blob: 496a0f7eaaf5b8b43fb6f4ce815e196bad99ee0d [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00007 :depth: 4
Sean Silvaf722b002012-12-07 10:36:55 +00008
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva699e5d72015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvaf722b002012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborgdab34a62014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
Hans Wennborg13734012018-05-22 10:14:07 +000083 can be used on global values to suppress mangling.
Sean Silvaf722b002012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silva7515d332015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvaf722b002012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover6eaf8402014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvaf722b002012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew0ea6d442014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvaf722b002012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liao2faa0f32013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000158
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
George Burgess IVfb8d01e2017-05-20 04:52:29 +0000164 ; Convert [13 x i8]* to i8*...
David Blaikieaf9251f2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166
Michael Liao2faa0f32013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewycky12a0c0b2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvaf722b002012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
Sylvestre Ledruf15590a2017-03-04 14:01:38 +0000198 code into a module with a private global value may cause the
Sean Silvaf722b002012-12-07 10:36:55 +0000199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvaf722b002012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne059bf3a2015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvaf722b002012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae26e7d32016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvaf722b002012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silva7515d332015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvaf722b002012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvaf722b002012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck38f68c52014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvaf722b002012-12-07 10:36:55 +0000277
Sean Silvaf722b002012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzkadbee8c12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
Sanjay Patel16e9a292018-03-21 14:15:33 +0000327 floating-point types are supported.
Sean Silvaf722b002012-12-07 10:36:55 +0000328 - On *X86-64* only supports up to 10 bit type parameters and 6
Sanjay Patel16e9a292018-03-21 14:15:33 +0000329 floating-point parameters.
Sean Silvaf722b002012-12-07 10:36:55 +0000330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Tricke97b1322013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky5e66a2a2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Tricke97b1322013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkaceaf8292014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky5e66a2a2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkaceaf8292014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka6bf39662014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkaceaf8292014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher0f842f92015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkaceaf8292014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzkadbee8c12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkaceaf8292014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka6bf39662014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkaceaf8292014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Rencd2103d2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren8d6e45b2015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Rencd2103d2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren8d6e45b2015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Rencd2103d2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Ren1f7638e2016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Rencf182322016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvaf722b002012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Bendersky1de14102013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvaf722b002012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smith76c17d32014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindolab84ced62014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Bendersky1de14102013-06-07 19:40:08 +0000479
Nico Rieck38f68c52014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola665d42a2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva1709c2b2015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola665d42a2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsiehdc73dc02015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Sean Fertile509132b2017-10-26 15:00:26 +0000530.. _runtime_preemption_model:
531
532Runtime Preemption Specifiers
533-----------------------------
534
535Global variables, functions and aliases may have an optional runtime preemption
536specifier. If a preemption specifier isn't given explicitly, then a
537symbol is assumed to be ``dso_preemptable``.
538
539``dso_preemptable``
540 Indicates that the function or variable may be replaced by a symbol from
541 outside the linkage unit at runtime.
542
543``dso_local``
544 The compiler may assume that a function or variable marked as ``dso_local``
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +0000545 will resolve to a symbol within the same linkage unit. Direct access will
Sean Fertile509132b2017-10-26 15:00:26 +0000546 be generated even if the definition is not within this compilation unit.
547
Rafael Espindolab84ced62014-05-26 21:30:40 +0000548.. _namedtypes:
549
Reid Klecknerd6e0bca2014-03-05 02:21:50 +0000550Structure Types
551---------------
Sean Silvaf722b002012-12-07 10:36:55 +0000552
Reid Klecknerd6e0bca2014-03-05 02:21:50 +0000553LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silva7515d332015-08-06 22:56:48 +0000554types <t_struct>`. Literal types are uniqued structurally, but identified types
555are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smithd1d53e82014-07-31 04:25:36 +0000556to forward declare a type that is not yet available.
Reid Klecknerd6e0bca2014-03-05 02:21:50 +0000557
Sean Silva1709c2b2015-08-06 22:56:24 +0000558An example of an identified structure specification is:
Sean Silvaf722b002012-12-07 10:36:55 +0000559
560.. code-block:: llvm
561
562 %mytype = type { %mytype*, i32 }
563
Sean Silva7515d332015-08-06 22:56:48 +0000564Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Klecknerd6e0bca2014-03-05 02:21:50 +0000565literal types are uniqued in recent versions of LLVM.
Sean Silvaf722b002012-12-07 10:36:55 +0000566
Sanjoy Das1c20b712016-07-28 23:43:38 +0000567.. _nointptrtype:
568
569Non-Integral Pointer Type
570-------------------------
571
572Note: non-integral pointer types are a work in progress, and they should be
573considered experimental at this time.
574
575LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Dasbe91a8e2016-08-10 21:48:24 +0000576spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
577Non-integral pointer types represent pointers that have an *unspecified* bitwise
578representation; that is, the integral representation may be target dependent or
579unstable (not backed by a fixed integer).
Sanjoy Das1c20b712016-07-28 23:43:38 +0000580
581``inttoptr`` instructions converting integers to non-integral pointer types are
582ill-typed, and so are ``ptrtoint`` instructions converting values of
583non-integral pointer types to integers. Vector versions of said instructions
584are ill-typed as well.
585
Sean Silvaf722b002012-12-07 10:36:55 +0000586.. _globalvars:
587
588Global Variables
589----------------
590
591Global variables define regions of memory allocated at compilation time
Rafael Espindola1313a222013-10-29 13:44:11 +0000592instead of run-time.
593
Eric Christopher0f842f92015-02-19 18:46:25 +0000594Global variable definitions must be initialized.
Rafael Espindola1313a222013-10-29 13:44:11 +0000595
596Global variables in other translation units can also be declared, in which
597case they don't have an initializer.
Sean Silvaf722b002012-12-07 10:36:55 +0000598
Bob Wilson4cea0022014-06-12 20:40:33 +0000599Either global variable definitions or declarations may have an explicit section
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +0000600to be placed in and may have an optional explicit alignment specified. If there
601is a mismatch between the explicit or inferred section information for the
602variable declaration and its definition the resulting behavior is undefined.
Bob Wilson4cea0022014-06-12 20:40:33 +0000603
Michael Gottesmanf5735882013-01-31 05:48:48 +0000604A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000605the contents of the variable will **never** be modified (enabling better
606optimization, allowing the global data to be placed in the read-only
607section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000608initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000609variable.
610
611LLVM explicitly allows *declarations* of global variables to be marked
612constant, even if the final definition of the global is not. This
613capability can be used to enable slightly better optimization of the
614program, but requires the language definition to guarantee that
615optimizations based on the 'constantness' are valid for the translation
616units that do not include the definition.
617
618As SSA values, global variables define pointer values that are in scope
619(i.e. they dominate) all basic blocks in the program. Global variables
620always define a pointer to their "content" type because they describe a
621region of memory, and all memory objects in LLVM are accessed through
622pointers.
623
624Global variables can be marked with ``unnamed_addr`` which indicates
625that the address is not significant, only the content. Constants marked
626like this can be merged with other constants if they have the same
627initializer. Note that a constant with significant address *can* be
628merged with a ``unnamed_addr`` constant, the result being a constant
629whose address is significant.
630
Peter Collingbourne63b34cd2016-06-14 21:01:22 +0000631If the ``local_unnamed_addr`` attribute is given, the address is known to
632not be significant within the module.
633
Sean Silvaf722b002012-12-07 10:36:55 +0000634A global variable may be declared to reside in a target-specific
635numbered address space. For targets that support them, address spaces
636may affect how optimizations are performed and/or what target
637instructions are used to access the variable. The default address space
638is zero. The address space qualifier must precede any other attributes.
639
640LLVM allows an explicit section to be specified for globals. If the
641target supports it, it will emit globals to the section specified.
David Majnemerc8a11692014-06-27 18:19:56 +0000642Additionally, the global can placed in a comdat if the target has the necessary
643support.
Sean Silvaf722b002012-12-07 10:36:55 +0000644
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +0000645External declarations may have an explicit section specified. Section
646information is retained in LLVM IR for targets that make use of this
647information. Attaching section information to an external declaration is an
648assertion that its definition is located in the specified section. If the
649definition is located in a different section, the behavior is undefined.
Erich Keane93fb9f22017-08-22 15:30:43 +0000650
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000651By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000652variables defined within the module are not modified from their
Sean Silva7515d332015-08-06 22:56:48 +0000653initial values before the start of the global initializer. This is
Michael Gottesman42834992013-02-03 09:57:15 +0000654true even for variables potentially accessible from outside the
655module, including those with external linkage or appearing in
Yunzhong Gao9477d572013-12-05 18:37:54 +0000656``@llvm.used`` or dllexported variables. This assumption may be suppressed
657by marking the variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000658
Sean Silvaf722b002012-12-07 10:36:55 +0000659An explicit alignment may be specified for a global, which must be a
660power of 2. If not present, or if the alignment is set to zero, the
661alignment of the global is set by the target to whatever it feels
662convenient. If an explicit alignment is specified, the global is forced
663to have exactly that alignment. Targets and optimizers are not allowed
664to over-align the global if the global has an assigned section. In this
665case, the extra alignment could be observable: for example, code could
666assume that the globals are densely packed in their section and try to
667iterate over them as an array, alignment padding would break this
Reid Klecknercbebdef2014-07-15 01:16:09 +0000668iteration. The maximum alignment is ``1 << 29``.
Sean Silvaf722b002012-12-07 10:36:55 +0000669
Javed Absara8ddcaa2017-05-11 12:28:08 +0000670Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
Sean Fertile509132b2017-10-26 15:00:26 +0000671an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
Javed Absara8ddcaa2017-05-11 12:28:08 +0000672an optional :ref:`global attributes <glattrs>` and
673an optional list of attached :ref:`metadata <metadata>`.
Nico Rieck38f68c52014-01-14 15:22:47 +0000674
Peter Collingbourne5e51ed82015-02-04 00:42:45 +0000675Variables and aliases can have a
Rafael Espindola665d42a2014-05-28 18:15:43 +0000676:ref:`Thread Local Storage Model <tls_model>`.
677
Nico Rieck38f68c52014-01-14 15:22:47 +0000678Syntax::
679
Sean Fertile509132b2017-10-26 15:00:26 +0000680 @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
681 [DLLStorageClass] [ThreadLocal]
Peter Collingbourne63b34cd2016-06-14 21:01:22 +0000682 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
683 [ExternallyInitialized]
Bob Wilson4cea0022014-06-12 20:40:33 +0000684 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindolaf907a262015-01-06 22:55:16 +0000685 [, section "name"] [, comdat [($name)]]
Peter Collingbourne6aef9f92016-05-31 23:01:54 +0000686 [, align <Alignment>] (, !name !N)*
Nico Rieck38f68c52014-01-14 15:22:47 +0000687
Sean Silvaf722b002012-12-07 10:36:55 +0000688For example, the following defines a global in a numbered address space
689with an initializer, section, and alignment:
690
691.. code-block:: llvm
692
693 @G = addrspace(5) constant float 1.0, section "foo", align 4
694
Rafael Espindola1313a222013-10-29 13:44:11 +0000695The following example just declares a global variable
696
697.. code-block:: llvm
698
699 @G = external global i32
700
Sean Silvaf722b002012-12-07 10:36:55 +0000701The following example defines a thread-local global with the
702``initialexec`` TLS model:
703
704.. code-block:: llvm
705
706 @G = thread_local(initialexec) global i32 0, align 4
707
708.. _functionstructure:
709
710Functions
711---------
712
713LLVM function definitions consist of the "``define``" keyword, an
Sean Fertile509132b2017-10-26 15:00:26 +0000714optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
715specifier <runtime_preemption_model>`, an optional :ref:`visibility
Nico Rieck38f68c52014-01-14 15:22:47 +0000716style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
717an optional :ref:`calling convention <callingconv>`,
Sean Silvaf722b002012-12-07 10:36:55 +0000718an optional ``unnamed_addr`` attribute, a return type, an optional
719:ref:`parameter attribute <paramattrs>` for the return type, a function
720name, a (possibly empty) argument list (each with optional :ref:`parameter
721attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
Alexander Richardson47ff67b2018-08-23 09:25:17 +0000722an optional address space, an optional section, an optional alignment,
David Majnemerc8a11692014-06-27 18:19:56 +0000723an optional :ref:`comdat <langref_comdats>`,
Peter Collingbournebb660fc2014-12-03 02:08:38 +0000724an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemercc714e22015-06-17 20:52:32 +0000725an optional :ref:`prologue <prologuedata>`,
726an optional :ref:`personality <personalityfn>`,
Peter Collingbourned04e60e2015-11-06 02:41:02 +0000727an optional list of attached :ref:`metadata <metadata>`,
David Majnemercc714e22015-06-17 20:52:32 +0000728an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvaf722b002012-12-07 10:36:55 +0000729
730LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne63b34cd2016-06-14 21:01:22 +0000731optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
732<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
733optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
Alexander Richardson47ff67b2018-08-23 09:25:17 +0000734or ``local_unnamed_addr`` attribute, an optional address space, a return type,
735an optional :ref:`parameter attribute <paramattrs>` for the return type, a function name, a possibly
Peter Collingbourne63b34cd2016-06-14 21:01:22 +0000736empty list of arguments, an optional alignment, an optional :ref:`garbage
737collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
738:ref:`prologue <prologuedata>`.
