scaled float to int conversion with explicit rounding. |
| 116 | hpi_inv is prescaled by 2^24 so the quadrant ends up in bits 24..31. |
| 117 | This avoids inaccuracies introduced by truncating negative values. */ |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 118 | r = x * p->hpi_inv; |
Wilco Dijkstra | f3af42d | 2018-06-20 15:18:38 +0100 | [diff] [blame] | 119 | int n = ((int32_t)r + 0x800000) >> 24; |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 120 | *np = n; |
| 121 | return x - n * p->hpi; |
| 122 | #endif |
| 123 | } |
| 124 | |
Wilco Dijkstra | b2fc989 | 2018-08-08 15:03:29 +0100 | [diff] [blame] | 125 | /* Reduce the range of XI to a multiple of PI/2 using fast integer arithmetic. |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 126 | XI is a reinterpreted float and must be >= 2.0f (the sign bit is ignored). |
| 127 | Return the modulo between -PI/4 and PI/4 and store the quadrant in NP. |
| 128 | Reduction uses a table of 4/PI with 192 bits of precision. A 32x96->128 bit |
| 129 | multiply computes the exact 2.62-bit fixed-point modulo. Since the result |
| 130 | can have at most 29 leading zeros after the binary point, the double |
| 131 | precision result is accurate to 33 bits. */ |
| 132 | static inline double |
| 133 | reduce_large (uint32_t xi, int *np) |
| 134 | { |
Wilco Dijkstra | 3262ef2 | 2018-07-04 17:45:15 +0100 | [diff] [blame] | 135 | const uint32_t *arr = &__inv_pio4[(xi >> 26) & 15]; |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 136 | int shift = (xi >> 23) & 7; |
| 137 | uint64_t n, res0, res1, res2; |
| 138 | |
| 139 | xi = (xi & 0xffffff) | 0x800000; |
| 140 | xi <<= shift; |
| 141 | |
| 142 | res0 = xi * arr[0]; |
| 143 | res1 = (uint64_t)xi * arr[4]; |
| 144 | res2 = (uint64_t)xi * arr[8]; |
| 145 | res0 = (res2 >> 32) | (res0 << 32); |
| 146 | res0 += res1; |
| 147 | |
| 148 | n = (res0 + (1ULL << 61)) >> 62; |
| 149 | res0 -= n << 62; |
| 150 | double x = (int64_t)res0; |
| 151 | *np = n; |
Wilco Dijkstra | b2fc989 | 2018-08-08 15:03:29 +0100 | [diff] [blame] | 152 | return x * pi63; |
Wilco Dijkstra | 269dc16 | 2018-05-16 15:39:22 +0100 | [diff] [blame] | 153 | } |