blob: e114ddecac0998c7f4252f56cf8043cc6bc52386 [file] [log] [blame]
Jon West96501cc2021-04-06 13:09:18 -04001// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/* Copyright(c) 2018-2019 Realtek Corporation
3 */
4
5#include <linux/bcd.h>
6
7#include "main.h"
8#include "reg.h"
9#include "fw.h"
10#include "phy.h"
11#include "debug.h"
12
13struct phy_cfg_pair {
14 u32 addr;
15 u32 data;
16};
17
18union phy_table_tile {
19 struct rtw_phy_cond cond;
20 struct phy_cfg_pair cfg;
21};
22
23static const u32 db_invert_table[12][8] = {
24 {10, 13, 16, 20,
25 25, 32, 40, 50},
26 {64, 80, 101, 128,
27 160, 201, 256, 318},
28 {401, 505, 635, 800,
29 1007, 1268, 1596, 2010},
30 {316, 398, 501, 631,
31 794, 1000, 1259, 1585},
32 {1995, 2512, 3162, 3981,
33 5012, 6310, 7943, 10000},
34 {12589, 15849, 19953, 25119,
35 31623, 39811, 50119, 63098},
36 {79433, 100000, 125893, 158489,
37 199526, 251189, 316228, 398107},
38 {501187, 630957, 794328, 1000000,
39 1258925, 1584893, 1995262, 2511886},
40 {3162278, 3981072, 5011872, 6309573,
41 7943282, 1000000, 12589254, 15848932},
42 {19952623, 25118864, 31622777, 39810717,
43 50118723, 63095734, 79432823, 100000000},
44 {125892541, 158489319, 199526232, 251188643,
45 316227766, 398107171, 501187234, 630957345},
46 {794328235, 1000000000, 1258925412, 1584893192,
47 1995262315, 2511886432U, 3162277660U, 3981071706U}
48};
49
50u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
51u8 rtw_ofdm_rates[] = {
52 DESC_RATE6M, DESC_RATE9M, DESC_RATE12M,
53 DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
54 DESC_RATE48M, DESC_RATE54M
55};
56u8 rtw_ht_1s_rates[] = {
57 DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
58 DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
59 DESC_RATEMCS6, DESC_RATEMCS7
60};
61u8 rtw_ht_2s_rates[] = {
62 DESC_RATEMCS8, DESC_RATEMCS9, DESC_RATEMCS10,
63 DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
64 DESC_RATEMCS14, DESC_RATEMCS15
65};
66u8 rtw_vht_1s_rates[] = {
67 DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
68 DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
69 DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
70 DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
71 DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
72};
73u8 rtw_vht_2s_rates[] = {
74 DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
75 DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
76 DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
77 DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
78 DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
79};
80u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
81 rtw_cck_rates, rtw_ofdm_rates,
82 rtw_ht_1s_rates, rtw_ht_2s_rates,
83 rtw_vht_1s_rates, rtw_vht_2s_rates
84};
85EXPORT_SYMBOL(rtw_rate_section);
86
87u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
88 ARRAY_SIZE(rtw_cck_rates),
89 ARRAY_SIZE(rtw_ofdm_rates),
90 ARRAY_SIZE(rtw_ht_1s_rates),
91 ARRAY_SIZE(rtw_ht_2s_rates),
92 ARRAY_SIZE(rtw_vht_1s_rates),
93 ARRAY_SIZE(rtw_vht_2s_rates)
94};
95EXPORT_SYMBOL(rtw_rate_size);
96
97static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
98static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
99static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
100static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
101static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
102static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
103
104enum rtw_phy_band_type {
105 PHY_BAND_2G = 0,
106 PHY_BAND_5G = 1,
107};
108
109static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
110{
111 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
112 u8 i, j;
113
114 for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
115 for (j = 0; j < RTW_RF_PATH_MAX; j++)
116 dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
117 }
118
119 dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
120}
121
122void rtw_phy_init(struct rtw_dev *rtwdev)
123{
124 struct rtw_chip_info *chip = rtwdev->chip;
125 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
126 u32 addr, mask;
127
128 dm_info->fa_history[3] = 0;
129 dm_info->fa_history[2] = 0;
130 dm_info->fa_history[1] = 0;
131 dm_info->fa_history[0] = 0;
132 dm_info->igi_bitmap = 0;
133 dm_info->igi_history[3] = 0;
134 dm_info->igi_history[2] = 0;
135 dm_info->igi_history[1] = 0;
136
137 addr = chip->dig[0].addr;
138 mask = chip->dig[0].mask;
139 dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
140 rtw_phy_cck_pd_init(rtwdev);
141
142 dm_info->iqk.done = false;
143}
144EXPORT_SYMBOL(rtw_phy_init);
145
146void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
147{
148 struct rtw_chip_info *chip = rtwdev->chip;
149 struct rtw_hal *hal = &rtwdev->hal;
150 u32 addr, mask;
151 u8 path;
152
153 if (chip->dig_cck) {
154 const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
155 rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
156 }
157
158 for (path = 0; path < hal->rf_path_num; path++) {
159 addr = chip->dig[path].addr;
160 mask = chip->dig[path].mask;
161 rtw_write32_mask(rtwdev, addr, mask, igi);
162 }
163}
164
165static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
166{
167 struct rtw_chip_info *chip = rtwdev->chip;
168
169 chip->ops->false_alarm_statistics(rtwdev);
170}
171
172#define RA_FLOOR_TABLE_SIZE 7
173#define RA_FLOOR_UP_GAP 3
174
175static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
176{
177 u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
178 u8 new_level = 0;
179 int i;
180
181 for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
182 if (i >= old_level)
183 table[i] += RA_FLOOR_UP_GAP;
184
185 for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
186 if (rssi < table[i]) {
187 new_level = i;
188 break;
189 }
190 }
191
192 return new_level;
193}
194
195struct rtw_phy_stat_iter_data {
196 struct rtw_dev *rtwdev;
197 u8 min_rssi;
198};
199
200static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
201{
202 struct rtw_phy_stat_iter_data *iter_data = data;
203 struct rtw_dev *rtwdev = iter_data->rtwdev;
204 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
205 u8 rssi;
206
207 rssi = ewma_rssi_read(&si->avg_rssi);
208 si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
209
210 rtw_fw_send_rssi_info(rtwdev, si);
211
212 iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
213}
214
215static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
216{
217 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
218 struct rtw_phy_stat_iter_data data = {};
219
220 data.rtwdev = rtwdev;
221 data.min_rssi = U8_MAX;
222 rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
223
224 dm_info->pre_min_rssi = dm_info->min_rssi;
225 dm_info->min_rssi = data.min_rssi;
226}
227
228static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
229{
230 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
231
232 dm_info->last_pkt_count = dm_info->cur_pkt_count;
233 memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
234}
235
236static void rtw_phy_statistics(struct rtw_dev *rtwdev)
237{
238 rtw_phy_stat_rssi(rtwdev);
239 rtw_phy_stat_false_alarm(rtwdev);
240 rtw_phy_stat_rate_cnt(rtwdev);
241}
242
243#define DIG_PERF_FA_TH_LOW 250
244#define DIG_PERF_FA_TH_HIGH 500
245#define DIG_PERF_FA_TH_EXTRA_HIGH 750
246#define DIG_PERF_MAX 0x5a
247#define DIG_PERF_MID 0x40
248#define DIG_CVRG_FA_TH_LOW 2000
249#define DIG_CVRG_FA_TH_HIGH 4000
250#define DIG_CVRG_FA_TH_EXTRA_HIGH 5000
251#define DIG_CVRG_MAX 0x2a
252#define DIG_CVRG_MID 0x26
253#define DIG_CVRG_MIN 0x1c
254#define DIG_RSSI_GAIN_OFFSET 15
255
256static bool
257rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
258{
259 u16 fa_lo = DIG_PERF_FA_TH_LOW;
260 u16 fa_hi = DIG_PERF_FA_TH_HIGH;
261 u16 *fa_history;
262 u8 *igi_history;
263 u8 damping_rssi;
264 u8 min_rssi;
265 u8 diff;
266 u8 igi_bitmap;
267 bool damping = false;
268
