Szabolcs Nagy | d1db92e | 2019-07-18 10:14:45 +0100 | [diff] [blame] | 1 | // polynomial for approximating 2^x |
| 2 | // |
| 3 | // Copyright (c) 2019, Arm Limited. |
| 4 | // SPDX-License-Identifier: MIT |
| 5 | |
| 6 | // exp2f parameters |
| 7 | deg = 3; // poly degree |
| 8 | N = 32; // table entries |
| 9 | b = 1/(2*N); // interval |
| 10 | a = -b; |
| 11 | |
| 12 | //// exp2 parameters |
| 13 | //deg = 5; // poly degree |
| 14 | //N = 128; // table entries |
| 15 | //b = 1/(2*N); // interval |
| 16 | //a = -b; |
| 17 | |
| 18 | // find polynomial with minimal relative error |
| 19 | |
| 20 | f = 2^x; |
| 21 | |
| 22 | // return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)| |
| 23 | approx = proc(poly,d) { |
| 24 | return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10); |
| 25 | }; |
| 26 | // return p that minimizes |f(x) - poly(x) - x^d*p(x)| |
| 27 | approx_abs = proc(poly,d) { |
| 28 | return remez(f(x) - poly(x), deg-d, [a;b], x^d, 1e-10); |
| 29 | }; |
| 30 | |
| 31 | // first coeff is fixed, iteratively find optimal double prec coeffs |
| 32 | poly = 1; |
| 33 | for i from 1 to deg do { |
| 34 | p = roundcoefficients(approx(poly,i), [|D ...|]); |
| 35 | // p = roundcoefficients(approx_abs(poly,i), [|D ...|]); |
| 36 | poly = poly + x^i*coeff(p,0); |
| 37 | }; |
| 38 | |
| 39 | display = hexadecimal; |
| 40 | print("rel error:", accurateinfnorm(1-poly(x)/2^x, [a;b], 30)); |
| 41 | print("abs error:", accurateinfnorm(2^x-poly(x), [a;b], 30)); |
| 42 | print("in [",a,b,"]"); |
| 43 | // double interval error for non-nearest rounding: |
| 44 | print("rel2 error:", accurateinfnorm(1-poly(x)/2^x, [2*a;2*b], 30)); |
| 45 | print("abs2 error:", accurateinfnorm(2^x-poly(x), [2*a;2*b], 30)); |
| 46 | print("in [",2*a,2*b,"]"); |
| 47 | print("coeffs:"); |
| 48 | for i from 0 to deg do coeff(poly,i); |