Szabolcs Nagy | d1db92e | 2019-07-18 10:14:45 +0100 | [diff] [blame] | 1 | // polynomial for approximating log2(1+x) |
| 2 | // |
| 3 | // Copyright (c) 2019, Arm Limited. |
| 4 | // SPDX-License-Identifier: MIT |
| 5 | |
| 6 | deg = 11; // poly degree |
| 7 | // |log2(1+x)| > 0x1p-4 outside the interval |
| 8 | a = -0x1.5b51p-5; |
| 9 | b = 0x1.6ab2p-5; |
| 10 | |
| 11 | ln2 = evaluate(log(2),0); |
| 12 | invln2hi = double(1/ln2 + 0x1p21) - 0x1p21; // round away last 21 bits |
| 13 | invln2lo = double(1/ln2 - invln2hi); |
| 14 | |
| 15 | // find log2(1+x)/x polynomial with minimal relative error |
| 16 | // (minimal relative error polynomial for log2(1+x) is the same * x) |
| 17 | deg = deg-1; // because of /x |
| 18 | |
| 19 | // f = log(1+x)/x; using taylor series |
| 20 | f = 0; |
| 21 | for i from 0 to 60 do { f = f + (-x)^i/(i+1); }; |
| 22 | f = f/ln2; |
| 23 | |
| 24 | // return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)| |
| 25 | approx = proc(poly,d) { |
| 26 | return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10); |
| 27 | }; |
| 28 | |
| 29 | // first coeff is fixed, iteratively find optimal double prec coeffs |
| 30 | poly = invln2hi + invln2lo; |
| 31 | for i from 1 to deg do { |
| 32 | p = roundcoefficients(approx(poly,i), [|D ...|]); |
| 33 | poly = poly + x^i*coeff(p,0); |
| 34 | }; |
| 35 | |
| 36 | display = hexadecimal; |
| 37 | print("invln2hi:", invln2hi); |
| 38 | print("invln2lo:", invln2lo); |
| 39 | print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30)); |
| 40 | print("in [",a,b,"]"); |
| 41 | print("coeffs:"); |
| 42 | for i from 0 to deg do coeff(poly,i); |