Sean Silvaf722b002012-12-07 10:36:55 +0000739
Bill Wendlingcba7d7d2013-10-27 05:09:12 +0000740A function definition contains a list of basic blocks, forming the CFG (Control
741Flow Graph) for the function. Each basic block may optionally start with a label
742(giving the basic block a symbol table entry), contains a list of instructions,
743and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
744function return). If an explicit label is not provided, a block is assigned an
745implicit numbered label, using the next value from the same counter as used for
746unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
747entry block does not have an explicit label, it will be assigned label "%0",
748then the first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000749
750The first basic block in a function is special in two ways: it is
751immediately executed on entrance to the function, and it is not allowed
752to have predecessor basic blocks (i.e. there can not be any branches to
753the entry block of a function). Because the block can have no
754predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
755
756LLVM allows an explicit section to be specified for functions. If the
757target supports it, it will emit functions to the section specified.
Eric Christopher0f842f92015-02-19 18:46:25 +0000758Additionally, the function can be placed in a COMDAT.
Sean Silvaf722b002012-12-07 10:36:55 +0000759
760An explicit alignment may be specified for a function. If not present,
761or if the alignment is set to zero, the alignment of the function is set
762by the target to whatever it feels convenient. If an explicit alignment
763is specified, the function is forced to have at least that much
764alignment. All alignments must be a power of 2.
765
Eric Christopher0f842f92015-02-19 18:46:25 +0000766If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvaf722b002012-12-07 10:36:55 +0000767be significant and two identical functions can be merged.
768
Peter Collingbourne63b34cd2016-06-14 21:01:22 +0000769If the ``local_unnamed_addr`` attribute is given, the address is known to
770not be significant within the module.
771
Alexander Richardson47ff67b2018-08-23 09:25:17 +0000772If an explicit address space is not given, it will default to the program
773address space from the :ref:`datalayout string<langref_datalayout>`.
774
Sean Silvaf722b002012-12-07 10:36:55 +0000775Syntax::
776
Sean Fertile509132b2017-10-26 15:00:26 +0000777 define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
Sean Silvaf722b002012-12-07 10:36:55 +0000778 [cconv] [ret attrs]
779 <ResultType> @<FunctionName> ([argument list])
Alexander Richardson47ff67b2018-08-23 09:25:17 +0000780 [(unnamed_addr|local_unnamed_addr)] [AddrSpace] [fn Attrs]
781 [section "name"] [comdat [($name)]] [align N] [gc] [prefix Constant]
Peter Collingbourne63b34cd2016-06-14 21:01:22 +0000782 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvaf722b002012-12-07 10:36:55 +0000783
Sean Silva1709c2b2015-08-06 22:56:24 +0000784The argument list is a comma separated sequence of arguments where each
785argument is of the following form:
Dan Liew0ea6d442014-08-20 15:06:30 +0000786
787Syntax::
788
789 <type> [parameter Attrs] [name]
790
791
Eli Bendersky1de14102013-06-07 19:40:08 +0000792.. _langref_aliases:
793
Sean Silvaf722b002012-12-07 10:36:55 +0000794Aliases
795-------
796
Rafael Espindola2d21b252014-06-03 02:41:57 +0000797Aliases, unlike function or variables, don't create any new data. They
798are just a new symbol and metadata for an existing position.
799
800Aliases have a name and an aliasee that is either a global value or a
801constant expression.
802
Nico Rieck38f68c52014-01-14 15:22:47 +0000803Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Sean Fertile509132b2017-10-26 15:00:26 +0000804:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
Rafael Espindola2d21b252014-06-03 02:41:57 +0000805:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
806<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvaf722b002012-12-07 10:36:55 +0000807
808Syntax::
809
Sean Fertile509132b2017-10-26 15:00:26 +0000810 @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvaf722b002012-12-07 10:36:55 +0000811
Rafael Espindola1f21e0d2014-03-13 23:18:37 +0000812The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola19794da2013-11-01 17:09:14 +0000813``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola2d21b252014-06-03 02:41:57 +0000814might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola2def1792013-10-06 15:10:43 +0000815
Eric Christopher0f842f92015-02-19 18:46:25 +0000816Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola6fd1b8e2014-06-06 01:20:28 +0000817the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
818to the same content.
Rafael Espindola38048cd2014-03-12 20:15:49 +0000819
Peter Collingbourne63b34cd2016-06-14 21:01:22 +0000820If the ``local_unnamed_addr`` attribute is given, the address is known to
821not be significant within the module.
822
Rafael Espindola2d21b252014-06-03 02:41:57 +0000823Since aliases are only a second name, some restrictions apply, of which
824some can only be checked when producing an object file:
Rafael Espindola38048cd2014-03-12 20:15:49 +0000825
Rafael Espindola2d21b252014-06-03 02:41:57 +0000826* The expression defining the aliasee must be computable at assembly
827 time. Since it is just a name, no relocations can be used.
828
829* No alias in the expression can be weak as the possibility of the
830 intermediate alias being overridden cannot be represented in an
831 object file.
832
833* No global value in the expression can be a declaration, since that
834 would require a relocation, which is not possible.
Rafael Espindolaf165cf72014-03-27 15:26:56 +0000835
Dmitry Polukhinba492232016-04-07 12:32:19 +0000836.. _langref_ifunc:
837
838IFuncs
839-------
840
841IFuncs, like as aliases, don't create any new data or func. They are just a new
842symbol that dynamic linker resolves at runtime by calling a resolver function.
843
844IFuncs have a name and a resolver that is a function called by dynamic linker
845that returns address of another function associated with the name.
846
847IFunc may have an optional :ref:`linkage type <linkage>` and an optional
848:ref:`visibility style <visibility>`.
849
850Syntax::
851
852 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
853
854
David Majnemerc8a11692014-06-27 18:19:56 +0000855.. _langref_comdats:
856
857Comdats
858-------
859
860Comdat IR provides access to COFF and ELF object file COMDAT functionality.
861
Sean Silva7515d332015-08-06 22:56:48 +0000862Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerc8a11692014-06-27 18:19:56 +0000863specify this key will only end up in the final object file if the linker chooses
Sean Silva7515d332015-08-06 22:56:48 +0000864that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerc8a11692014-06-27 18:19:56 +0000865aliasee computes to, if any.
866
867Comdats have a selection kind to provide input on how the linker should
868choose between keys in two different object files.
869
870Syntax::
871
872 $<Name> = comdat SelectionKind
873
874The selection kind must be one of the following:
875
876``any``
877 The linker may choose any COMDAT key, the choice is arbitrary.
878``exactmatch``
879 The linker may choose any COMDAT key but the sections must contain the
880 same data.
881``largest``
882 The linker will choose the section containing the largest COMDAT key.
883``noduplicates``
884 The linker requires that only section with this COMDAT key exist.
885``samesize``
886 The linker may choose any COMDAT key but the sections must contain the
887 same amount of data.
888
Sam Clegge92250a2018-01-09 23:43:14 +0000889Note that the Mach-O platform doesn't support COMDATs, and ELF and WebAssembly
890only support ``any`` as a selection kind.
David Majnemerc8a11692014-06-27 18:19:56 +0000891
892Here is an example of a COMDAT group where a function will only be selected if
893the COMDAT key's section is the largest:
894
Renato Golin88ea57f2016-07-20 12:16:38 +0000895.. code-block:: text
David Majnemerc8a11692014-06-27 18:19:56 +0000896
897 $foo = comdat largest
Rafael Espindolaf907a262015-01-06 22:55:16 +0000898 @foo = global i32 2, comdat($foo)
David Majnemerc8a11692014-06-27 18:19:56 +0000899
Rafael Espindolaf907a262015-01-06 22:55:16 +0000900 define void @bar() comdat($foo) {
David Majnemerc8a11692014-06-27 18:19:56 +0000901 ret void
902 }
903
Rafael Espindolaf907a262015-01-06 22:55:16 +0000904As a syntactic sugar the ``$name`` can be omitted if the name is the same as
905the global name:
906
Renato Golin88ea57f2016-07-20 12:16:38 +0000907.. code-block:: text
Rafael Espindolaf907a262015-01-06 22:55:16 +0000908
909 $foo = comdat any
910 @foo = global i32 2, comdat
911
912
David Majnemerc8a11692014-06-27 18:19:56 +0000913In a COFF object file, this will create a COMDAT section with selection kind
914``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
915and another COMDAT section with selection kind
916``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg2bb42292014-09-10 17:05:08 +0000917section and contains the contents of the ``@bar`` symbol.
David Majnemerc8a11692014-06-27 18:19:56 +0000918
919There are some restrictions on the properties of the global object.
920It, or an alias to it, must have the same name as the COMDAT group when
921targeting COFF.
922The contents and size of this object may be used during link-time to determine
923which COMDAT groups get selected depending on the selection kind.
924Because the name of the object must match the name of the COMDAT group, the
925linkage of the global object must not be local; local symbols can get renamed
926if a collision occurs in the symbol table.
927
928The combined use of COMDATS and section attributes may yield surprising results.
929For example:
930
Renato Golin88ea57f2016-07-20 12:16:38 +0000931.. code-block:: text
David Majnemerc8a11692014-06-27 18:19:56 +0000932
933 $foo = comdat any
934 $bar = comdat any
Rafael Espindolaf907a262015-01-06 22:55:16 +0000935 @g1 = global i32 42, section "sec", comdat($foo)
936 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerc8a11692014-06-27 18:19:56 +0000937
938From the object file perspective, this requires the creation of two sections
Sean Silva7515d332015-08-06 22:56:48 +0000939with the same name. This is necessary because both globals belong to different
David Majnemerc8a11692014-06-27 18:19:56 +0000940COMDAT groups and COMDATs, at the object file level, are represented by
941sections.
942
Peter Collingbournefd8c9852015-06-30 19:10:31 +0000943Note that certain IR constructs like global variables and functions may
944create COMDATs in the object file in addition to any which are specified using
Sean Silva7515d332015-08-06 22:56:48 +0000945COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbournefd8c9852015-06-30 19:10:31 +0000946in individual sections (e.g. when `-data-sections` or `-function-sections`
947is supplied to `llc`).
David Majnemerc8a11692014-06-27 18:19:56 +0000948
Sean Silvaf722b002012-12-07 10:36:55 +0000949.. _namedmetadatastructure:
950
951Named Metadata
952--------------
953
954Named metadata is a collection of metadata. :ref:`Metadata
955nodes <metadata>` (but not metadata strings) are the only valid
956operands for a named metadata.
957
Filipe Cabecinhas6af0f892015-06-02 21:25:08 +0000958#. Named metadata are represented as a string of characters with the
959 metadata prefix. The rules for metadata names are the same as for
960 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
961 are still valid, which allows any character to be part of a name.
962
Sean Silvaf722b002012-12-07 10:36:55 +0000963Syntax::
964
965 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +0000966 !0 = !{!"zero"}
967 !1 = !{!"one"}
968 !2 = !{!"two"}
Sean Silvaf722b002012-12-07 10:36:55 +0000969 ; A named metadata.
970 !name = !{!0, !1, !2}
971
972.. _paramattrs:
973
974Parameter Attributes
975--------------------
976
977The return type and each parameter of a function type may have a set of
978*parameter attributes* associated with them. Parameter attributes are
979used to communicate additional information about the result or
980parameters of a function. Parameter attributes are considered to be part
981of the function, not of the function type, so functions with different
982parameter attributes can have the same function type.
983
984Parameter attributes are simple keywords that follow the type specified.
985If multiple parameter attributes are needed, they are space separated.
986For example:
987
988.. code-block:: llvm
989
990 declare i32 @printf(i8* noalias nocapture, ...)
991 declare i32 @atoi(i8 zeroext)
992 declare signext i8 @returns_signed_char()
993
994Note that any attributes for the function result (``nounwind``,
995``readonly``) come immediately after the argument list.
996
997Currently, only the following parameter attributes are defined:
998
999``zeroext``
1000 This indicates to the code generator that the parameter or return
1001 value should be zero-extended to the extent required by the target's
Hans Wennborg7dfc3432016-02-08 19:34:30 +00001002 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvaf722b002012-12-07 10:36:55 +00001003``signext``
1004 This indicates to the code generator that the parameter or return
1005 value should be sign-extended to the extent required by the target's
1006 ABI (which is usually 32-bits) by the caller (for a parameter) or
1007 the callee (for a return value).
1008``inreg``
1009 This indicates that this parameter or return value should be treated
Sean Silva1709c2b2015-08-06 22:56:24 +00001010 in a special target-dependent fashion while emitting code for
Sean Silvaf722b002012-12-07 10:36:55 +00001011 a function call or return (usually, by putting it in a register as
1012 opposed to memory, though some targets use it to distinguish between
1013 two different kinds of registers). Use of this attribute is
1014 target-specific.
1015``byval``
1016 This indicates that the pointer parameter should really be passed by
1017 value to the function. The attribute implies that a hidden copy of
1018 the pointee is made between the caller and the callee, so the callee
1019 is unable to modify the value in the caller. This attribute is only
1020 valid on LLVM pointer arguments. It is generally used to pass
1021 structs and arrays by value, but is also valid on pointers to
1022 scalars. The copy is considered to belong to the caller not the
1023 callee (for example, ``readonly`` functions should not write to
1024 ``byval`` parameters). This is not a valid attribute for return
1025 values.