269 min_rssi = dm_info->min_rssi;
270 if (dm_info->damping) {
271 damping_rssi = dm_info->damping_rssi;
272 diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
273 damping_rssi - min_rssi;
274 if (diff > 3 || dm_info->damping_cnt++ > 20) {
275 dm_info->damping = false;
276 return false;
277 }
278
279 return true;
280 }
281
282 igi_history = dm_info->igi_history;
283 fa_history = dm_info->fa_history;
284 igi_bitmap = dm_info->igi_bitmap & 0xf;
285 switch (igi_bitmap) {
286 case 5:
287 /* down -> up -> down -> up */
288 if (igi_history[0] > igi_history[1] &&
289 igi_history[2] > igi_history[3] &&
290 igi_history[0] - igi_history[1] >= 2 &&
291 igi_history[2] - igi_history[3] >= 2 &&
292 fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
293 fa_history[2] > fa_hi && fa_history[3] < fa_lo)
294 damping = true;
295 break;
296 case 9:
297 /* up -> down -> down -> up */
298 if (igi_history[0] > igi_history[1] &&
299 igi_history[3] > igi_history[2] &&
300 igi_history[0] - igi_history[1] >= 4 &&
301 igi_history[3] - igi_history[2] >= 2 &&
302 fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
303 fa_history[2] < fa_lo && fa_history[3] > fa_hi)
304 damping = true;
305 break;
306 default:
307 return false;
308 }
309
310 if (damping) {
311 dm_info->damping = true;
312 dm_info->damping_cnt = 0;
313 dm_info->damping_rssi = min_rssi;
314 }
315
316 return damping;
317}
318
319static void rtw_phy_dig_get_boundary(struct rtw_dm_info *dm_info,
320 u8 *upper, u8 *lower, bool linked)
321{
322 u8 dig_max, dig_min, dig_mid;
323 u8 min_rssi;
324
325 if (linked) {
326 dig_max = DIG_PERF_MAX;
327 dig_mid = DIG_PERF_MID;
328 /* 22B=0x1c, 22C=0x20 */
329 dig_min = 0x1c;
330 min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
331 } else {
332 dig_max = DIG_CVRG_MAX;
333 dig_mid = DIG_CVRG_MID;
334 dig_min = DIG_CVRG_MIN;
335 min_rssi = dig_min;
336 }
337
338 /* DIG MAX should be bounded by minimum RSSI with offset +15 */
339 dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
340
341 *lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
342 *upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
343}
344
345static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
346 u16 *fa_th, u8 *step, bool linked)
347{
348 u8 min_rssi, pre_min_rssi;
349
350 min_rssi = dm_info->min_rssi;
351 pre_min_rssi = dm_info->pre_min_rssi;
352 step[0] = 4;
353 step[1] = 3;
354 step[2] = 2;
355
356 if (linked) {
357 fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
358 fa_th[1] = DIG_PERF_FA_TH_HIGH;
359 fa_th[2] = DIG_PERF_FA_TH_LOW;
360 if (pre_min_rssi > min_rssi) {
361 step[0] = 6;
362 step[1] = 4;
363 step[2] = 2;
364 }
365 } else {
366 fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
367 fa_th[1] = DIG_CVRG_FA_TH_HIGH;
368 fa_th[2] = DIG_CVRG_FA_TH_LOW;
369 }
370}
371
372static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
373{
374 u8 *igi_history;
375 u16 *fa_history;
376 u8 igi_bitmap;
377 bool up;
378
379 igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
380 igi_history = dm_info->igi_history;
381 fa_history = dm_info->fa_history;
382
383 up = igi > igi_history[0];
384 igi_bitmap |= up;
385
386 igi_history[3] = igi_history[2];
387 igi_history[2] = igi_history[1];
388 igi_history[1] = igi_history[0];
389 igi_history[0] = igi;
390
391 fa_history[3] = fa_history[2];
392 fa_history[2] = fa_history[1];
393 fa_history[1] = fa_history[0];
394 fa_history[0] = fa;
395
396 dm_info->igi_bitmap = igi_bitmap;
397}
398
399static void rtw_phy_dig(struct rtw_dev *rtwdev)
400{
401 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
402 u8 upper_bound, lower_bound;
403 u8 pre_igi, cur_igi;
404 u16 fa_th[3], fa_cnt;
405 u8 level;
406 u8 step[3];
407 bool linked;
408
409 if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
410 return;
411
412 if (rtw_phy_dig_check_damping(dm_info))
413 return;
414
415 linked = !!rtwdev->sta_cnt;
416
417 fa_cnt = dm_info->total_fa_cnt;
418 pre_igi = dm_info->igi_history[0];
419
420 rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
421
422 /* test the false alarm count from the highest threshold level first,
423 * and increase it by corresponding step size
424 *
425 * note that the step size is offset by -2, compensate it afterall
426 */
427 cur_igi = pre_igi;
428 for (level = 0; level < 3; level++) {
429 if (fa_cnt > fa_th[level]) {
430 cur_igi += step[level];
431 break;
432 }
433 }
434 cur_igi -= 2;
435
436 /* calculate the upper/lower bound by the minimum rssi we have among
437 * the peers connected with us, meanwhile make sure the igi value does
438 * not beyond the hardware limitation
439 */
440 rtw_phy_dig_get_boundary(dm_info, &upper_bound, &lower_bound, linked);
441 cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
442
443 /* record current igi value and false alarm statistics for further
444 * damping checks, and record the trend of igi values
445 */
446 rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
447
448 if (cur_igi != pre_igi)
449 rtw_phy_dig_write(rtwdev, cur_igi);
450}
451
452static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
453{
454 struct rtw_dev *rtwdev = data;
455 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
456
457 rtw_update_sta_info(rtwdev, si);
458}
459
460static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
461{
462 if (rtwdev->watch_dog_cnt & 0x3)
463 return;
464
465 rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
466}
467
468static u32 rtw_phy_get_rrsr_mask(struct rtw_dev *rtwdev, u8 rate_idx)
469{
470 u8 rate_order;
471
472 rate_order = rate_idx;
473
474 if (rate_idx >= DESC_RATEVHT4SS_MCS0)
475 rate_order -= DESC_RATEVHT4SS_MCS0;
476 else if (rate_idx >= DESC_RATEVHT3SS_MCS0)
477 rate_order -= DESC_RATEVHT3SS_MCS0;
478 else if (rate_idx >= DESC_RATEVHT2SS_MCS0)
479 rate_order -= DESC_RATEVHT2SS_MCS0;
480 else if (rate_idx >= DESC_RATEVHT1SS_MCS0)
481 rate_order -= DESC_RATEVHT1SS_MCS0;
482 else if (rate_idx >= DESC_RATEMCS24)
483 rate_order -= DESC_RATEMCS24;
484 else if (rate_idx >= DESC_RATEMCS16)
485 rate_order -= DESC_RATEMCS16;
486 else if (rate_idx >= DESC_RATEMCS8)
487 rate_order -= DESC_RATEMCS8;
488 else if (rate_idx >= DESC_RATEMCS0)
489 rate_order -= DESC_RATEMCS0;
490 else if (rate_idx >= DESC_RATE6M)
491 rate_order -= DESC_RATE6M;
492 else
493 rate_order -= DESC_RATE1M;
494
495 if (rate_idx >= DESC_RATEMCS0 || rate_order == 0)
496 rate_order++;
497
498 return GENMASK(rate_order + RRSR_RATE_ORDER_CCK_LEN - 1, 0);
499}
500
501static void rtw_phy_rrsr_mask_min_iter(void *data, struct ieee80211_sta *sta)
502{
503 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
504 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
505 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
506 u32 mask = 0;
507
508 mask = rtw_phy_get_rrsr_mask(rtwdev, si->ra_report.desc_rate);
509 if (mask < dm_info->rrsr_mask_min)
510 dm_info->rrsr_mask_min = mask;
511}
512
513static void rtw_phy_rrsr_update(struct rtw_dev *rtwdev)
514{
515 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
516
517 dm_info->rrsr_mask_min = RRSR_RATE_ORDER_MAX;
518 rtw_iterate_stas_atomic(rtwdev, rtw_phy_rrsr_mask_min_iter, rtwdev);
519 rtw_write32(rtwdev, REG_RRSR, dm_info->rrsr_val_init & dm_info->rrsr_mask_min);
520}
521
522static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
523{
524 struct rtw_chip_info *chip = rtwdev->chip;
525
526 if (chip->ops->dpk_track)
527 chip->ops->dpk_track(rtwdev);
528}
529
530#define CCK_PD_FA_LV1_MIN 1000
531#define CCK_PD_FA_LV0_MAX 500
532
533static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
534{
535 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
536 u32 cck_fa_avg = dm_info->cck_fa_avg;
537
538 if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
539 return CCK_PD_LV1;
540
541 if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
542 return CCK_PD_LV0;
543
544 return CCK_PD_LV_MAX;
545}
546
547#define CCK_PD_IGI_LV4_VAL 0x38
548#define CCK_PD_IGI_LV3_VAL 0x2a
549#define CCK_PD_IGI_LV2_VAL 0x24
550#define CCK_PD_RSSI_LV4_VAL 32
551#define CCK_PD_RSSI_LV3_VAL 32
552#define CCK_PD_RSSI_LV2_VAL 24
553
554static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
555{
556 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
557 u8 igi = dm_info->igi_history[0];
558 u8 rssi = dm_info->min_rssi;
559 u32 cck_fa_avg = dm_info->cck_fa_avg;
560
561 if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
562 return CCK_PD_LV4;
563 if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
564 return CCK_PD_LV3;
565 if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
566 return CCK_PD_LV2;
567 if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
568 return CCK_PD_LV1;
569 if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
570 return CCK_PD_LV0;
571
572 return CCK_PD_LV_MAX;
573}
574
575static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
576{
577 if (!rtw_is_assoc(rtwdev))
578 return rtw_phy_cck_pd_lv_unlink(rtwdev);
579 else
580 return rtw_phy_cck_pd_lv_link(rtwdev);
581}
582
583static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
584{
585 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
586 struct rtw_chip_info *chip = rtwdev->chip;
587 u32 cck_fa = dm_info->cck_fa_cnt;
588 u8 level;
589
590 if (rtwdev->hal.current_band_type != RTW_BAND_2G)
591 return;
592
593 if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
594 dm_info->cck_fa_avg = cck_fa;
595 else
596 dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
597
598 rtw_dbg(rtwdev, RTW_DBG_PHY, "IGI=0x%x, rssi_min=%d, cck_fa=%d\n",
599 dm_info->igi_history[0], dm_info->min_rssi,
600 dm_info->fa_history[0]);
601 rtw_dbg(rtwdev, RTW_DBG_PHY, "cck_fa_avg=%d, cck_pd_default=%d\n",
602 dm_info->cck_fa_avg, dm_info->cck_pd_default);
603
604 level = rtw_phy_cck_pd_lv(rtwdev);
605
606 if (level >= CCK_PD_LV_MAX)
607 return;
608
609 if (chip->ops->cck_pd_set)
610 chip->ops->cck_pd_set(rtwdev, level);
611}
612
613static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
614{
615 rtwdev->chip->ops->pwr_track(rtwdev);
616}
617
618static void rtw_phy_ra_track(struct rtw_dev *rtwdev)
619{
620 rtw_phy_ra_info_update(rtwdev);
621 rtw_phy_rrsr_update(rtwdev);
622}
623
624void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
625{
626 /* for further calculation */
627 rtw_phy_statistics(rtwdev);
628 rtw_phy_dig(rtwdev);
629 rtw_phy_cck_pd(rtwdev);
630 rtw_phy_ra_track(rtwdev);
631 rtw_phy_dpk_track(rtwdev);
632 rtw_phy_pwr_track(rtwdev);
633}
634
635#define FRAC_BITS 3
636
637static u8 rtw_phy_power_2_db(s8 power)
638{
639 if (power <= -100 || power >= 20)
640 return 0;
641 else if (power >= 0)
642 return 100;
643 else
644 return 100 + power;
645}
646
647static u64 rtw_phy_db_2_linear(u8 power_db)
648{
649 u8 i, j;
650 u64 linear;
651
652 if (power_db > 96)
653 power_db = 96;
654 else if (power_db < 1)
655 return 1;
656
657 /* 1dB ~ 96dB */
658 i = (power_db - 1) >> 3;
659 j = (power_db - 1) - (i << 3);
660
661 linear = db_invert_table[i][j];
662 linear = i > 2 ? linear << FRAC_BITS : linear;
663
664 return linear;
665}
666
667static u8 rtw_phy_linear_2_db(u64 linear)
668{
669 u8 i;
670 u8 j;
671 u32 dB;
672
673 if (linear >= db_invert_table[11][7])
674 return 96; /* maximum 96 dB */
675
676 for (i = 0; i < 12; i++) {
677 if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
678 break;
679 else if (i > 2 && linear <= db_invert_table[i][7])
680 break;
681 }
682
683 for (j = 0; j < 8; j++) {
684 if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
685 break;
686 else if (i > 2 && linear <= db_invert_table[i][j])
687 break;
688 }
689
690 if (j == 0 && i == 0)
691 goto end;
692
693 if (j == 0) {
694 if (i != 3) {
695 if (db_invert_table[i][0] - linear >
696 linear - db_invert_table[i - 1][7]) {
697 i = i - 1;
698 j = 7;
699 }
700 } else {
701 if (db_invert_table[3][0] - linear >
702 linear - db_invert_table[2][7]) {
703 i = 2;
704 j = 7;
705 }
706 }
707 } else {
708 if (db_invert_table[i][j] - linear >
709 linear - db_invert_table[i][j - 1]) {
710 j = j - 1;
711 }
712 }
713end:
714 dB = (i << 3) + j + 1;
715
716 return dB;
717}
718
719u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
720{
721 s8 power;
722 u8 power_db;
723 u64 linear;
724 u64 sum = 0;
725 u8 path;
726
727 for (path = 0; path < path_num; path++) {
728 power = rf_power[path];
729 power_db = rtw_phy_power_2_db(power);
730 linear = rtw_phy_db_2_linear(power_db);
731 sum += linear;
732 }
733
734 sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
735 switch (path_num) {
736 case 2:
737 sum >>= 1;
738 break;
739 case 3:
740 sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
741 break;
742 case 4:
743 sum >>= 2;
744 break;
745 default:
746 break;
747 }
748
749 return rtw_phy_linear_2_db(sum);
750}
751EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
752
753u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
754 u32 addr, u32 mask)
755{
756 struct rtw_hal *hal = &rtwdev->hal;
757 struct rtw_chip_info *chip = rtwdev->chip;
758 const u32 *base_addr = chip->rf_base_addr;
759 u32 val, direct_addr;
760
761 if (rf_path >= hal->rf_phy_num) {
762 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
763 return INV_RF_DATA;
764 }
765
766 addr &= 0xff;
767 direct_addr = base_addr[rf_path] + (addr << 2);
768 mask &= RFREG_MASK;
769
770 val = rtw_read32_mask(rtwdev, direct_addr, mask);
771
772 return val;
773}
774EXPORT_SYMBOL(rtw_phy_read_rf);
775
776u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
777 u32 addr, u32 mask)
778{
779 struct rtw_hal *hal = &rtwdev->hal;
780 struct rtw_chip_info *chip = rtwdev->chip;
781 const struct rtw_rf_sipi_addr *rf_sipi_addr;
782 const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
783 u32 val32;
784 u32 en_pi;
785 u32 r_addr;
786 u32 shift;
787
788 if (rf_path >= hal->rf_phy_num) {
789 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
790 return INV_RF_DATA;
791 }
792
793 if (!chip->rf_sipi_read_addr) {
794 rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
795 return INV_RF_DATA;
796 }
797
798 rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
799 rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
800
801 addr &= 0xff;
802
803 val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
804 val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
805 rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
806
807 /* toggle read edge of path A */
808 val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
809 rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
810 rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
811
812 udelay(120);
813
814 en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
815 r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
816
817 val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
818
819 shift = __ffs(mask);
820
821 return (val32 & mask) >> shift;
822}
823EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
824
825bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
826 u32 addr, u32 mask, u32 data)
827{
828 struct rtw_hal *hal = &rtwdev->hal;
829 struct rtw_chip_info *chip = rtwdev->chip;
830 u32 *sipi_addr = chip->rf_sipi_addr;
831 u32 data_and_addr;
832 u32 old_data = 0;
833 u32 shift;
834
835 if (rf_path >= hal->rf_phy_num) {
836 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
837 return false;
838 }
839
840 addr &= 0xff;
841 mask &= RFREG_MASK;
842
843 if (mask != RFREG_MASK) {
844 old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
845
846 if (old_data == INV_RF_DATA) {
847 rtw_err(rtwdev, "Write fail, rf is disabled\n");
848 return false;
849 }
850
851 shift = __ffs(mask);
852 data = ((old_data) & (~mask)) | (data << shift);
853 }
854
855 data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
856
857 rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
858
859 udelay(13);
860