1026
1027 The byval attribute also supports specifying an alignment with the
1028 align attribute. It indicates the alignment of the stack slot to
1029 form and the known alignment of the pointer specified to the call
1030 site. If the alignment is not specified, then the code generator
1031 makes a target-specific assumption.
1032
Reid Kleckner4b70bfc2013-12-19 02:14:12 +00001033.. _attr_inalloca:
1034
1035``inalloca``
1036
Reid Klecknerad60d3c2014-01-16 22:59:24 +00001037 The ``inalloca`` argument attribute allows the caller to take the
Sean Silva7515d332015-08-06 22:56:48 +00001038 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner3cbfa162014-01-17 23:58:17 +00001039 be a pointer to stack memory produced by an ``alloca`` instruction.
1040 The alloca, or argument allocation, must also be tagged with the
Sean Silva7515d332015-08-06 22:56:48 +00001041 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner3cbfa162014-01-17 23:58:17 +00001042 attribute, and that argument is guaranteed to be passed in memory.
Reid Kleckner4b70bfc2013-12-19 02:14:12 +00001043
Reid Kleckner3cbfa162014-01-17 23:58:17 +00001044 An argument allocation may be used by a call at most once because
Sean Silva7515d332015-08-06 22:56:48 +00001045 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner3cbfa162014-01-17 23:58:17 +00001046 used in conjunction with other attributes that affect argument
Sean Silva7515d332015-08-06 22:56:48 +00001047 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Kleckner8a24e832014-01-31 23:50:57 +00001048 ``inalloca`` attribute also disables LLVM's implicit lowering of
1049 large aggregate return values, which means that frontend authors
1050 must lower them with ``sret`` pointers.
Reid Kleckner4b70bfc2013-12-19 02:14:12 +00001051
Reid Klecknerad60d3c2014-01-16 22:59:24 +00001052 When the call site is reached, the argument allocation must have
1053 been the most recent stack allocation that is still live, or the
Eli Friedman25eb40c2018-07-25 18:26:38 +00001054 behavior is undefined. It is possible to allocate additional stack
Reid Klecknerad60d3c2014-01-16 22:59:24 +00001055 space after an argument allocation and before its call site, but it
1056 must be cleared off with :ref:`llvm.stackrestore
1057 <int_stackrestore>`.
Reid Kleckner4b70bfc2013-12-19 02:14:12 +00001058
1059 See :doc:`InAlloca` for more information on how to use this
1060 attribute.
1061
Sean Silvaf722b002012-12-07 10:36:55 +00001062``sret``
1063 This indicates that the pointer parameter specifies the address of a
1064 structure that is the return value of the function in the source
1065 program. This pointer must be guaranteed by the caller to be valid:
Reid Kleckner88e07a92016-09-08 15:45:27 +00001066 loads and stores to the structure may be assumed by the callee not
1067 to trap and to be properly aligned. This is not a valid attribute
1068 for return values.
Sean Silva0a50cec2014-04-08 21:06:22 +00001069
Daniel Neilsonafa2e7e2018-01-19 17:13:12 +00001070.. _attr_align:
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +00001071
Hal Finkelb3b2aac2014-07-22 16:58:55 +00001072``align <n>``
1073 This indicates that the pointer value may be assumed by the optimizer to
1074 have the specified alignment.
1075
1076 Note that this attribute has additional semantics when combined with the
1077 ``byval`` attribute.
1078
Sean Silva0a50cec2014-04-08 21:06:22 +00001079.. _noalias:
1080
Sean Silvaf722b002012-12-07 10:36:55 +00001081``noalias``
Hal Finkel57ec3b52014-11-21 02:22:46 +00001082 This indicates that objects accessed via pointer values
1083 :ref:`based <pointeraliasing>` on the argument or return value are not also
1084 accessed, during the execution of the function, via pointer values not
1085 *based* on the argument or return value. The attribute on a return value
1086 also has additional semantics described below. The caller shares the
1087 responsibility with the callee for ensuring that these requirements are met.
1088 For further details, please see the discussion of the NoAlias response in
1089 :ref:`alias analysis <Must, May, or No>`.
Sean Silvaf722b002012-12-07 10:36:55 +00001090
1091 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel57ec3b52014-11-21 02:22:46 +00001092 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvaf722b002012-12-07 10:36:55 +00001093
1094 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel57ec3b52014-11-21 02:22:46 +00001095 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1096 attribute on return values are stronger than the semantics of the attribute
1097 when used on function arguments. On function return values, the ``noalias``
1098 attribute indicates that the function acts like a system memory allocation
1099 function, returning a pointer to allocated storage disjoint from the
1100 storage for any other object accessible to the caller.
1101
Sean Silvaf722b002012-12-07 10:36:55 +00001102``nocapture``
1103 This indicates that the callee does not make any copies of the
1104 pointer that outlive the callee itself. This is not a valid
David Majnemer91391422016-05-26 17:36:22 +00001105 attribute for return values. Addresses used in volatile operations
1106 are considered to be captured.
Sean Silvaf722b002012-12-07 10:36:55 +00001107
1108.. _nest:
1109
1110``nest``
1111 This indicates that the pointer parameter can be excised using the
1112 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +00001113 attribute for return values and can only be applied to one parameter.
1114
1115``returned``
Stephen Lin8592fba2013-06-20 21:55:10 +00001116 This indicates that the function always returns the argument as its return
Hal Finkelba7f24f2016-07-10 21:52:39 +00001117 value. This is a hint to the optimizer and code generator used when
1118 generating the caller, allowing value propagation, tail call optimization,
1119 and omission of register saves and restores in some cases; it is not
1120 checked or enforced when generating the callee. The parameter and the
1121 function return type must be valid operands for the
1122 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1123 return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +00001124
Nick Lewyckyfe47ebf2014-05-20 01:23:40 +00001125``nonnull``
1126 This indicates that the parameter or return pointer is not null. This
1127 attribute may only be applied to pointer typed parameters. This is not
Eli Friedman25eb40c2018-07-25 18:26:38 +00001128 checked or enforced by LLVM; if the parameter or return pointer is null,
1129 the behavior is undefined.
Nick Lewyckyfe47ebf2014-05-20 01:23:40 +00001130
Hal Finkel11af4b42014-07-18 15:51:28 +00001131``dereferenceable(<n>)``
1132 This indicates that the parameter or return pointer is dereferenceable. This
1133 attribute may only be applied to pointer typed parameters. A pointer that
1134 is dereferenceable can be loaded from speculatively without a risk of
1135 trapping. The number of bytes known to be dereferenceable must be provided
1136 in parentheses. It is legal for the number of bytes to be less than the
1137 size of the pointee type. The ``nonnull`` attribute does not imply
1138 dereferenceability (consider a pointer to one element past the end of an
1139 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1140 ``addrspace(0)`` (which is the default address space).
1141
Sanjoy Das5ff59072015-04-16 20:29:50 +00001142``dereferenceable_or_null(<n>)``
1143 This indicates that the parameter or return value isn't both
1144 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silva7515d332015-08-06 22:56:48 +00001145 time. All non-null pointers tagged with
Sanjoy Das5ff59072015-04-16 20:29:50 +00001146 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1147 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1148 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1149 and in other address spaces ``dereferenceable_or_null(<n>)``
1150 implies that a pointer is at least one of ``dereferenceable(<n>)``
1151 or ``null`` (i.e. it may be both ``null`` and
Sean Silva7515d332015-08-06 22:56:48 +00001152 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das5ff59072015-04-16 20:29:50 +00001153 pointer typed parameters.
1154
Manman Rend9e9e2b2016-03-29 17:37:21 +00001155``swiftself``
1156 This indicates that the parameter is the self/context parameter. This is not
1157 a valid attribute for return values and can only be applied to one
1158 parameter.
1159
Manman Ren4bda8822016-04-01 21:41:15 +00001160``swifterror``
1161 This attribute is motivated to model and optimize Swift error handling. It
1162 can be applied to a parameter with pointer to pointer type or a
1163 pointer-sized alloca. At the call site, the actual argument that corresponds
Arnold Schwaighofer10c97f02016-09-10 19:42:53 +00001164 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1165 the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1166 the parameter or the alloca) can only be loaded and stored from, or used as
1167 a ``swifterror`` argument. This is not a valid attribute for return values
1168 and can only be applied to one parameter.
Manman Ren4bda8822016-04-01 21:41:15 +00001169
1170 These constraints allow the calling convention to optimize access to
1171 ``swifterror`` variables by associating them with a specific register at
1172 call boundaries rather than placing them in memory. Since this does change
1173 the calling convention, a function which uses the ``swifterror`` attribute
1174 on a parameter is not ABI-compatible with one which does not.
1175
1176 These constraints also allow LLVM to assume that a ``swifterror`` argument
1177 does not alias any other memory visible within a function and that a
1178 ``swifterror`` alloca passed as an argument does not escape.
1179
Sean Silvaf722b002012-12-07 10:36:55 +00001180.. _gc:
1181
Philip Reames64025c52015-02-25 23:45:20 +00001182Garbage Collector Strategy Names
1183--------------------------------
Sean Silvaf722b002012-12-07 10:36:55 +00001184
Philip Reames64025c52015-02-25 23:45:20 +00001185Each function may specify a garbage collector strategy name, which is simply a
Sean Silvaf722b002012-12-07 10:36:55 +00001186string:
1187
1188.. code-block:: llvm
1189
1190 define void @f() gc "name" { ... }
1191
Mehdi Amini18233dc2015-03-14 22:04:06 +00001192The supported values of *name* includes those :ref:`built in to LLVM
Sean Silva7515d332015-08-06 22:56:48 +00001193<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini18233dc2015-03-14 22:04:06 +00001194strategy will cause the compiler to alter its output in order to support the
Sean Silva7515d332015-08-06 22:56:48 +00001195named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reames64025c52015-02-25 23:45:20 +00001196garbage collector, this functionality is restricted to generating machine code
Mehdi Amini18233dc2015-03-14 22:04:06 +00001197which can interoperate with a collector provided externally.
Sean Silvaf722b002012-12-07 10:36:55 +00001198
Peter Collingbourne1e3037f2013-09-16 01:08:15 +00001199.. _prefixdata:
1200
1201Prefix Data
1202-----------
1203
Peter Collingbournebb660fc2014-12-03 02:08:38 +00001204Prefix data is data associated with a function which the code
1205generator will emit immediately before the function's entrypoint.
1206The purpose of this feature is to allow frontends to associate
1207language-specific runtime metadata with specific functions and make it
1208available through the function pointer while still allowing the
1209function pointer to be called.
Peter Collingbourne1e3037f2013-09-16 01:08:15 +00001210
Peter Collingbournebb660fc2014-12-03 02:08:38 +00001211To access the data for a given function, a program may bitcast the
1212function pointer to a pointer to the constant's type and dereference
Sean Silva7515d332015-08-06 22:56:48 +00001213index -1. This implies that the IR symbol points just past the end of
Peter Collingbournebb660fc2014-12-03 02:08:38 +00001214the prefix data. For instance, take the example of a function annotated
1215with a single ``i32``,
1216
1217.. code-block:: llvm
1218
1219 define void @f() prefix i32 123 { ... }
1220
1221The prefix data can be referenced as,
1222
1223.. code-block:: llvm
1224
David Blaikieaf9251f2015-03-04 22:02:58 +00001225 %0 = bitcast void* () @f to i32*
1226 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikie0effae82015-03-04 22:06:14 +00001227 %b = load i32, i32* %a
Peter Collingbournebb660fc2014-12-03 02:08:38 +00001228
1229Prefix data is laid out as if it were an initializer for a global variable
Sean Silva7515d332015-08-06 22:56:48 +00001230of the prefix data's type. The function will be placed such that the
Peter Collingbournebb660fc2014-12-03 02:08:38 +00001231beginning of the prefix data is aligned. This means that if the size
1232of the prefix data is not a multiple of the alignment size, the
1233function's entrypoint will not be aligned. If alignment of the
1234function's entrypoint is desired, padding must be added to the prefix
1235data.
1236
Sean Silva7515d332015-08-06 22:56:48 +00001237A function may have prefix data but no body. This has similar semantics
Peter Collingbournebb660fc2014-12-03 02:08:38 +00001238to the ``available_externally`` linkage in that the data may be used by the
1239optimizers but will not be emitted in the object file.
1240
1241.. _prologuedata:
1242
1243Prologue Data
1244-------------
1245
1246The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1247be inserted prior to the function body. This can be used for enabling
1248function hot-patching and instrumentation.
1249
1250To maintain the semantics of ordinary function calls, the prologue data must
Sean Silva7515d332015-08-06 22:56:48 +00001251have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne1e3037f2013-09-16 01:08:15 +00001252bytes which decode to a sequence of machine instructions, valid for the
1253module's target, which transfer control to the point immediately succeeding
Sean Silva7515d332015-08-06 22:56:48 +00001254the prologue data, without performing any other visible action. This allows
Peter Collingbourne1e3037f2013-09-16 01:08:15 +00001255the inliner and other passes to reason about the semantics of the function
Sean Silva7515d332015-08-06 22:56:48 +00001256definition without needing to reason about the prologue data. Obviously this
Peter Collingbournebb660fc2014-12-03 02:08:38 +00001257makes the format of the prologue data highly target dependent.