861 return true;
862}
863EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
864
865bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
866 u32 addr, u32 mask, u32 data)
867{
868 struct rtw_hal *hal = &rtwdev->hal;
869 struct rtw_chip_info *chip = rtwdev->chip;
870 const u32 *base_addr = chip->rf_base_addr;
871 u32 direct_addr;
872
873 if (rf_path >= hal->rf_phy_num) {
874 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
875 return false;
876 }
877
878 addr &= 0xff;
879 direct_addr = base_addr[rf_path] + (addr << 2);
880 mask &= RFREG_MASK;
881
882 rtw_write32_mask(rtwdev, direct_addr, mask, data);
883
884 udelay(1);
885
886 return true;
887}
888
889bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
890 u32 addr, u32 mask, u32 data)
891{
892 if (addr != 0x00)
893 return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
894
895 return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
896}
897EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
898
899void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
900{
901 struct rtw_hal *hal = &rtwdev->hal;
902 struct rtw_efuse *efuse = &rtwdev->efuse;
903 struct rtw_phy_cond cond = {0};
904
905 cond.cut = hal->cut_version ? hal->cut_version : 15;
906 cond.pkg = pkg ? pkg : 15;
907 cond.plat = 0x04;
908 cond.rfe = efuse->rfe_option;
909
910 switch (rtw_hci_type(rtwdev)) {
911 case RTW_HCI_TYPE_USB:
912 cond.intf = INTF_USB;
913 break;
914 case RTW_HCI_TYPE_SDIO:
915 cond.intf = INTF_SDIO;
916 break;
917 case RTW_HCI_TYPE_PCIE:
918 default:
919 cond.intf = INTF_PCIE;
920 break;
921 }
922
923 hal->phy_cond = cond;
924
925 rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
926}
927
928static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
929{
930 struct rtw_hal *hal = &rtwdev->hal;
931 struct rtw_phy_cond drv_cond = hal->phy_cond;
932
933 if (cond.cut && cond.cut != drv_cond.cut)
934 return false;
935
936 if (cond.pkg && cond.pkg != drv_cond.pkg)
937 return false;
938
939 if (cond.intf && cond.intf != drv_cond.intf)
940 return false;
941
942 if (cond.rfe != drv_cond.rfe)
943 return false;
944
945 return true;
946}
947
948void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
949{
950 const union phy_table_tile *p = tbl->data;
951 const union phy_table_tile *end = p + tbl->size / 2;
952 struct rtw_phy_cond pos_cond = {0};
953 bool is_matched = true, is_skipped = false;
954
955 BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
956
957 for (; p < end; p++) {
958 if (p->cond.pos) {
959 switch (p->cond.branch) {
960 case BRANCH_ENDIF:
961 is_matched = true;
962 is_skipped = false;
963 break;
964 case BRANCH_ELSE:
965 is_matched = is_skipped ? false : true;
966 break;
967 case BRANCH_IF:
968 case BRANCH_ELIF:
969 default:
970 pos_cond = p->cond;
971 break;
972 }
973 } else if (p->cond.neg) {
974 if (!is_skipped) {
975 if (check_positive(rtwdev, pos_cond)) {
976 is_matched = true;
977 is_skipped = true;
978 } else {
979 is_matched = false;
980 is_skipped = false;
981 }
982 } else {
983 is_matched = false;
984 }
985 } else if (is_matched) {
986 (*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
987 }
988 }
989}
990EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
991
992#define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
993
994static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
995{
996 if (rtwdev->chip->is_pwr_by_rate_dec)
997 return bcd_to_dec_pwr_by_rate(hex, i);
998
999 return (hex >> (i * 8)) & 0xFF;
1000}
1001
1002static void
1003rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
1004 u32 addr, u32 mask, u32 val, u8 *rate,
1005 u8 *pwr_by_rate, u8 *rate_num)
1006{
1007 int i;
1008
1009 switch (addr) {
1010 case 0xE00:
1011 case 0x830:
1012 rate[0] = DESC_RATE6M;
1013 rate[1] = DESC_RATE9M;
1014 rate[2] = DESC_RATE12M;
1015 rate[3] = DESC_RATE18M;
1016 for (i = 0; i < 4; ++i)
1017 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1018 *rate_num = 4;
1019 break;
1020 case 0xE04:
1021 case 0x834:
1022 rate[0] = DESC_RATE24M;
1023 rate[1] = DESC_RATE36M;
1024 rate[2] = DESC_RATE48M;
1025 rate[3] = DESC_RATE54M;
1026 for (i = 0; i < 4; ++i)
1027 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1028 *rate_num = 4;
1029 break;
1030 case 0xE08:
1031 rate[0] = DESC_RATE1M;
1032 pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
1033 *rate_num = 1;
1034 break;
1035 case 0x86C:
1036 if (mask == 0xffffff00) {
1037 rate[0] = DESC_RATE2M;
1038 rate[1] = DESC_RATE5_5M;
1039 rate[2] = DESC_RATE11M;
1040 for (i = 1; i < 4; ++i)
1041 pwr_by_rate[i - 1] =
1042 tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1043 *rate_num = 3;
1044 } else if (mask == 0x000000ff) {
1045 rate[0] = DESC_RATE11M;
1046 pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
1047 *rate_num = 1;
1048 }
1049 break;
1050 case 0xE10:
1051 case 0x83C:
1052 rate[0] = DESC_RATEMCS0;
1053 rate[1] = DESC_RATEMCS1;
1054 rate[2] = DESC_RATEMCS2;
1055 rate[3] = DESC_RATEMCS3;
1056 for (i = 0; i < 4; ++i)
1057 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1058 *rate_num = 4;
1059 break;
1060 case 0xE14:
1061 case 0x848:
1062 rate[0] = DESC_RATEMCS4;
1063 rate[1] = DESC_RATEMCS5;
1064 rate[2] = DESC_RATEMCS6;
1065 rate[3] = DESC_RATEMCS7;
1066 for (i = 0; i < 4; ++i)
1067 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1068 *rate_num = 4;
1069 break;
1070 case 0xE18:
1071 case 0x84C:
1072 rate[0] = DESC_RATEMCS8;
1073 rate[1] = DESC_RATEMCS9;
1074 rate[2] = DESC_RATEMCS10;
1075 rate[3] = DESC_RATEMCS11;
1076 for (i = 0; i < 4; ++i)
1077 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1078 *rate_num = 4;
1079 break;
1080 case 0xE1C:
1081 case 0x868:
1082 rate[0] = DESC_RATEMCS12;
1083 rate[1] = DESC_RATEMCS13;
1084 rate[2] = DESC_RATEMCS14;
1085 rate[3] = DESC_RATEMCS15;
1086 for (i = 0; i < 4; ++i)
1087 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1088 *rate_num = 4;
1089 break;
1090 case 0x838:
1091 rate[0] = DESC_RATE1M;
1092 rate[1] = DESC_RATE2M;
1093 rate[2] = DESC_RATE5_5M;
1094 for (i = 1; i < 4; ++i)
1095 pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1096 val, i);
1097 *rate_num = 3;
1098 break;
1099 case 0xC20:
1100 case 0xE20:
1101 case 0x1820:
1102 case 0x1A20:
1103 rate[0] = DESC_RATE1M;
1104 rate[1] = DESC_RATE2M;
1105 rate[2] = DESC_RATE5_5M;
1106 rate[3] = DESC_RATE11M;
1107 for (i = 0; i < 4; ++i)
1108 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1109 *rate_num = 4;
1110 break;
1111 case 0xC24:
1112 case 0xE24:
1113 case 0x1824:
1114 case 0x1A24:
1115 rate[0] = DESC_RATE6M;
1116 rate[1] = DESC_RATE9M;
1117 rate[2] = DESC_RATE12M;
1118 rate[3] = DESC_RATE18M;
1119 for (i = 0; i < 4; ++i)
1120 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1121 *rate_num = 4;
1122 break;
1123 case 0xC28:
1124 case 0xE28:
1125 case 0x1828:
1126 case 0x1A28:
1127 rate[0] = DESC_RATE24M;
1128 rate[1] = DESC_RATE36M;
1129 rate[2] = DESC_RATE48M;
1130 rate[3] = DESC_RATE54M;
1131 for (i = 0; i < 4; ++i)
1132 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1133 *rate_num = 4;
1134 break;
1135 case 0xC2C:
1136 case 0xE2C:
1137 case 0x182C:
1138 case 0x1A2C:
1139 rate[0] = DESC_RATEMCS0;
1140 rate[1] = DESC_RATEMCS1;
1141 rate[2] = DESC_RATEMCS2;
1142 rate[3] = DESC_RATEMCS3;
1143 for (i = 0; i < 4; ++i)
1144 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1145 *rate_num = 4;
1146 break;
1147 case 0xC30:
1148 case 0xE30:
1149 case 0x1830:
1150 case 0x1A30:
1151 rate[0] = DESC_RATEMCS4;
1152 rate[1] = DESC_RATEMCS5;
1153 rate[2] = DESC_RATEMCS6;
1154 rate[3] = DESC_RATEMCS7;
1155 for (i = 0; i < 4; ++i)
1156 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1157 *rate_num = 4;
1158 break;
1159 case 0xC34:
1160 case 0xE34:
1161 case 0x1834:
1162 case 0x1A34:
1163 rate[0] = DESC_RATEMCS8;
1164 rate[1] = DESC_RATEMCS9;
1165 rate[2] = DESC_RATEMCS10;
1166 rate[3] = DESC_RATEMCS11;
1167 for (i = 0; i < 4; ++i)
1168 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1169 *rate_num = 4;
1170 break;
1171 case 0xC38:
1172 case 0xE38:
1173 case 0x1838:
1174 case 0x1A38:
1175 rate[0] = DESC_RATEMCS12;
1176 rate[1] = DESC_RATEMCS13;
1177 rate[2] = DESC_RATEMCS14;
1178 rate[3] = DESC_RATEMCS15;
1179 for (i = 0; i < 4; ++i)
1180 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1181 *rate_num = 4;
1182 break;
1183 case 0xC3C:
1184 case 0xE3C:
1185 case 0x183C:
1186 case 0x1A3C:
1187 rate[0] = DESC_RATEVHT1SS_MCS0;
1188 rate[1] = DESC_RATEVHT1SS_MCS1;
1189 rate[2] = DESC_RATEVHT1SS_MCS2;
1190 rate[3] = DESC_RATEVHT1SS_MCS3;
1191 for (i = 0; i < 4; ++i)
1192 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1193 *rate_num = 4;
1194 break;
1195 case 0xC40:
1196 case 0xE40:
1197 case 0x1840:
1198 case 0x1A40:
1199 rate[0] = DESC_RATEVHT1SS_MCS4;
1200 rate[1] = DESC_RATEVHT1SS_MCS5;
1201 rate[2] = DESC_RATEVHT1SS_MCS6;
1202 rate[3] = DESC_RATEVHT1SS_MCS7;
1203 for (i = 0; i < 4; ++i)
1204 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1205 *rate_num = 4;
1206 break;
1207 case 0xC44:
1208 case 0xE44:
1209 case 0x1844:
1210 case 0x1A44:
1211 rate[0] = DESC_RATEVHT1SS_MCS8;
1212 rate[1] = DESC_RATEVHT1SS_MCS9;
1213 rate[2] = DESC_RATEVHT2SS_MCS0;
1214 rate[3] = DESC_RATEVHT2SS_MCS1;
1215 for (i = 0; i < 4; ++i)
1216 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1217 *rate_num = 4;
1218 break;
1219 case 0xC48:
1220 case 0xE48:
1221 case 0x1848:
1222 case 0x1A48:
1223 rate[0] = DESC_RATEVHT2SS_MCS2;
1224 rate[1] = DESC_RATEVHT2SS_MCS3;
1225 rate[2] = DESC_RATEVHT2SS_MCS4;
1226 rate[3] = DESC_RATEVHT2SS_MCS5;
1227 for (i = 0; i < 4; ++i)
1228 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1229 *rate_num = 4;
1230 break;
1231 case 0xC4C:
1232 case 0xE4C:
1233 case 0x184C:
1234 case 0x1A4C:
1235 rate[0] = DESC_RATEVHT2SS_MCS6;
1236 rate[1] = DESC_RATEVHT2SS_MCS7;
1237 rate[2] = DESC_RATEVHT2SS_MCS8;
1238 rate[3] = DESC_RATEVHT2SS_MCS9;
1239 for (i = 0; i < 4; ++i)
1240 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1241 *rate_num = 4;
1242 break;
1243 case 0xCD8:
1244 case 0xED8:
1245 case 0x18D8:
1246 case 0x1AD8:
1247 rate[0] = DESC_RATEMCS16;
1248 rate[1] = DESC_RATEMCS17;
1249 rate[2] = DESC_RATEMCS18;
1250 rate[3] = DESC_RATEMCS19;
1251 for (i = 0; i < 4; ++i)
1252 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1253 *rate_num = 4;
1254 break;
1255 case 0xCDC:
1256 case 0xEDC:
1257 case 0x18DC:
1258 case 0x1ADC:
1259 rate[0] = DESC_RATEMCS20;
1260 rate[1] = DESC_RATEMCS21;
1261 rate[2] = DESC_RATEMCS22;
1262 rate[3] = DESC_RATEMCS23;
1263 for (i = 0; i < 4; ++i)
1264 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1265 *rate_num = 4;
1266 break;
1267 case 0xCE0:
1268 case 0xEE0:
1269 case 0x18E0:
1270 case 0x1AE0:
1271 rate[0] = DESC_RATEVHT3SS_MCS0;
1272 rate[1] = DESC_RATEVHT3SS_MCS1;
1273 rate[2] = DESC_RATEVHT3SS_MCS2;
1274 rate[3] = DESC_RATEVHT3SS_MCS3;
1275 for (i = 0; i < 4; ++i)
1276 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1277 *rate_num = 4;
1278 break;
1279 case 0xCE4:
1280 case 0xEE4:
1281 case 0x18E4:
1282 case 0x1AE4:
1283 rate[0] = DESC_RATEVHT3SS_MCS4;
1284 rate[1] = DESC_RATEVHT3SS_MCS5;
1285 rate[2] = DESC_RATEVHT3SS_MCS6;
1286 rate[3] = DESC_RATEVHT3SS_MCS7;
1287 for (i = 0; i < 4; ++i)
1288 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1289 *rate_num = 4;
1290 break;
1291 case 0xCE8:
1292 case 0xEE8:
1293 case 0x18E8:
1294 case 0x1AE8:
1295 rate[0] = DESC_RATEVHT3SS_MCS8;
1296 rate[1] = DESC_RATEVHT3SS_MCS9;
1297 for (i = 0; i < 2; ++i)
1298 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1299 *rate_num = 2;
1300 break;
1301 default:
1302 rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1303 break;
1304 }
1305}
1306
1307static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1308 u32 band, u32 rfpath, u32 txnum,
1309 u32 regaddr, u32 bitmask, u32 data)
1310{
1311 struct rtw_hal *hal = &rtwdev->hal;
1312 u8 rate_num = 0;
1313 u8 rate;
1314 u8 rates[RTW_RF_PATH_MAX] = {0};
1315 s8 offset;
1316 s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1317 int i;
1318
1319 rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1320 rates, pwr_by_rate, &rate_num);
1321
1322 if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1323 (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1324 rate_num > RTW_RF_PATH_MAX))
1325 return;
1326
1327 for (i = 0; i < rate_num; i++) {
1328 offset = pwr_by_rate[i];
1329 rate = rates[i];
1330 if (band == PHY_BAND_2G)
1331 hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1332 else if (band == PHY_BAND_5G)
1333 hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1334 else
1335 continue;
1336 }
1337}
1338
1339void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1340{
1341 const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1342 const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1343
1344 for (; p < end; p++) {
1345 if (p->addr == 0xfe || p->addr == 0xffe) {
1346 msleep(50);
1347 continue;
1348 }
1349 rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1350 p->tx_num, p->addr, p->bitmask,
1351 p->data);
1352 }
1353}
1354EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
1355
1356static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1357 36, 38, 40, 42, 44, 46, 48, /* Band 1 */
1358 52, 54, 56, 58, 60, 62, 64, /* Band 2 */
1359 100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1360 116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1361 132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1362 149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1363 165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1364
1365static int rtw_channel_to_idx(u8 band, u8 channel)
1366{
1367 int ch_idx;
1368 u8 n_channel;
1369
1370 if (band == PHY_BAND_2G) {
1371 ch_idx = channel - 1;
1372 n_channel = RTW_MAX_CHANNEL_NUM_2G;
1373 } else if (band == PHY_BAND_5G) {
1374 n_channel = RTW_MAX_CHANNEL_NUM_5G;
1375 for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1376 if (rtw_channel_idx_5g[ch_idx] == channel)
1377 break;
1378 } else {
1379 return -1;
1380 }
1381
1382 if (ch_idx >= n_channel)
1383 return -1;
1384
1385 return ch_idx;
1386}
1387
1388static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1389 u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1390{
1391 struct rtw_hal *hal = &rtwdev->hal;
1392 u8 max_power_index = rtwdev->chip->max_power_index;
1393 s8 ww;
1394 int ch_idx;
1395
1396 pwr_limit = clamp_t(s8, pwr_limit,
1397 -max_power_index, max_power_index);
1398 ch_idx = rtw_channel_to_idx(band, ch);
1399
1400 if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1401 rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1402 WARN(1,
1403 "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1404 regd, band, bw, rs, ch_idx, pwr_limit);
1405 return;
1406 }
1407
1408 if (band == PHY_BAND_2G) {
1409 hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1410 ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1411 ww = min_t(s8, ww, pwr_limit);
1412 hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1413 } else if (band == PHY_BAND_5G) {
1414 hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1415 ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1416 ww = min_t(s8, ww, pwr_limit);
1417 hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1418 }
1419}
1420
1421/* cross-reference 5G power limits if values are not assigned */
1422static void
1423rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1424 u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1425{
1426 struct rtw_hal *hal = &rtwdev->hal;
1427 u8 max_power_index = rtwdev->chip->max_power_index;
1428 s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1429 s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1430
1431 if (lmt_ht == lmt_vht)
1432 return;
1433
1434 if (lmt_ht == max_power_index)
1435 hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1436