Peter Collingbourne1e3037f2013-09-16 01:08:15 +00001258
Peter Collingbournebb660fc2014-12-03 02:08:38 +00001259A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne1e3037f2013-09-16 01:08:15 +00001260which encodes the ``nop`` instruction:
1261
Renato Golin88ea57f2016-07-20 12:16:38 +00001262.. code-block:: text
Peter Collingbourne1e3037f2013-09-16 01:08:15 +00001263
Peter Collingbournebb660fc2014-12-03 02:08:38 +00001264 define void @f() prologue i8 144 { ... }
Peter Collingbourne1e3037f2013-09-16 01:08:15 +00001265
Peter Collingbournebb660fc2014-12-03 02:08:38 +00001266Generally prologue data can be formed by encoding a relative branch instruction
1267which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne1e3037f2013-09-16 01:08:15 +00001268x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1269
Renato Golin88ea57f2016-07-20 12:16:38 +00001270.. code-block:: text
Peter Collingbourne1e3037f2013-09-16 01:08:15 +00001271
1272 %0 = type <{ i8, i8, i8* }>
1273
Peter Collingbournebb660fc2014-12-03 02:08:38 +00001274 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne1e3037f2013-09-16 01:08:15 +00001275
Sean Silva7515d332015-08-06 22:56:48 +00001276A function may have prologue data but no body. This has similar semantics
Peter Collingbourne1e3037f2013-09-16 01:08:15 +00001277to the ``available_externally`` linkage in that the data may be used by the
1278optimizers but will not be emitted in the object file.
1279
David Majnemercc714e22015-06-17 20:52:32 +00001280.. _personalityfn:
1281
1282Personality Function
David Majnemerdfe93a52015-06-17 21:21:16 +00001283--------------------
David Majnemercc714e22015-06-17 20:52:32 +00001284
1285The ``personality`` attribute permits functions to specify what function
1286to use for exception handling.
1287
Bill Wendling95ce4c22013-02-06 06:52:58 +00001288.. _attrgrp:
1289
1290Attribute Groups
1291----------------
1292
1293Attribute groups are groups of attributes that are referenced by objects within
1294the IR. They are important for keeping ``.ll`` files readable, because a lot of
1295functions will use the same set of attributes. In the degenerative case of a
1296``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1297group will capture the important command line flags used to build that file.
1298
1299An attribute group is a module-level object. To use an attribute group, an
1300object references the attribute group's ID (e.g. ``#37``). An object may refer
1301to more than one attribute group. In that situation, the attributes from the
1302different groups are merged.
1303
1304Here is an example of attribute groups for a function that should always be
1305inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1306
1307.. code-block:: llvm
1308
1309 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +00001310 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +00001311
1312 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +00001313 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +00001314
1315 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1316 define void @f() #0 #1 { ... }
1317
Sean Silvaf722b002012-12-07 10:36:55 +00001318.. _fnattrs:
1319
1320Function Attributes
1321-------------------
1322
1323Function attributes are set to communicate additional information about
1324a function. Function attributes are considered to be part of the
1325function, not of the function type, so functions with different function
1326attributes can have the same function type.
1327
1328Function attributes are simple keywords that follow the type specified.
1329If multiple attributes are needed, they are space separated. For
1330example:
1331
1332.. code-block:: llvm
1333
1334 define void @f() noinline { ... }
1335 define void @f() alwaysinline { ... }
1336 define void @f() alwaysinline optsize { ... }
1337 define void @f() optsize { ... }
1338
Sean Silvaf722b002012-12-07 10:36:55 +00001339``alignstack(<n>)``
1340 This attribute indicates that, when emitting the prologue and
1341 epilogue, the backend should forcibly align the stack pointer.
1342 Specify the desired alignment, which must be a power of two, in
1343 parentheses.
George Burgess IV274105b2016-04-12 01:05:35 +00001344``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1345 This attribute indicates that the annotated function will always return at
1346 least a given number of bytes (or null). Its arguments are zero-indexed
1347 parameter numbers; if one argument is provided, then it's assumed that at
1348 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1349 returned pointer. If two are provided, then it's assumed that
1350 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1351 available. The referenced parameters must be integer types. No assumptions
1352 are made about the contents of the returned block of memory.
Sean Silvaf722b002012-12-07 10:36:55 +00001353``alwaysinline``
1354 This attribute indicates that the inliner should attempt to inline
1355 this function into callers whenever possible, ignoring any active
1356 inlining size threshold for this caller.
Michael Gottesman2253a2f2013-06-27 00:25:01 +00001357``builtin``
1358 This indicates that the callee function at a call site should be
1359 recognized as a built-in function, even though the function's declaration
Michael Gottesman550d9bf2013-07-02 21:32:56 +00001360 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smithd1d53e82014-07-31 04:25:36 +00001361 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman2253a2f2013-06-27 00:25:01 +00001362 attribute.
Michael Gottesmane19a8582013-06-27 22:48:08 +00001363``cold``
1364 This attribute indicates that this function is rarely called. When
1365 computing edge weights, basic blocks post-dominated by a cold
1366 function call are also considered to be cold; and, thus, given low
1367 weight.
Owen Anderson13146c72015-05-26 23:48:40 +00001368``convergent``
Justin Lebar96d60522016-02-09 23:03:17 +00001369 In some parallel execution models, there exist operations that cannot be
1370 made control-dependent on any additional values. We call such operations
Justin Lebar97a9fd02016-02-17 17:46:41 +00001371 ``convergent``, and mark them with this attribute.
Justin Lebar96d60522016-02-09 23:03:17 +00001372
Justin Lebar97a9fd02016-02-17 17:46:41 +00001373 The ``convergent`` attribute may appear on functions or call/invoke
1374 instructions. When it appears on a function, it indicates that calls to
1375 this function should not be made control-dependent on additional values.
Justin Bogner45d8d9a2016-07-06 20:02:45 +00001376 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebar96d60522016-02-09 23:03:17 +00001377 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar97a9fd02016-02-17 17:46:41 +00001378 values.
Justin Lebar96d60522016-02-09 23:03:17 +00001379
Justin Lebar97a9fd02016-02-17 17:46:41 +00001380 When it appears on a call/invoke, the ``convergent`` attribute indicates
1381 that we should treat the call as though we're calling a convergent
1382 function. This is particularly useful on indirect calls; without this we
1383 may treat such calls as though the target is non-convergent.
1384
1385 The optimizer may remove the ``convergent`` attribute on functions when it
1386 can prove that the function does not execute any convergent operations.
1387 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1388 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajee7970e2015-12-16 16:16:19 +00001389``inaccessiblememonly``
1390 This attribute indicates that the function may only access memory that
1391 is not accessible by the module being compiled. This is a weaker form
Eli Friedman25eb40c2018-07-25 18:26:38 +00001392 of ``readnone``. If the function reads or writes other memory, the
1393 behavior is undefined.
Vaivaswatha Nagarajee7970e2015-12-16 16:16:19 +00001394``inaccessiblemem_or_argmemonly``
1395 This attribute indicates that the function may only access memory that is
1396 either not accessible by the module being compiled, or is pointed to
Eli Friedman25eb40c2018-07-25 18:26:38 +00001397 by its pointer arguments. This is a weaker form of ``argmemonly``. If the
1398 function reads or writes other memory, the behavior is undefined.
Sean Silvaf722b002012-12-07 10:36:55 +00001399``inlinehint``
1400 This attribute indicates that the source code contained a hint that
1401 inlining this function is desirable (such as the "inline" keyword in
1402 C/C++). It is just a hint; it imposes no requirements on the
1403 inliner.
Tom Roeder5d0f7af2014-06-05 19:29:43 +00001404``jumptable``
1405 This attribute indicates that the function should be added to a
1406 jump-instruction table at code-generation time, and that all address-taken
1407 references to this function should be replaced with a reference to the
1408 appropriate jump-instruction-table function pointer. Note that this creates
1409 a new pointer for the original function, which means that code that depends
1410 on function-pointer identity can break. So, any function annotated with
1411 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +00001412``minsize``
1413 This attribute suggests that optimization passes and code generator
1414 passes make choices that keep the code size of this function as small
Andrew Trickcf940ce2013-10-31 17:18:07 +00001415 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +00001416 performance in order to minimize the size of the generated code.
Sean Silvaf722b002012-12-07 10:36:55 +00001417``naked``
1418 This attribute disables prologue / epilogue emission for the
1419 function. This can have very system-specific consequences.
Sumanth Gundapaneni2286bba2017-07-28 22:26:22 +00001420``no-jump-tables``
1421 When this attribute is set to true, the jump tables and lookup tables that
1422 can be generated from a switch case lowering are disabled.
Eli Benderskyf8416092013-04-18 16:11:44 +00001423``nobuiltin``
Michael Gottesman2253a2f2013-06-27 00:25:01 +00001424 This indicates that the callee function at a call site is not recognized as
1425 a built-in function. LLVM will retain the original call and not replace it
1426 with equivalent code based on the semantics of the built-in function, unless
1427 the call site uses the ``builtin`` attribute. This is valid at call sites
1428 and on function declarations and definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +00001429``noduplicate``
1430 This attribute indicates that calls to the function cannot be
1431 duplicated. A call to a ``noduplicate`` function may be moved
1432 within its parent function, but may not be duplicated within
1433 its parent function.
1434
1435 A function containing a ``noduplicate`` call may still
1436 be an inlining candidate, provided that the call is not
1437 duplicated by inlining. That implies that the function has
1438 internal linkage and only has one call site, so the original
1439 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +00001440``noimplicitfloat``
Sanjay Patel16e9a292018-03-21 14:15:33 +00001441 This attributes disables implicit floating-point instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00001442``noinline``
1443 This attribute indicates that the inliner should never inline this
1444 function in any situation. This attribute may not be used together
1445 with the ``alwaysinline`` attribute.
Sean Silvae6b10792013-08-06 19:34:37 +00001446``nonlazybind``
1447 This attribute suppresses lazy symbol binding for the function. This
1448 may make calls to the function faster, at the cost of extra program
1449 startup time if the function is not called during program startup.
Sean Silvaf722b002012-12-07 10:36:55 +00001450``noredzone``
1451 This attribute indicates that the code generator should not use a
1452 red zone, even if the target-specific ABI normally permits it.
Kristina Brookse97176ff2018-10-18 03:14:37 +00001453``indirect-tls-seg-refs``
1454 This attribute indicates that the code generator should not use
1455 direct TLS access through segment registers, even if the
1456 target-specific ABI normally permits it.
Sean Silvaf722b002012-12-07 10:36:55 +00001457``noreturn``
1458 This function attribute indicates that the function never returns
1459 normally. This produces undefined behavior at runtime if the
1460 function ever does dynamically return.
James Molloyd0019322015-11-06 10:32:53 +00001461``norecurse``
1462 This function attribute indicates that the function does not call itself
1463 either directly or indirectly down any possible call path. This produces
1464 undefined behavior at runtime if the function ever does recurse.
Sean Silvaf722b002012-12-07 10:36:55 +00001465``nounwind``
Reid Kleckner690248b2015-02-11 01:23:16 +00001466 This function attribute indicates that the function never raises an
1467 exception. If the function does raise an exception, its runtime
1468 behavior is undefined. However, functions marked nounwind may still
1469 trap or generate asynchronous exceptions. Exception handling schemes
1470 that are recognized by LLVM to handle asynchronous exceptions, such
1471 as SEH, will still provide their implementation defined semantics.
Manoj Guptac6da6862018-07-09 22:27:23 +00001472``"null-pointer-is-valid"``
1473 If ``"null-pointer-is-valid"`` is set to ``"true"``, then ``null`` address
1474 in address-space 0 is considered to be a valid address for memory loads and
1475 stores. Any analysis or optimization should not treat dereferencing a
1476 pointer to ``null`` as undefined behavior in this function.
1477 Note: Comparing address of a global variable to ``null`` may still
1478 evaluate to false because of a limitation in querying this attribute inside
1479 constant expressions.
Matt Morehouse590f2e22018-03-22 19:50:10 +00001480``optforfuzzing``
1481 This attribute indicates that this function should be optimized
1482 for maximum fuzzing signal.
Andrea Di Biagio5768bb82013-08-23 11:53:55 +00001483``optnone``
Paul Robinsonae5d4bf2015-11-30 21:56:16 +00001484 This function attribute indicates that most optimization passes will skip
1485 this function, with the exception of interprocedural optimization passes.
1486 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio5768bb82013-08-23 11:53:55 +00001487 This attribute cannot be used together with the ``alwaysinline``
1488 attribute; this attribute is also incompatible
1489 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickcf940ce2013-10-31 17:18:07 +00001490
Paul Robinsonfe45fd02013-11-18 21:44:03 +00001491 This attribute requires the ``noinline`` attribute to be specified on
1492 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio5768bb82013-08-23 11:53:55 +00001493 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsonfe45fd02013-11-18 21:44:03 +00001494 candidates for inlining into the body of this function.
Sean Silvaf722b002012-12-07 10:36:55 +00001495``optsize``
1496 This attribute suggests that optimization passes and code generator
1497 passes make choices that keep the code size of this function low,
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +00001498 and otherwise do optimizations specifically to reduce code size as
1499 long as they do not significantly impact runtime performance.
Sanjoy Das15132852016-04-19 05:24:47 +00001500``"patchable-function"``
1501 This attribute tells the code generator that the code
1502 generated for this function needs to follow certain conventions that
1503 make it possible for a runtime function to patch over it later.
1504 The exact effect of this attribute depends on its string value,
Charles Davisd77fdcb2016-08-08 21:20:15 +00001505 for which there currently is one legal possibility:
Sanjoy Das15132852016-04-19 05:24:47 +00001506
1507 * ``"prologue-short-redirect"`` - This style of patchable
1508 function is intended to support patching a function prologue to
1509 redirect control away from the function in a thread safe
1510 manner. It guarantees that the first instruction of the
1511 function will be large enough to accommodate a short jump
1512 instruction, and will be sufficiently aligned to allow being
1513 fully changed via an atomic compare-and-swap instruction.
1514 While the first requirement can be satisfied by inserting large
1515 enough NOP, LLVM can and will try to re-purpose an existing
1516 instruction (i.e. one that would have to be emitted anyway) as
1517 the patchable instruction larger than a short jump.
1518
1519 ``"prologue-short-redirect"`` is currently only supported on
1520 x86-64.
1521
1522 This attribute by itself does not imply restrictions on
1523 inter-procedural optimizations. All of the semantic effects the
1524 patching may have to be separately conveyed via the linkage type.
whitequark4c34d0af2017-06-21 18:46:50 +00001525``"probe-stack"``
1526 This attribute indicates that the function will trigger a guard region
1527 in the end of the stack. It ensures that accesses to the stack must be
1528 no further apart than the size of the guard region to a previous
1529 access of the stack. It takes one required string value, the name of
1530 the stack probing function that will be called.
1531
1532 If a function that has a ``"probe-stack"`` attribute is inlined into
1533 a function with another ``"probe-stack"`` attribute, the resulting
1534 function has the ``"probe-stack"`` attribute of the caller. If a
1535 function that has a ``"probe-stack"`` attribute is inlined into a
1536 function that has no ``"probe-stack"`` attribute at all, the resulting
1537 function has the ``"probe-stack"`` attribute of the callee.
Sean Silvaf722b002012-12-07 10:36:55 +00001538``readnone``
Nick Lewyckydc897372013-07-06 00:29:58 +00001539 On a function, this attribute indicates that the function computes its
1540 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvaf722b002012-12-07 10:36:55 +00001541 without dereferencing any pointer arguments or otherwise accessing
1542 any mutable state (e.g. memory, control registers, etc) visible to
1543 caller functions. It does not write through any pointer arguments
1544 (including ``byval`` arguments) and never changes any state visible
Sanjoy Das6980b102017-02-13 23:19:07 +00001545 to callers. This means while it cannot unwind exceptions by calling
1546 the ``C++`` exception throwing methods (since they write to memory), there may
1547 be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1548 visible memory.
Andrew Trickcf940ce2013-10-31 17:18:07 +00001549
Nick Lewyckydc897372013-07-06 00:29:58 +00001550 On an argument, this attribute indicates that the function does not
1551 dereference that pointer argument, even though it may read or write the
Nick Lewyckyd1066ef2013-07-06 01:04:47 +00001552 memory that the pointer points to if accessed through other pointers.
Eli Friedman25eb40c2018-07-25 18:26:38 +00001553
1554 If a readnone function reads or writes memory visible to the program, or
1555 has other side-effects, the behavior is undefined. If a function reads from
1556 or writes to a readnone pointer argument, the behavior is undefined.
Sean Silvaf722b002012-12-07 10:36:55 +00001557``readonly``
Nick Lewyckydc897372013-07-06 00:29:58 +00001558 On a function, this attribute indicates that the function does not write
1559 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvaf722b002012-12-07 10:36:55 +00001560 modify any state (e.g. memory, control registers, etc) visible to
1561 caller functions. It may dereference pointer arguments and read
1562 state that may be set in the caller. A readonly function always
1563 returns the same value (or unwinds an exception identically) when
Sanjoy Das6980b102017-02-13 23:19:07 +00001564 called with the same set of arguments and global state. This means while it
1565 cannot unwind exceptions by calling the ``C++`` exception throwing methods
1566 (since they write to memory), there may be non-``C++`` mechanisms that throw
1567 exceptions without writing to LLVM visible memory.
Andrew Trickcf940ce2013-10-31 17:18:07 +00001568
Nick Lewyckydc897372013-07-06 00:29:58 +00001569 On an argument, this attribute indicates that the function does not write
1570 through this pointer argument, even though it may write to the memory that
1571 the pointer points to.
Eli Friedman25eb40c2018-07-25 18:26:38 +00001572
1573 If a readonly function writes memory visible to the program, or
1574 has other side-effects, the behavior is undefined. If a function writes to
1575 a readonly pointer argument, the behavior is undefined.
whitequarke4b18902017-06-22 23:22:36 +00001576``"stack-probe-size"``
1577 This attribute controls the behavior of stack probes: either
1578 the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1579 It defines the size of the guard region. It ensures that if the function
1580 may use more stack space than the size of the guard region, stack probing
1581 sequence will be emitted. It takes one required integer value, which
1582 is 4096 by default.
1583
1584 If a function that has a ``"stack-probe-size"`` attribute is inlined into
1585 a function with another ``"stack-probe-size"`` attribute, the resulting
1586 function has the ``"stack-probe-size"`` attribute that has the lower
1587 numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1588 inlined into a function that has no ``"stack-probe-size"`` attribute
1589 at all, the resulting function has the ``"stack-probe-size"`` attribute
1590 of the callee.
Hans Wennborg54a2a8a2018-02-23 13:46:25 +00001591``"no-stack-arg-probe"``
1592 This attribute disables ABI-required stack probes, if any.
Nicolai Haehnleb07f5402016-07-04 08:01:29 +00001593``writeonly``
1594 On a function, this attribute indicates that the function may write to but
1595 does not read from memory.
1596
1597 On an argument, this attribute indicates that the function may write to but
1598 does not read through this pointer argument (even though it may read from
1599 the memory that the pointer points to).
Eli Friedman25eb40c2018-07-25 18:26:38 +00001600
1601 If a writeonly function reads memory visible to the program, or
1602 has other side-effects, the behavior is undefined. If a function reads
1603 from a writeonly pointer argument, the behavior is undefined.
Igor Laevsky6690dbf2015-07-11 10:30:36 +00001604``argmemonly``
1605 This attribute indicates that the only memory accesses inside function are
1606 loads and stores from objects pointed to by its pointer-typed arguments,
1607 with arbitrary offsets. Or in other words, all memory operations in the
1608 function can refer to memory only using pointers based on its function
1609 arguments.
Eli Friedman25eb40c2018-07-25 18:26:38 +00001610
Igor Laevsky6690dbf2015-07-11 10:30:36 +00001611 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1612 in order to specify that function reads only from its arguments.
Eli Friedman25eb40c2018-07-25 18:26:38 +00001613
1614 If an argmemonly function reads or writes memory other than the pointer
1615 arguments, or has other side-effects, the behavior is undefined.
Sean Silvaf722b002012-12-07 10:36:55 +00001616``returns_twice``
1617 This attribute indicates that this function can return twice. The C
1618 ``setjmp`` is an example of such a function. The compiler disables
1619 some optimizations (like tail calls) in the caller of these
1620 functions.
Peter Collingbourne7ffec832015-06-15 21:07:11 +00001621``safestack``
1622 This attribute indicates that
1623 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1624 protection is enabled for this function.
1625
1626 If a function that has a ``safestack`` attribute is inlined into a
1627 function that doesn't have a ``safestack`` attribute or which has an
1628 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1629 function will have a ``safestack`` attribute.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +00001630``sanitize_address``
1631 This attribute indicates that AddressSanitizer checks
1632 (dynamic address safety analysis) are enabled for this function.
1633``sanitize_memory``
1634 This attribute indicates that MemorySanitizer checks (dynamic detection
1635 of accesses to uninitialized memory) are enabled for this function.
1636``sanitize_thread``
1637 This attribute indicates that ThreadSanitizer checks
1638 (dynamic thread safety analysis) are enabled for this function.
Evgeniy Stepanovd47b5b32017-12-09 00:21:41 +00001639``sanitize_hwaddress``
1640 This attribute indicates that HWAddressSanitizer checks
1641 (dynamic address safety analysis based on tagged pointers) are enabled for
1642 this function.
Chandler Carruthd2b1fb12018-09-04 12:38:00 +00001643``speculative_load_hardening``
1644 This attribute indicates that
1645 `Speculative Load Hardening <https://llvm.org/docs/SpeculativeLoadHardening.html>`_
Zola Bridges1d994c22018-11-27 19:56:46 +00001646 should be enabled for the function body.
1647
1648 Speculative Load Hardening is a best-effort mitigation against
1649 information leak attacks that make use of control flow
1650 miss-speculation - specifically miss-speculation of whether a branch
1651 is taken or not. Typically vulnerabilities enabling such attacks are
1652 classified as "Spectre variant #1". Notably, this does not attempt to
1653 mitigate against miss-speculation of branch target, classified as
1654 "Spectre variant #2" vulnerabilities.
Chandler Carruthd2b1fb12018-09-04 12:38:00 +00001655
1656 When inlining, the attribute is sticky. Inlining a function that carries
1657 this attribute will cause the caller to gain the attribute. This is intended
1658 to provide a maximally conservative model where the code in a function
1659 annotated with this attribute will always (even after inlining) end up
1660 hardened.
Matt Arsenaultea376da2017-04-28 20:25:27 +00001661``speculatable``
1662 This function attribute indicates that the function does not have any
1663 effects besides calculating its result and does not have undefined behavior.
1664 Note that ``speculatable`` is not enough to conclude that along any
Xin Tong66ac3d52017-05-02 23:24:12 +00001665 particular execution path the number of calls to this function will not be
Matt Arsenaultea376da2017-04-28 20:25:27 +00001666 externally observable. This attribute is only valid on functions
1667 and declarations, not on individual call sites. If a function is
1668 incorrectly marked as speculatable and really does exhibit
1669 undefined behavior, the undefined behavior may be observed even
1670 if the call site is dead code.
1671
Sean Silvaf722b002012-12-07 10:36:55 +00001672``ssp``
1673 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00001674 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +00001675 placed on the stack before the local variables that's checked upon
1676 return from the function to see if it has been overwritten. A
1677 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001678 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +00001679
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001680 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1681 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1682 - Calls to alloca() with variable sizes or constant sizes greater than
1683 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +00001684
Josh Mageecde5c262014-02-01 01:36:16 +00001685 Variables that are identified as requiring a protector will be arranged
1686 on the stack such that they are adjacent to the stack protector guard.
1687
Sean Silvaf722b002012-12-07 10:36:55 +00001688 If a function that has an ``ssp`` attribute is inlined into a
1689 function that doesn't have an ``ssp`` attribute, then the resulting
1690 function will have an ``ssp`` attribute.
1691``sspreq``
1692 This attribute indicates that the function should *always* emit a
1693 stack smashing protector. This overrides the ``ssp`` function
1694 attribute.
1695
Josh Mageecde5c262014-02-01 01:36:16 +00001696 Variables that are identified as requiring a protector will be arranged
1697 on the stack such that they are adjacent to the stack protector guard.
1698 The specific layout rules are:
1699
1700 #. Large arrays and structures containing large arrays
1701 (``>= ssp-buffer-size``) are closest to the stack protector.
1702 #. Small arrays and structures containing small arrays
1703 (``< ssp-buffer-size``) are 2nd closest to the protector.
1704 #. Variables that have had their address taken are 3rd closest to the
1705 protector.
1706
Sean Silvaf722b002012-12-07 10:36:55 +00001707 If a function that has an ``sspreq`` attribute is inlined into a
1708 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +00001709 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1710 an ``sspreq`` attribute.
1711``sspstrong``
1712 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001713 protector. This attribute causes a strong heuristic to be used when
Sean Silva7515d332015-08-06 22:56:48 +00001714 determining if a function needs stack protectors. The strong heuristic
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001715 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +00001716
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001717 - Arrays of any size and type
1718 - Aggregates containing an array of any size and type.
1719 - Calls to alloca().
1720 - Local variables that have had their address taken.
1721
Josh Mageecde5c262014-02-01 01:36:16 +00001722 Variables that are identified as requiring a protector will be arranged
1723 on the stack such that they are adjacent to the stack protector guard.
1724 The specific layout rules are:
1725
1726 #. Large arrays and structures containing large arrays
1727 (``>= ssp-buffer-size``) are closest to the stack protector.
1728 #. Small arrays and structures containing small arrays
1729 (``< ssp-buffer-size``) are 2nd closest to the protector.
1730 #. Variables that have had their address taken are 3rd closest to the
1731 protector.
1732
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001733 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +00001734
1735 If a function that has an ``sspstrong`` attribute is inlined into a
1736 function that doesn't have an ``sspstrong`` attribute, then the
1737 resulting function will have an ``sspstrong`` attribute.
Andrew Kaylor68d0bd12017-08-14 21:15:13 +00001738``strictfp``
1739 This attribute indicates that the function was called from a scope that
Sanjay Patel16e9a292018-03-21 14:15:33 +00001740 requires strict floating-point semantics. LLVM will not attempt any
1741 optimizations that require assumptions about the floating-point rounding
1742 mode or that might alter the state of floating-point status flags that
Andrew Kaylor68d0bd12017-08-14 21:15:13 +00001743 might otherwise be set or cleared by calling this function.