1437 else if (lmt_vht == max_power_index)
1438 hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1439}
1440
1441/* cross-reference power limits for ht and vht */
1442static void
1443rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1444{
1445 u8 rs_idx, rs_ht, rs_vht;
1446 u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1447 {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1448
1449 for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1450 rs_ht = rs_cmp[rs_idx][0];
1451 rs_vht = rs_cmp[rs_idx][1];
1452
1453 rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1454 }
1455}
1456
1457/* cross-reference power limits for 5G channels */
1458static void
1459rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1460{
1461 u8 ch_idx;
1462
1463 for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1464 rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1465}
1466
1467/* cross-reference power limits for 20/40M bandwidth */
1468static void
1469rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1470{
1471 u8 bw;
1472
1473 for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1474 rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1475}
1476
1477/* cross-reference power limits */
1478static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1479{
1480 u8 regd;
1481
1482 for (regd = 0; regd < RTW_REGD_MAX; regd++)
1483 rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1484}
1485
1486void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1487 const struct rtw_table *tbl)
1488{
1489 const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1490 const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1491
1492 for (; p < end; p++) {
1493 rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1494 p->bw, p->rs, p->ch, p->txpwr_lmt);
1495 }
1496
1497 rtw_xref_txpwr_lmt(rtwdev);
1498}
1499EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
1500
1501void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1502 u32 addr, u32 data)
1503{
1504 rtw_write8(rtwdev, addr, data);
1505}
1506EXPORT_SYMBOL(rtw_phy_cfg_mac);
1507
1508void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1509 u32 addr, u32 data)
1510{
1511 rtw_write32(rtwdev, addr, data);
1512}
1513EXPORT_SYMBOL(rtw_phy_cfg_agc);
1514
1515void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1516 u32 addr, u32 data)
1517{
1518 if (addr == 0xfe)
1519 msleep(50);
1520 else if (addr == 0xfd)
1521 mdelay(5);
1522 else if (addr == 0xfc)
1523 mdelay(1);
1524 else if (addr == 0xfb)
1525 usleep_range(50, 60);
1526 else if (addr == 0xfa)
1527 udelay(5);
1528 else if (addr == 0xf9)
1529 udelay(1);
1530 else
1531 rtw_write32(rtwdev, addr, data);
1532}
1533EXPORT_SYMBOL(rtw_phy_cfg_bb);
1534
1535void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1536 u32 addr, u32 data)
1537{
1538 if (addr == 0xffe) {
1539 msleep(50);
1540 } else if (addr == 0xfe) {
1541 usleep_range(100, 110);
1542 } else {
1543 rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1544 udelay(1);
1545 }
1546}
1547EXPORT_SYMBOL(rtw_phy_cfg_rf);
1548
1549static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1550{
1551 struct rtw_chip_info *chip = rtwdev->chip;
1552 struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1553
1554 if (!chip->rfk_init_tbl)
1555 return;
1556
1557 rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1558 rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1559 rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1560 rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1561 rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1562
1563 rtw_load_table(rtwdev, chip->rfk_init_tbl);
1564
1565 dpk_info->is_dpk_pwr_on = true;
1566}
1567
1568void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1569{
1570 struct rtw_chip_info *chip = rtwdev->chip;
1571 u8 rf_path;
1572
1573 rtw_load_table(rtwdev, chip->mac_tbl);
1574 rtw_load_table(rtwdev, chip->bb_tbl);
1575 rtw_load_table(rtwdev, chip->agc_tbl);
1576 rtw_load_rfk_table(rtwdev);
1577
1578 for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1579 const struct rtw_table *tbl;
1580
1581 tbl = chip->rf_tbl[rf_path];
1582 rtw_load_table(rtwdev, tbl);
1583 }
1584}
1585EXPORT_SYMBOL(rtw_phy_load_tables);
1586
1587static u8 rtw_get_channel_group(u8 channel)
1588{
1589 switch (channel) {
1590 default:
1591 WARN_ON(1);
1592 fallthrough;
1593 case 1:
1594 case 2:
1595 case 36:
1596 case 38:
1597 case 40:
1598 case 42:
1599 return 0;
1600 case 3:
1601 case 4:
1602 case 5:
1603 case 44:
1604 case 46:
1605 case 48:
1606 case 50:
1607 return 1;
1608 case 6:
1609 case 7:
1610 case 8:
1611 case 52:
1612 case 54:
1613 case 56:
1614 case 58:
1615 return 2;
1616 case 9:
1617 case 10:
1618 case 11:
1619 case 60:
1620 case 62:
1621 case 64:
1622 return 3;
1623 case 12:
1624 case 13:
1625 case 100:
1626 case 102:
1627 case 104:
1628 case 106:
1629 return 4;
1630 case 14:
1631 case 108:
1632 case 110:
1633 case 112:
1634 case 114:
1635 return 5;
1636 case 116:
1637 case 118:
1638 case 120:
1639 case 122:
1640 return 6;
1641 case 124:
1642 case 126:
1643 case 128:
1644 case 130:
1645 return 7;
1646 case 132:
1647 case 134:
1648 case 136:
1649 case 138:
1650 return 8;
1651 case 140:
1652 case 142:
1653 case 144:
1654 return 9;
1655 case 149:
1656 case 151:
1657 case 153:
1658 case 155:
1659 return 10;
1660 case 157:
1661 case 159:
1662 case 161:
1663 return 11;
1664 case 165:
1665 case 167:
1666 case 169:
1667 case 171:
1668 return 12;
1669 case 173:
1670 case 175:
1671 case 177:
1672 return 13;
1673 }
1674}
1675
1676static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1677{
1678 struct rtw_chip_info *chip = rtwdev->chip;
1679 s8 dpd_diff = 0;
1680
1681 if (!chip->en_dis_dpd)
1682 return 0;
1683
1684#define RTW_DPD_RATE_CHECK(_rate) \
1685 case DESC_RATE ## _rate: \
1686 if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask) \
1687 dpd_diff = -6 * chip->txgi_factor; \
1688 break
1689
1690 switch (rate) {
1691 RTW_DPD_RATE_CHECK(6M);
1692 RTW_DPD_RATE_CHECK(9M);
1693 RTW_DPD_RATE_CHECK(MCS0);
1694 RTW_DPD_RATE_CHECK(MCS1);
1695 RTW_DPD_RATE_CHECK(MCS8);
1696 RTW_DPD_RATE_CHECK(MCS9);
1697 RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1698 RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1699 RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1700 RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1701 }
1702#undef RTW_DPD_RATE_CHECK
1703
1704 return dpd_diff;
1705}
1706
1707static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1708 struct rtw_2g_txpwr_idx *pwr_idx_2g,
1709 enum rtw_bandwidth bandwidth,
1710 u8 rate, u8 group)
1711{
1712 struct rtw_chip_info *chip = rtwdev->chip;
1713 u8 tx_power;
1714 bool mcs_rate;
1715 bool above_2ss;
1716 u8 factor = chip->txgi_factor;
1717
1718 if (rate <= DESC_RATE11M)
1719 tx_power = pwr_idx_2g->cck_base[group];
1720 else
1721 tx_power = pwr_idx_2g->bw40_base[group];
1722
1723 if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1724 tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1725
1726 mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1727 (rate >= DESC_RATEVHT1SS_MCS0 &&
1728 rate <= DESC_RATEVHT2SS_MCS9);
1729 above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1730 (rate >= DESC_RATEVHT2SS_MCS0);
1731
1732 if (!mcs_rate)
1733 return tx_power;
1734
1735 switch (bandwidth) {
1736 default:
1737 WARN_ON(1);
1738 fallthrough;
1739 case RTW_CHANNEL_WIDTH_20:
1740 tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1741 if (above_2ss)
1742 tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1743 break;
1744 case RTW_CHANNEL_WIDTH_40:
1745 /* bw40 is the base power */
1746 if (above_2ss)
1747 tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1748 break;
1749 }
1750
1751 return tx_power;
1752}
1753
1754static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1755 struct rtw_5g_txpwr_idx *pwr_idx_5g,