Reid Kleckner258b7712015-03-04 00:08:56 +00001744``"thunk"``
1745 This attribute indicates that the function will delegate to some other
1746 function with a tail call. The prototype of a thunk should not be used for
1747 optimization purposes. The caller is expected to cast the thunk prototype to
1748 match the thunk target prototype.
Sean Silvaf722b002012-12-07 10:36:55 +00001749``uwtable``
1750 This attribute indicates that the ABI being targeted requires that
Sean Silva1709c2b2015-08-06 22:56:24 +00001751 an unwind table entry be produced for this function even if we can
Sean Silvaf722b002012-12-07 10:36:55 +00001752 show that no exceptions passes by it. This is normally the case for
1753 the ELF x86-64 abi, but it can be disabled for some compilation
1754 units.
Oren Ben Simhon10c992c2018-03-17 13:29:46 +00001755``nocf_check``
Hiroshi Inoue96dcb662018-06-15 05:10:09 +00001756 This attribute indicates that no control-flow check will be performed on
Oren Ben Simhon10c992c2018-03-17 13:29:46 +00001757 the attributed entity. It disables -fcf-protection=<> for a specific
1758 entity to fine grain the HW control flow protection mechanism. The flag
Hiroshi Inoue96dcb662018-06-15 05:10:09 +00001759 is target independent and currently appertains to a function or function
Oren Ben Simhon10c992c2018-03-17 13:29:46 +00001760 pointer.
Vlad Tsyrklevich45013b22018-04-03 20:10:40 +00001761``shadowcallstack``
1762 This attribute indicates that the ShadowCallStack checks are enabled for
1763 the function. The instrumentation checks that the return address for the
1764 function has not changed between the function prolog and eiplog. It is
1765 currently x86_64-specific.
Sean Silvaf722b002012-12-07 10:36:55 +00001766
Javed Absara8ddcaa2017-05-11 12:28:08 +00001767.. _glattrs:
1768
1769Global Attributes
1770-----------------
1771
1772Attributes may be set to communicate additional information about a global variable.
1773Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
1774are grouped into a single :ref:`attribute group <attrgrp>`.
Sanjoy Dasf70eb722015-09-24 23:34:52 +00001775
1776.. _opbundles:
1777
1778Operand Bundles
1779---------------
1780
Sanjoy Dasf70eb722015-09-24 23:34:52 +00001781Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dascfca9be2015-09-25 00:05:40 +00001782with certain LLVM instructions (currently only ``call`` s and
1783``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasf70eb722015-09-24 23:34:52 +00001784incorrect and will change program semantics.
1785
1786Syntax::
David Majnemere7b7bf72015-10-22 01:46:38 +00001787
Sanjoy Das0977d4d2015-11-21 09:12:07 +00001788 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasf70eb722015-09-24 23:34:52 +00001789 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1790 bundle operand ::= SSA value
1791 tag ::= string constant
1792
1793Operand bundles are **not** part of a function's signature, and a
1794given function may be called from multiple places with different kinds
1795of operand bundles. This reflects the fact that the operand bundles
1796are conceptually a part of the ``call`` (or ``invoke``), not the
1797callee being dispatched to.
1798
1799Operand bundles are a generic mechanism intended to support
1800runtime-introspection-like functionality for managed languages. While
1801the exact semantics of an operand bundle depend on the bundle tag,
1802there are certain limitations to how much the presence of an operand
1803bundle can influence the semantics of a program. These restrictions
1804are described as the semantics of an "unknown" operand bundle. As
1805long as the behavior of an operand bundle is describable within these
1806restrictions, LLVM does not need to have special knowledge of the
1807operand bundle to not miscompile programs containing it.
1808
David Majnemere7b7bf72015-10-22 01:46:38 +00001809- The bundle operands for an unknown operand bundle escape in unknown
1810 ways before control is transferred to the callee or invokee.
1811- Calls and invokes with operand bundles have unknown read / write
1812 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru3c5ec722016-02-14 20:16:22 +00001813 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Dasf1c277c2015-10-22 03:12:22 +00001814 callsite specific attributes.
1815- An operand bundle at a call site cannot change the implementation
1816 of the called function. Inter-procedural optimizations work as
1817 usual as long as they take into account the first two properties.
Sanjoy Dasf70eb722015-09-24 23:34:52 +00001818
Sanjoy Dasb4b58ba2015-11-11 21:38:02 +00001819More specific types of operand bundles are described below.
1820
Sanjoy Dasf9e72192016-03-11 19:08:34 +00001821.. _deopt_opbundles:
1822
Sanjoy Dasb4b58ba2015-11-11 21:38:02 +00001823Deoptimization Operand Bundles
1824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1825
Sanjoy Das0977d4d2015-11-21 09:12:07 +00001826Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dasb4b58ba2015-11-11 21:38:02 +00001827operand bundle tag. These operand bundles represent an alternate
1828"safe" continuation for the call site they're attached to, and can be
1829used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das0977d4d2015-11-21 09:12:07 +00001830specified call site. There can be at most one ``"deopt"`` operand
1831bundle attached to a call site. Exact details of deoptimization is
1832out of scope for the language reference, but it usually involves
1833rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dasb4b58ba2015-11-11 21:38:02 +00001834
1835From the compiler's perspective, deoptimization operand bundles make
1836the call sites they're attached to at least ``readonly``. They read
1837through all of their pointer typed operands (even if they're not
1838otherwise escaped) and the entire visible heap. Deoptimization
1839operand bundles do not capture their operands except during
1840deoptimization, in which case control will not be returned to the
1841compiled frame.
1842
Sanjoy Dasaca81122015-11-18 06:23:38 +00001843The inliner knows how to inline through calls that have deoptimization
1844operand bundles. Just like inlining through a normal call site
1845involves composing the normal and exceptional continuations, inlining
1846through a call site with a deoptimization operand bundle needs to
1847appropriately compose the "safe" deoptimization continuation. The
1848inliner does this by prepending the parent's deoptimization
1849continuation to every deoptimization continuation in the inlined body.
1850E.g. inlining ``@f`` into ``@g`` in the following example
1851
1852.. code-block:: llvm
1853
1854 define void @f() {
1855 call void @x() ;; no deopt state
1856 call void @y() [ "deopt"(i32 10) ]
1857 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1858 ret void
1859 }
1860
1861 define void @g() {
1862 call void @f() [ "deopt"(i32 20) ]
1863 ret void
1864 }
1865
1866will result in
1867
1868.. code-block:: llvm
1869
1870 define void @g() {
1871 call void @x() ;; still no deopt state
1872 call void @y() [ "deopt"(i32 20, i32 10) ]
1873 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1874 ret void
1875 }
1876
1877It is the frontend's responsibility to structure or encode the
1878deoptimization state in a way that syntactically prepending the
1879caller's deoptimization state to the callee's deoptimization state is
1880semantically equivalent to composing the caller's deoptimization
1881continuation after the callee's deoptimization continuation.
1882
Joseph Tremouletfe9953a2016-01-10 04:28:38 +00001883.. _ob_funclet:
1884
David Majnemerb46bb542015-12-15 21:27:27 +00001885Funclet Operand Bundles
1886^^^^^^^^^^^^^^^^^^^^^^^
1887
1888Funclet operand bundles are characterized by the ``"funclet"``
1889operand bundle tag. These operand bundles indicate that a call site
1890is within a particular funclet. There can be at most one
1891``"funclet"`` operand bundle attached to a call site and it must have
1892exactly one bundle operand.
1893
Joseph Tremouletfe9953a2016-01-10 04:28:38 +00001894If any funclet EH pads have been "entered" but not "exited" (per the
1895`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1896it is undefined behavior to execute a ``call`` or ``invoke`` which:
1897
1898* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1899 intrinsic, or
1900* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1901 not-yet-exited funclet EH pad.
1902
1903Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1904executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1905
Sanjoy Dase6a9ed72016-01-20 19:50:25 +00001906GC Transition Operand Bundles
1907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1908
1909GC transition operand bundles are characterized by the
1910``"gc-transition"`` operand bundle tag. These operand bundles mark a
1911call as a transition between a function with one GC strategy to a
1912function with a different GC strategy. If coordinating the transition
1913between GC strategies requires additional code generation at the call
1914site, these bundles may contain any values that are needed by the
1915generated code. For more details, see :ref:`GC Transitions
1916<gc_transition_args>`.
1917
Sean Silvaf722b002012-12-07 10:36:55 +00001918.. _moduleasm:
1919
1920Module-Level Inline Assembly
1921----------------------------
1922
1923Modules may contain "module-level inline asm" blocks, which corresponds
1924to the GCC "file scope inline asm" blocks. These blocks are internally
1925concatenated by LLVM and treated as a single unit, but may be separated
1926in the ``.ll`` file if desired. The syntax is very simple:
1927
1928.. code-block:: llvm
1929
1930 module asm "inline asm code goes here"
1931 module asm "more can go here"
1932
1933The strings can contain any character by escaping non-printable
1934characters. The escape sequence used is simply "\\xx" where "xx" is the
1935two digit hex code for the number.
1936
James Y Knight1ba30c82015-07-08 18:08:36 +00001937Note that the assembly string *must* be parseable by LLVM's integrated assembler
1938(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvaf722b002012-12-07 10:36:55 +00001939
Eli Bendersky1de14102013-06-07 19:40:08 +00001940.. _langref_datalayout:
1941
Sean Silvaf722b002012-12-07 10:36:55 +00001942Data Layout
1943-----------
1944
1945A module may specify a target specific data layout string that specifies
1946how data is to be laid out in memory. The syntax for the data layout is
1947simply:
1948
1949.. code-block:: llvm
1950
1951 target datalayout = "layout specification"
1952
1953The *layout specification* consists of a list of specifications
1954separated by the minus sign character ('-'). Each specification starts
1955with a letter and may include other information after the letter to
1956define some aspect of the data layout. The specifications accepted are
1957as follows:
1958
1959``E``
1960 Specifies that the target lays out data in big-endian form. That is,
1961 the bits with the most significance have the lowest address
1962 location.
1963``e``
1964 Specifies that the target lays out data in little-endian form. That
1965 is, the bits with the least significance have the lowest address
1966 location.
1967``S<size>``
1968 Specifies the natural alignment of the stack in bits. Alignment
1969 promotion of stack variables is limited to the natural stack
1970 alignment to avoid dynamic stack realignment. The stack alignment
1971 must be a multiple of 8-bits. If omitted, the natural stack
1972 alignment defaults to "unspecified", which does not prevent any
1973 alignment promotions.
Dylan McKaya78fde82018-02-19 09:56:22 +00001974``P<address space>``
1975 Specifies the address space that corresponds to program memory.
1976 Harvard architectures can use this to specify what space LLVM
1977 should place things such as functions into. If omitted, the
1978 program memory space defaults to the default address space of 0,
1979 which corresponds to a Von Neumann architecture that has code
1980 and data in the same space.
Matt Arsenaulte0b3c332017-04-10 22:27:50 +00001981``A<address space>``
Dylan McKaya78fde82018-02-19 09:56:22 +00001982 Specifies the address space of objects created by '``alloca``'.
Matt Arsenaulte0b3c332017-04-10 22:27:50 +00001983 Defaults to the default address space of 0.
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +00001984``p[n]:<size>:<abi>:<pref>:<idx>``
Sean Silvaf722b002012-12-07 10:36:55 +00001985 This specifies the *size* of a pointer and its ``<abi>`` and
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +00001986 ``<pref>``\erred alignments for address space ``n``. The fourth parameter
1987 ``<idx>`` is a size of index that used for address calculation. If not
1988 specified, the default index size is equal to the pointer size. All sizes
1989 are in bits. The address space, ``n``, is optional, and if not specified,
Sean Silva7515d332015-08-06 22:56:48 +00001990 denotes the default address space 0. The value of ``n`` must be
Rafael Espindola17764832014-01-06 21:40:24 +00001991 in the range [1,2^23).
Sean Silvaf722b002012-12-07 10:36:55 +00001992``i<size>:<abi>:<pref>``
1993 This specifies the alignment for an integer type of a given bit
1994 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1995``v<size>:<abi>:<pref>``
1996 This specifies the alignment for a vector type of a given bit
1997 ``<size>``.
1998``f<size>:<abi>:<pref>``
Sanjay Patel16e9a292018-03-21 14:15:33 +00001999 This specifies the alignment for a floating-point type of a given bit
Sean Silvaf722b002012-12-07 10:36:55 +00002000 ``<size>``. Only values of ``<size>`` that are supported by the target
2001 will work. 32 (float) and 64 (double) are supported on all targets; 80
2002 or 128 (different flavors of long double) are also supported on some
2003 targets.
Rafael Espindola17764832014-01-06 21:40:24 +00002004``a:<abi>:<pref>``
2005 This specifies the alignment for an object of aggregate type.
Rafael Espindola8e0f67d2014-01-03 19:21:54 +00002006``m:<mangling>``
Reid Kleckner025ee4f2018-03-16 20:13:32 +00002007 If present, specifies that llvm names are mangled in the output. Symbols
2008 prefixed with the mangling escape character ``\01`` are passed through
2009 directly to the assembler without the escape character. The mangling style
Hans Wennborg268226b2014-01-15 02:49:17 +00002010 options are
2011
2012 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
2013 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
2014 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
2015 symbols get a ``_`` prefix.
Reid Kleckner025ee4f2018-03-16 20:13:32 +00002016 * ``x``: Windows x86 COFF mangling: Private symbols get the usual prefix.
2017 Regular C symbols get a ``_`` prefix. Functions with ``__stdcall``,
2018 ``__fastcall``, and ``__vectorcall`` have custom mangling that appends
2019 ``@N`` where N is the number of bytes used to pass parameters. C++ symbols
2020 starting with ``?`` are not mangled in any way.
2021 * ``w``: Windows COFF mangling: Similar to ``x``, except that normal C
2022 symbols do not receive a ``_`` prefix.
Sean Silvaf722b002012-12-07 10:36:55 +00002023``n<size1>:<size2>:<size3>...``
2024 This specifies a set of native integer widths for the target CPU in
2025 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
2026 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
2027 this set are considered to support most general arithmetic operations
2028 efficiently.
Sanjoy Das1c20b712016-07-28 23:43:38 +00002029``ni:<address space0>:<address space1>:<address space2>...``
2030 This specifies pointer types with the specified address spaces
2031 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
2032 address space cannot be specified as non-integral.
Sean Silvaf722b002012-12-07 10:36:55 +00002033
Rafael Espindola17764832014-01-06 21:40:24 +00002034On every specification that takes a ``<abi>:<pref>``, specifying the
2035``<pref>`` alignment is optional. If omitted, the preceding ``:``
2036should be omitted too and ``<pref>`` will be equal to ``<abi>``.
2037
Sean Silvaf722b002012-12-07 10:36:55 +00002038When constructing the data layout for a given target, LLVM starts with a
2039default set of specifications which are then (possibly) overridden by
2040the specifications in the ``datalayout`` keyword. The default
2041specifications are given in this list:
2042
2043- ``E`` - big endian
Matt Arsenault16e4ed52013-07-31 17:49:08 +00002044- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
2045- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
2046 same as the default address space.
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00002047- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00002048- ``i1:8:8`` - i1 is 8-bit (byte) aligned
2049- ``i8:8:8`` - i8 is 8-bit (byte) aligned
2050- ``i16:16:16`` - i16 is 16-bit aligned
2051- ``i32:32:32`` - i32 is 32-bit aligned
2052- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
2053 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00002054- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00002055- ``f32:32:32`` - float is 32-bit aligned
2056- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00002057- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00002058- ``v64:64:64`` - 64-bit vector is 64-bit aligned
2059- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindola2053a062013-12-12 17:21:51 +00002060- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00002061
2062When LLVM is determining the alignment for a given type, it uses the
2063following rules:
2064
2065#. If the type sought is an exact match for one of the specifications,
2066 that specification is used.
2067#. If no match is found, and the type sought is an integer type, then
2068 the smallest integer type that is larger than the bitwidth of the
2069 sought type is used. If none of the specifications are larger than
2070 the bitwidth then the largest integer type is used. For example,
2071 given the default specifications above, the i7 type will use the
2072 alignment of i8 (next largest) while both i65 and i256 will use the
2073 alignment of i64 (largest specified).
2074#. If no match is found, and the type sought is a vector type, then the
2075 largest vector type that is smaller than the sought vector type will
2076 be used as a fall back. This happens because <128 x double> can be
2077 implemented in terms of 64 <2 x double>, for example.
2078
2079The function of the data layout string may not be what you expect.
2080Notably, this is not a specification from the frontend of what alignment
2081the code generator should use.
2082
2083Instead, if specified, the target data layout is required to match what
2084the ultimate *code generator* expects. This string is used by the
2085mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini18233dc2015-03-14 22:04:06 +00002086what the ultimate code generator uses. There is no way to generate IR
2087that does not embed this target-specific detail into the IR. If you
2088don't specify the string, the default specifications will be used to
2089generate a Data Layout and the optimization phases will operate
2090accordingly and introduce target specificity into the IR with respect to
2091these default specifications.
Sean Silvaf722b002012-12-07 10:36:55 +00002092
Bill Wendling4216b992013-10-18 23:41:25 +00002093.. _langref_triple:
2094
2095Target Triple
2096-------------
2097
2098A module may specify a target triple string that describes the target
2099host. The syntax for the target triple is simply:
2100
2101.. code-block:: llvm
2102
2103 target triple = "x86_64-apple-macosx10.7.0"
2104
2105The *target triple* string consists of a series of identifiers delimited
2106by the minus sign character ('-'). The canonical forms are:
2107
2108::
2109
2110 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2111 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2112
2113This information is passed along to the backend so that it generates
2114code for the proper architecture. It's possible to override this on the
2115command line with the ``-mtriple`` command line option.
2116
Sean Silvaf722b002012-12-07 10:36:55 +00002117.. _pointeraliasing:
2118
2119Pointer Aliasing Rules
2120----------------------
2121
2122Any memory access must be done through a pointer value associated with
2123an address range of the memory access, otherwise the behavior is
2124undefined. Pointer values are associated with address ranges according
2125to the following rules:
2126
2127- A pointer value is associated with the addresses associated with any
2128 value it is *based* on.
2129- An address of a global variable is associated with the address range
2130 of the variable's storage.
2131- The result value of an allocation instruction is associated with the
2132 address range of the allocated storage.
2133- A null pointer in the default address-space is associated with no
2134 address.
2135- An integer constant other than zero or a pointer value returned from
2136 a function not defined within LLVM may be associated with address
2137 ranges allocated through mechanisms other than those provided by
2138 LLVM. Such ranges shall not overlap with any ranges of addresses
2139 allocated by mechanisms provided by LLVM.
2140
2141A pointer value is *based* on another pointer value according to the
2142following rules:
2143
Sanjoy Das65bdf0a2017-09-13 18:49:22 +00002144- A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2145 the pointer-typed operand of the ``getelementptr``.
2146- The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2147 is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2148 of the ``getelementptr``.
Sean Silvaf722b002012-12-07 10:36:55 +00002149- The result value of a ``bitcast`` is *based* on the operand of the
2150 ``bitcast``.
2151- A pointer value formed by an ``inttoptr`` is *based* on all pointer
2152 values that contribute (directly or indirectly) to the computation of
2153 the pointer's value.
2154- The "*based* on" relationship is transitive.
2155
2156Note that this definition of *"based"* is intentionally similar to the
2157definition of *"based"* in C99, though it is slightly weaker.
2158
2159LLVM IR does not associate types with memory. The result type of a
2160``load`` merely indicates the size and alignment of the memory from
2161which to load, as well as the interpretation of the value. The first
2162operand type of a ``store`` similarly only indicates the size and
2163alignment of the store.
2164
2165Consequently, type-based alias analysis, aka TBAA, aka
2166``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2167:ref:`Metadata <metadata>` may be used to encode additional information
2168which specialized optimization passes may use to implement type-based
2169alias analysis.
2170
2171.. _volatile:
2172
2173Volatile Memory Accesses
2174------------------------
2175
2176Certain memory accesses, such as :ref:`load <i_load>`'s,
2177:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2178marked ``volatile``. The optimizers must not change the number of
2179volatile operations or change their order of execution relative to other
2180volatile operations. The optimizers *may* change the order of volatile
2181operations relative to non-volatile operations. This is not Java's
2182"volatile" and has no cross-thread synchronization behavior.
2183
Andrew Trick9a6dd022013-01-30 21:19:35 +00002184IR-level volatile loads and stores cannot safely be optimized into
2185llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2186flagged volatile. Likewise, the backend should never split or merge
2187target-legal volatile load/store instructions.
2188
Andrew Trick946317d2013-01-31 00:49:39 +00002189.. admonition:: Rationale
2190
2191 Platforms may rely on volatile loads and stores of natively supported
2192 data width to be executed as single instruction. For example, in C
2193 this holds for an l-value of volatile primitive type with native
2194 hardware support, but not necessarily for aggregate types. The
2195 frontend upholds these expectations, which are intentionally
Sean Silva1709c2b2015-08-06 22:56:24 +00002196 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick946317d2013-01-31 00:49:39 +00002197 do not violate the frontend's contract with the language.
2198
Sean Silvaf722b002012-12-07 10:36:55 +00002199.. _memmodel:
2200
2201Memory Model for Concurrent Operations
2202--------------------------------------
2203
2204The LLVM IR does not define any way to start parallel threads of
2205execution or to register signal handlers. Nonetheless, there are
2206platform-specific ways to create them, and we define LLVM IR's behavior
2207in their presence. This model is inspired by the C++0x memory model.
2208
2209For a more informal introduction to this model, see the :doc:`Atomics`.
2210
2211We define a *happens-before* partial order as the least partial order
2212that
2213
2214- Is a superset of single-thread program order, and
2215- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2216 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2217 techniques, like pthread locks, thread creation, thread joining,
2218 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2219 Constraints <ordering>`).
2220
2221Note that program order does not introduce *happens-before* edges
2222between a thread and signals executing inside that thread.
2223
2224Every (defined) read operation (load instructions, memcpy, atomic
2225loads/read-modify-writes, etc.) R reads a series of bytes written by
2226(defined) write operations (store instructions, atomic
2227stores/read-modify-writes, memcpy, etc.). For the purposes of this
2228section, initialized globals are considered to have a write of the
2229initializer which is atomic and happens before any other read or write
2230of the memory in question. For each byte of a read R, R\ :sub:`byte`
2231may see any write to the same byte, except:
2232
2233- If write\ :sub:`1` happens before write\ :sub:`2`, and
2234 write\ :sub:`2` happens before R\ :sub:`byte`, then
2235 R\ :sub:`byte` does not see write\ :sub:`1`.
2236- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2237 R\ :sub:`byte` does not see write\ :sub:`3`.
2238
2239Given that definition, R\ :sub:`byte` is defined as follows:
2240
2241- If R is volatile, the result is target-dependent. (Volatile is
2242 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smithd1d53e82014-07-31 04:25:36 +00002243 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvaf722b002012-12-07 10:36:55 +00002244 like normal memory. It does not generally provide cross-thread
2245 synchronization.)
2246- Otherwise, if there is no write to the same byte that happens before
2247 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2248- Otherwise, if R\ :sub:`byte` may see exactly one write,
2249 R\ :sub:`byte` returns the value written by that write.
2250- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2251 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2252 Memory Ordering Constraints <ordering>` section for additional
2253 constraints on how the choice is made.
2254- Otherwise R\ :sub:`byte` returns ``undef``.
2255
2256R returns the value composed of the series of bytes it read. This
2257implies that some bytes within the value may be ``undef`` **without**
2258the entire value being ``undef``. Note that this only defines the
2259semantics of the operation; it doesn't mean that targets will emit more
2260than one instruction to read the series of bytes.
2261
2262Note that in cases where none of the atomic intrinsics are used, this
2263model places only one restriction on IR transformations on top of what
2264is required for single-threaded execution: introducing a store to a byte
2265which might not otherwise be stored is not allowed in general.
2266(Specifically, in the case where another thread might write to and read
2267from an address, introducing a store can change a load that may see
2268exactly one write into a load that may see multiple writes.)
2269
2270.. _ordering:
2271
2272Atomic Memory Ordering Constraints
2273----------------------------------
2274
2275Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2276:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2277:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northoverca396e32014-03-11 10:48:52 +00002278ordering parameters that determine which other atomic instructions on
Sean Silvaf722b002012-12-07 10:36:55 +00002279the same address they *synchronize with*. These semantics are borrowed
2280from Java and C++0x, but are somewhat more colloquial. If these
2281descriptions aren't precise enough, check those specs (see spec
2282references in the :doc:`atomics guide <Atomics>`).
2283:ref:`fence <i_fence>` instructions treat these orderings somewhat
2284differently since they don't take an address. See that instruction's
2285documentation for details.
2286
2287For a simpler introduction to the ordering constraints, see the
2288:doc:`Atomics`.
2289
2290``unordered``
2291 The set of values that can be read is governed by the happens-before
2292 partial order. A value cannot be read unless some operation wrote
2293 it. This is intended to provide a guarantee strong enough to model
2294 Java's non-volatile shared variables. This ordering cannot be
2295 specified for read-modify-write operations; it is not strong enough
2296 to make them atomic in any interesting way.
2297``monotonic``
2298 In addition to the guarantees of ``unordered``, there is a single
2299 total order for modifications by ``monotonic`` operations on each
2300 address. All modification orders must be compatible with the
2301 happens-before order. There is no guarantee that the modification
2302 orders can be combined to a global total order for the whole program
2303 (and this often will not be possible). The read in an atomic
2304 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2305 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2306 order immediately before the value it writes. If one atomic read
2307 happens before another atomic read of the same address, the later
2308 read must see the same value or a later value in the address's
2309 modification order. This disallows reordering of ``monotonic`` (or
2310 stronger) operations on the same address. If an address is written
2311 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2312 read that address repeatedly, the other threads must eventually see
2313 the write. This corresponds to the C++0x/C1x
2314 ``memory_order_relaxed``.
2315``acquire``
2316 In addition to the guarantees of ``monotonic``, a
2317 *synchronizes-with* edge may be formed with a ``release`` operation.