1756 enum rtw_bandwidth bandwidth,
1757 u8 rate, u8 group)
1758{
1759 struct rtw_chip_info *chip = rtwdev->chip;
1760 u8 tx_power;
1761 u8 upper, lower;
1762 bool mcs_rate;
1763 bool above_2ss;
1764 u8 factor = chip->txgi_factor;
1765
1766 tx_power = pwr_idx_5g->bw40_base[group];
1767
1768 mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1769 (rate >= DESC_RATEVHT1SS_MCS0 &&
1770 rate <= DESC_RATEVHT2SS_MCS9);
1771 above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1772 (rate >= DESC_RATEVHT2SS_MCS0);
1773
1774 if (!mcs_rate) {
1775 tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1776 return tx_power;
1777 }
1778
1779 switch (bandwidth) {
1780 default:
1781 WARN_ON(1);
1782 fallthrough;
1783 case RTW_CHANNEL_WIDTH_20:
1784 tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1785 if (above_2ss)
1786 tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1787 break;
1788 case RTW_CHANNEL_WIDTH_40:
1789 /* bw40 is the base power */
1790 if (above_2ss)
1791 tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1792 break;
1793 case RTW_CHANNEL_WIDTH_80:
1794 /* the base idx of bw80 is the average of bw40+/bw40- */
1795 lower = pwr_idx_5g->bw40_base[group];
1796 upper = pwr_idx_5g->bw40_base[group + 1];
1797
1798 tx_power = (lower + upper) / 2;
1799 tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1800 if (above_2ss)
1801 tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
1802 break;
1803 }
1804
1805 return tx_power;
1806}
1807
1808static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1809 enum rtw_bandwidth bw, u8 rf_path,
1810 u8 rate, u8 channel, u8 regd)
1811{
1812 struct rtw_hal *hal = &rtwdev->hal;
1813 u8 *cch_by_bw = hal->cch_by_bw;
1814 s8 power_limit = (s8)rtwdev->chip->max_power_index;
1815 u8 rs;
1816 int ch_idx;
1817 u8 cur_bw, cur_ch;
1818 s8 cur_lmt;
1819
1820 if (regd > RTW_REGD_WW)
1821 return power_limit;
1822
1823 if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
1824 rs = RTW_RATE_SECTION_CCK;
1825 else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1826 rs = RTW_RATE_SECTION_OFDM;
1827 else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
1828 rs = RTW_RATE_SECTION_HT_1S;
1829 else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
1830 rs = RTW_RATE_SECTION_HT_2S;
1831 else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
1832 rs = RTW_RATE_SECTION_VHT_1S;
1833 else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
1834 rs = RTW_RATE_SECTION_VHT_2S;
1835 else
1836 goto err;
1837
1838 /* only 20M BW with cck and ofdm */
1839 if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
1840 bw = RTW_CHANNEL_WIDTH_20;
1841
1842 /* only 20/40M BW with ht */
1843 if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
1844 bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
1845
1846 /* select min power limit among [20M BW ~ current BW] */
1847 for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
1848 cur_ch = cch_by_bw[cur_bw];
1849
1850 ch_idx = rtw_channel_to_idx(band, cur_ch);
1851 if (ch_idx < 0)
1852 goto err;
1853
1854 cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
1855 hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
1856 hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
1857
1858 power_limit = min_t(s8, cur_lmt, power_limit);
1859 }
1860
1861 return power_limit;
1862
1863err:
1864 WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
1865 band, bw, rf_path, rate, channel);
1866 return (s8)rtwdev->chip->max_power_index;
1867}
1868
1869void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
1870 u8 ch, u8 regd, struct rtw_power_params *pwr_param)
1871{
1872 struct rtw_hal *hal = &rtwdev->hal;
1873 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1874 struct rtw_txpwr_idx *pwr_idx;
1875 u8 group, band;
1876 u8 *base = &pwr_param->pwr_base;
1877 s8 *offset = &pwr_param->pwr_offset;
1878 s8 *limit = &pwr_param->pwr_limit;
1879 s8 *remnant = &pwr_param->pwr_remnant;
1880
1881 pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
1882 group = rtw_get_channel_group(ch);
1883
1884 /* base power index for 2.4G/5G */
1885 if (IS_CH_2G_BAND(ch)) {
1886 band = PHY_BAND_2G;
1887 *base = rtw_phy_get_2g_tx_power_index(rtwdev,
1888 &pwr_idx->pwr_idx_2g,
1889 bw, rate, group);
1890 *offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
1891 } else {
1892 band = PHY_BAND_5G;
1893 *base = rtw_phy_get_5g_tx_power_index(rtwdev,
1894 &pwr_idx->pwr_idx_5g,
1895 bw, rate, group);
1896 *offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
1897 }
1898
1899 *limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
1900 rate, ch, regd);
1901 *remnant = (rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
1902 dm_info->txagc_remnant_ofdm);
1903}
1904
1905u8
1906rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
1907 enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
1908{
1909 struct rtw_power_params pwr_param = {0};
1910 u8 tx_power;
1911 s8 offset;
1912
1913 rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
1914 channel, regd, &pwr_param);
1915
1916 tx_power = pwr_param.pwr_base;
1917 offset = min_t(s8, pwr_param.pwr_offset, pwr_param.pwr_limit);
1918
1919 if (rtwdev->chip->en_dis_dpd)
1920 offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
1921
1922 tx_power += offset + pwr_param.pwr_remnant;
1923
1924 if (tx_power > rtwdev->chip->max_power_index)
1925 tx_power = rtwdev->chip->max_power_index;
1926
1927 return tx_power;
1928}
1929EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
1930
1931static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
1932 u8 ch, u8 path, u8 rs)
1933{
1934 struct rtw_hal *hal = &rtwdev->hal;
1935 u8 regd = rtwdev->regd.txpwr_regd;
1936 u8 *rates;
1937 u8 size;
1938 u8 rate;
1939 u8 pwr_idx;
1940 u8 bw;
1941 int i;
1942
1943 if (rs >= RTW_RATE_SECTION_MAX)
1944 return;
1945
1946 rates = rtw_rate_section[rs];
1947 size = rtw_rate_size[rs];
1948 bw = hal->current_band_width;
1949 for (i = 0; i < size; i++) {
1950 rate = rates[i];
1951 pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
1952 bw, ch, regd);
1953 hal->tx_pwr_tbl[path][rate] = pwr_idx;
1954 }
1955}
1956
1957/* set tx power level by path for each rates, note that the order of the rates
1958 * are *very* important, bacause 8822B/8821C combines every four bytes of tx
1959 * power index into a four-byte power index register, and calls set_tx_agc to
1960 * write these values into hardware
1961 */
1962static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
1963 u8 ch, u8 path)
1964{
1965 struct rtw_hal *hal = &rtwdev->hal;
1966 u8 rs;
1967
1968 /* do not need cck rates if we are not in 2.4G */
1969 if (hal->current_band_type == RTW_BAND_2G)
1970 rs = RTW_RATE_SECTION_CCK;
1971 else
1972 rs = RTW_RATE_SECTION_OFDM;
1973
1974 for (; rs < RTW_RATE_SECTION_MAX; rs++)
1975 rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
1976}
1977
1978void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
1979{
1980 struct rtw_chip_info *chip = rtwdev->chip;
1981 struct rtw_hal *hal = &rtwdev->hal;
1982 u8 path;
1983
1984 mutex_lock(&hal->tx_power_mutex);
1985
1986 for (path = 0; path < hal->rf_path_num; path++)
1987 rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
1988
1989 chip->ops->set_tx_power_index(rtwdev);
1990 mutex_unlock(&hal->tx_power_mutex);
1991}
1992EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
1993
1994static void
1995rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
1996 u8 rs, u8 size, u8 *rates)
1997{
1998 u8 rate;
1999 u8 base_idx, rate_idx;
2000 s8 base_2g, base_5g;
2001
2002 if (rs >= RTW_RATE_SECTION_VHT_1S)
2003 base_idx = rates[size - 3];
2004 else
2005 base_idx = rates[size - 1];
2006 base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
2007 base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
2008 hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
2009 hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
2010 for (rate = 0; rate < size; rate++) {
2011 rate_idx = rates[rate];
2012 hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
2013 hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
2014 }
2015}
2016
2017void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
2018{
2019 u8 path;
2020
2021 for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2022 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2023 RTW_RATE_SECTION_CCK,
2024 rtw_cck_size, rtw_cck_rates);
2025 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2026 RTW_RATE_SECTION_OFDM,
2027 rtw_ofdm_size, rtw_ofdm_rates);
2028 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2029 RTW_RATE_SECTION_HT_1S,
2030 rtw_ht_1s_size, rtw_ht_1s_rates);
2031 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2032 RTW_RATE_SECTION_HT_2S,
2033 rtw_ht_2s_size, rtw_ht_2s_rates);
2034 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2035 RTW_RATE_SECTION_VHT_1S,
2036 rtw_vht_1s_size, rtw_vht_1s_rates);
2037 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2038 RTW_RATE_SECTION_VHT_2S,
2039 rtw_vht_2s_size, rtw_vht_2s_rates);
2040 }
2041}
2042
2043static void
2044__rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
2045{
2046 s8 base;
2047 u8 ch;
2048
2049 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
2050 base = hal->tx_pwr_by_rate_base_2g[0][rs];
2051 hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
2052 }
2053
2054 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
2055 base = hal->tx_pwr_by_rate_base_5g[0][rs];
2056 hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
2057 }
2058}
2059
2060void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
2061{
2062 u8 regd, bw, rs;
2063
2064 /* default at channel 1 */
2065 hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
2066
2067 for (regd = 0; regd < RTW_REGD_MAX; regd++)
2068 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2069 for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2070 __rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
2071}
2072
2073static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
2074 u8 regd, u8 bw, u8 rs)
2075{
2076 struct rtw_hal *hal = &rtwdev->hal;
2077 s8 max_power_index = (s8)rtwdev->chip->max_power_index;
2078 u8 ch;
2079
2080 /* 2.4G channels */
2081 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
2082 hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
2083
2084 /* 5G channels */
2085 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
2086 hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
2087}
2088
2089void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
2090{
2091 struct rtw_hal *hal = &rtwdev->hal;
2092 u8 regd, path, rate, rs, bw;
2093
2094 /* init tx power by rate offset */
2095 for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2096 for (rate = 0; rate < DESC_RATE_MAX; rate++) {
2097 hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
2098 hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
2099 }
2100 }
2101
2102 /* init tx power limit */
2103 for (regd = 0; regd < RTW_REGD_MAX; regd++)
2104 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2105 for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2106 rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
2107 rs);
2108}
2109
2110void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
2111 struct rtw_swing_table *swing_table)
2112{
2113 const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
2114 u8 channel = rtwdev->hal.current_channel;
2115
2116 if (IS_CH_2G_BAND(channel)) {
2117 if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
2118 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
2119 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
2120 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
2121 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
2122 } else {
2123 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2124 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2125 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2126 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2127 }
2128 } else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
2129 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
2130 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
2131 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
2132 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
2133 } else if (IS_CH_5G_BAND_3(channel)) {
2134 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2135 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2136 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2137 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2138 } else if (IS_CH_5G_BAND_4(channel)) {
2139 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2140 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2141 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2142 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2143 } else {
2144 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2145 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2146 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2147 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2148 }
2149}
2150EXPORT_SYMBOL(rtw_phy_config_swing_table);
2151
2152void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2153{
2154 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2155
2156 ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2157 dm_info->thermal_avg[path] =
2158 ewma_thermal_read(&dm_info->avg_thermal[path]);
2159}
2160EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
2161
2162bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2163 u8 path)
2164{
2165 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2166 u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2167
2168 if (avg == thermal)
2169 return false;
2170
2171 return true;
2172}
2173EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
2174
2175u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2176{
2177 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2178 u8 therm_avg, therm_efuse, therm_delta;
2179
2180 therm_avg = dm_info->thermal_avg[path];
2181 therm_efuse = rtwdev->efuse.thermal_meter[path];
2182 therm_delta = abs(therm_avg - therm_efuse);
2183
2184 return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2185}
2186EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
2187
2188s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2189 struct rtw_swing_table *swing_table,
2190 u8 tbl_path, u8 therm_path, u8 delta)
2191{
2192 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2193 const u8 *delta_swing_table_idx_pos;
2194 const u8 *delta_swing_table_idx_neg;
2195
2196 if (delta >= RTW_PWR_TRK_TBL_SZ) {
2197 rtw_warn(rtwdev, "power track table overflow\n");
2198 return 0;
2199 }
2200
2201 if (!swing_table) {
2202 rtw_warn(rtwdev, "swing table not configured\n");
2203 return 0;
2204 }
2205
2206 delta_swing_table_idx_pos = swing_table->p[tbl_path];
2207 delta_swing_table_idx_neg = swing_table->n[tbl_path];
2208
2209 if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2210 rtw_warn(rtwdev, "invalid swing table index\n");
2211 return 0;
2212 }
2213
2214 if (dm_info->thermal_avg[therm_path] >
2215 rtwdev->efuse.thermal_meter[therm_path])
2216 return delta_swing_table_idx_pos[delta];
2217 else
2218 return -delta_swing_table_idx_neg[delta];
2219}
2220EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
2221
2222bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2223{
2224 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2225 u8 delta_iqk;
2226
2227 delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2228 if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2229 dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2230 return true;
2231 }
2232 return false;
2233}
2234EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);