2318 This is intended to model C++'s ``memory_order_acquire``.
2319``release``
2320 In addition to the guarantees of ``monotonic``, if this operation
2321 writes a value which is subsequently read by an ``acquire``
2322 operation, it *synchronizes-with* that operation. (This isn't a
2323 complete description; see the C++0x definition of a release
2324 sequence.) This corresponds to the C++0x/C1x
2325 ``memory_order_release``.
2326``acq_rel`` (acquire+release)
2327 Acts as both an ``acquire`` and ``release`` operation on its
2328 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2329``seq_cst`` (sequentially consistent)
2330 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smithd1d53e82014-07-31 04:25:36 +00002331 operation that only reads, ``release`` for an operation that only
Sean Silvaf722b002012-12-07 10:36:55 +00002332 writes), there is a global total order on all
2333 sequentially-consistent operations on all addresses, which is
2334 consistent with the *happens-before* partial order and with the
2335 modification orders of all the affected addresses. Each
2336 sequentially-consistent read sees the last preceding write to the
2337 same address in this global order. This corresponds to the C++0x/C1x
2338 ``memory_order_seq_cst`` and Java volatile.
2339
Konstantin Zhuravlyov8f856852017-07-11 22:23:00 +00002340.. _syncscope:
Sean Silvaf722b002012-12-07 10:36:55 +00002341
Konstantin Zhuravlyov8f856852017-07-11 22:23:00 +00002342If an atomic operation is marked ``syncscope("singlethread")``, it only
2343*synchronizes with* and only participates in the seq\_cst total orderings of
2344other operations running in the same thread (for example, in signal handlers).
2345
2346If an atomic operation is marked ``syncscope("<target-scope>")``, where
2347``<target-scope>`` is a target specific synchronization scope, then it is target
2348dependent if it *synchronizes with* and participates in the seq\_cst total
2349orderings of other operations.
2350
2351Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2352or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2353seq\_cst total orderings of other operations that are not marked
2354``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
Sean Silvaf722b002012-12-07 10:36:55 +00002355
Sanjay Patela61bf372018-03-20 16:38:22 +00002356.. _floatenv:
2357
2358Floating-Point Environment
2359--------------------------
2360
2361The default LLVM floating-point environment assumes that floating-point
2362instructions do not have side effects. Results assume the round-to-nearest
2363rounding mode. No floating-point exception state is maintained in this
2364environment. Therefore, there is no attempt to create or preserve invalid
Chandler Carruth4c31db32018-08-06 02:02:09 +00002365operation (SNaN) or division-by-zero exceptions.
Sanjay Patela61bf372018-03-20 16:38:22 +00002366
2367The benefit of this exception-free assumption is that floating-point
2368operations may be speculated freely without any other fast-math relaxations
2369to the floating-point model.
2370
2371Code that requires different behavior than this should use the
Sanjay Patelf60cf822018-03-20 17:05:19 +00002372:ref:`Constrained Floating-Point Intrinsics <constrainedfp>`.
Sanjay Patela61bf372018-03-20 16:38:22 +00002373
Sean Silvaf722b002012-12-07 10:36:55 +00002374.. _fastmath:
2375
2376Fast-Math Flags
2377---------------
2378
Sanjay Patel00e900a2017-11-06 16:27:15 +00002379LLVM IR floating-point operations (:ref:`fadd <i_fadd>`,
Sean Silvaf722b002012-12-07 10:36:55 +00002380:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Matt Arsenault70dde8f2017-01-10 18:06:38 +00002381:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) and :ref:`call <i_call>`
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +00002382may use the following flags to enable otherwise unsafe
Sanjay Patel00e900a2017-11-06 16:27:15 +00002383floating-point transformations.
Sean Silvaf722b002012-12-07 10:36:55 +00002384
2385``nnan``
2386 No NaNs - Allow optimizations to assume the arguments and result are not
Eli Friedman9ff02ef2018-07-17 20:31:42 +00002387 NaN. If an argument is a nan, or the result would be a nan, it produces
2388 a :ref:`poison value <poisonvalues>` instead.
Sean Silvaf722b002012-12-07 10:36:55 +00002389
2390``ninf``
2391 No Infs - Allow optimizations to assume the arguments and result are not
Eli Friedman9ff02ef2018-07-17 20:31:42 +00002392 +/-Inf. If an argument is +/-Inf, or the result would be +/-Inf, it
2393 produces a :ref:`poison value <poisonvalues>` instead.
Sean Silvaf722b002012-12-07 10:36:55 +00002394
2395``nsz``
2396 No Signed Zeros - Allow optimizations to treat the sign of a zero
2397 argument or result as insignificant.
2398
2399``arcp``
2400 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2401 argument rather than perform division.
2402
Adam Nemet5c57c112017-03-28 20:11:52 +00002403``contract``
2404 Allow floating-point contraction (e.g. fusing a multiply followed by an
2405 addition into a fused multiply-and-add).
2406
Sanjay Patel00e900a2017-11-06 16:27:15 +00002407``afn``
2408 Approximate functions - Allow substitution of approximate calculations for
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +00002409 functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2410 for places where this can apply to LLVM's intrinsic math functions.
Sanjay Patel00e900a2017-11-06 16:27:15 +00002411
2412``reassoc``
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +00002413 Allow reassociation transformations for floating-point instructions.
Sanjay Patel16e9a292018-03-21 14:15:33 +00002414 This may dramatically change results in floating-point.
Sanjay Patel00e900a2017-11-06 16:27:15 +00002415
Sean Silvaf722b002012-12-07 10:36:55 +00002416``fast``
Sanjay Patel00e900a2017-11-06 16:27:15 +00002417 This flag implies all of the others.
Sean Silvaf722b002012-12-07 10:36:55 +00002418
Duncan P. N. Exon Smith78388182014-08-19 21:30:15 +00002419.. _uselistorder:
2420
2421Use-list Order Directives
2422-------------------------
2423
2424Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silva7515d332015-08-06 22:56:48 +00002425order to be recreated. ``<order-indexes>`` is a comma-separated list of
2426indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith78388182014-08-19 21:30:15 +00002427value's use-list is immediately sorted by these indexes.
2428
Sean Silva7515d332015-08-06 22:56:48 +00002429Use-list directives may appear at function scope or global scope. They are not
2430instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith78388182014-08-19 21:30:15 +00002431function scope, they must appear after the terminator of the final basic block.
2432
2433If basic blocks have their address taken via ``blockaddress()`` expressions,
2434``uselistorder_bb`` can be used to reorder their use-lists from outside their
2435function's scope.
2436
2437:Syntax:
2438
2439::
2440
2441 uselistorder <ty> <value>, { <order-indexes> }
2442 uselistorder_bb @function, %block { <order-indexes> }
2443
2444:Examples:
2445
2446::
2447
Duncan P. N. Exon Smith5a466d32014-08-19 21:48:04 +00002448 define void @foo(i32 %arg1, i32 %arg2) {
2449 entry:
2450 ; ... instructions ...
2451 bb:
2452 ; ... instructions ...
2453
2454 ; At function scope.
2455 uselistorder i32 %arg1, { 1, 0, 2 }
2456 uselistorder label %bb, { 1, 0 }
2457 }
Duncan P. N. Exon Smith78388182014-08-19 21:30:15 +00002458
2459 ; At global scope.
2460 uselistorder i32* @global, { 1, 2, 0 }
2461 uselistorder i32 7, { 1, 0 }
2462 uselistorder i32 (i32) @bar, { 1, 0 }
2463 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2464
Teresa Johnson47534d92016-04-22 13:09:17 +00002465.. _source_filename:
2466
2467Source Filename
2468---------------
2469
2470The *source filename* string is set to the original module identifier,
2471which will be the name of the compiled source file when compiling from
2472source through the clang front end, for example. It is then preserved through
2473the IR and bitcode.
2474
2475This is currently necessary to generate a consistent unique global
2476identifier for local functions used in profile data, which prepends the
2477source file name to the local function name.
2478
2479The syntax for the source file name is simply:
2480
Renato Golin88ea57f2016-07-20 12:16:38 +00002481.. code-block:: text
Teresa Johnson47534d92016-04-22 13:09:17 +00002482
2483 source_filename = "/path/to/source.c"
2484
Sean Silvaf722b002012-12-07 10:36:55 +00002485.. _typesystem:
2486
2487Type System
2488===========
2489
2490The LLVM type system is one of the most important features of the
2491intermediate representation. Being typed enables a number of
2492optimizations to be performed on the intermediate representation
2493directly, without having to do extra analyses on the side before the
2494transformation. A strong type system makes it easier to read the
2495generated code and enables novel analyses and transformations that are
2496not feasible to perform on normal three address code representations.
2497
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002498.. _t_void:
Eli Bendersky88fe6822013-06-07 20:24:43 +00002499
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002500Void Type
2501---------
Sean Silvaf722b002012-12-07 10:36:55 +00002502
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002503:Overview:
2504
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002505
2506The void type does not represent any value and has no size.
2507
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002508:Syntax:
2509
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002510
2511::
2512
2513 void
Sean Silvaf722b002012-12-07 10:36:55 +00002514
2515
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002516.. _t_function:
Sean Silvaf722b002012-12-07 10:36:55 +00002517
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002518Function Type
2519-------------
Sean Silvaf722b002012-12-07 10:36:55 +00002520
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002521:Overview:
2522
Sean Silvaf722b002012-12-07 10:36:55 +00002523
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002524The function type can be thought of as a function signature. It consists of a
2525return type and a list of formal parameter types. The return type of a function
2526type is a void type or first class type --- except for :ref:`label <t_label>`
2527and :ref:`metadata <t_metadata>` types.
Sean Silvaf722b002012-12-07 10:36:55 +00002528
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002529:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00002530
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002531::
Sean Silvaf722b002012-12-07 10:36:55 +00002532
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002533 <returntype> (<parameter list>)
Sean Silvaf722b002012-12-07 10:36:55 +00002534
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002535...where '``<parameter list>``' is a comma-separated list of type
2536specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silva7515d332015-08-06 22:56:48 +00002537indicates that the function takes a variable number of arguments. Variable
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002538argument functions can access their arguments with the :ref:`variable argument
Sean Silva7515d332015-08-06 22:56:48 +00002539handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002540except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvaf722b002012-12-07 10:36:55 +00002541
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002542:Examples:
Sean Silvaf722b002012-12-07 10:36:55 +00002543
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002544+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2545| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2546+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2547| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2548+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2549| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2550+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2551| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2552+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2553
2554.. _t_firstclass:
2555
2556First Class Types
2557-----------------
Sean Silvaf722b002012-12-07 10:36:55 +00002558
2559The :ref:`first class <t_firstclass>` types are perhaps the most important.
2560Values of these types are the only ones which can be produced by
2561instructions.
2562
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002563.. _t_single_value:
Sean Silvaf722b002012-12-07 10:36:55 +00002564
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002565Single Value Types
2566^^^^^^^^^^^^^^^^^^
Sean Silvaf722b002012-12-07 10:36:55 +00002567
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002568These are the types that are valid in registers from CodeGen's perspective.
Sean Silvaf722b002012-12-07 10:36:55 +00002569
2570.. _t_integer:
2571
2572Integer Type
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002573""""""""""""
Sean Silvaf722b002012-12-07 10:36:55 +00002574
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002575:Overview:
Sean Silvaf722b002012-12-07 10:36:55 +00002576
2577The integer type is a very simple type that simply specifies an
2578arbitrary bit width for the integer type desired. Any bit width from 1
2579bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2580
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002581:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00002582
2583::
2584
2585 iN
2586
2587The number of bits the integer will occupy is specified by the ``N``
2588value.
2589
2590Examples:
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002591*********
Sean Silvaf722b002012-12-07 10:36:55 +00002592
2593+----------------+------------------------------------------------+
2594| ``i1`` | a single-bit integer. |
2595+----------------+------------------------------------------------+
2596| ``i32`` | a 32-bit integer. |
2597+----------------+------------------------------------------------+
2598| ``i1942652`` | a really big integer of over 1 million bits. |
2599+----------------+------------------------------------------------+
2600
2601.. _t_floating:
2602
Sanjay Patel16e9a292018-03-21 14:15:33 +00002603Floating-Point Types
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002604""""""""""""""""""""
Sean Silvaf722b002012-12-07 10:36:55 +00002605
2606.. list-table::
2607 :header-rows: 1
2608
2609 * - Type
2610 - Description
2611
2612 * - ``half``
Sanjay Patel16e9a292018-03-21 14:15:33 +00002613 - 16-bit floating-point value
Sean Silvaf722b002012-12-07 10:36:55 +00002614
2615 * - ``float``
Sanjay Patel16e9a292018-03-21 14:15:33 +00002616 - 32-bit floating-point value
Sean Silvaf722b002012-12-07 10:36:55 +00002617
2618 * - ``double``
Sanjay Patel16e9a292018-03-21 14:15:33 +00002619 - 64-bit floating-point value
Sean Silvaf722b002012-12-07 10:36:55 +00002620
2621 * - ``fp128``
Sanjay Patel16e9a292018-03-21 14:15:33 +00002622 - 128-bit floating-point value (112-bit mantissa)
Sean Silvaf722b002012-12-07 10:36:55 +00002623
2624 * - ``x86_fp80``
Sanjay Patel16e9a292018-03-21 14:15:33 +00002625 - 80-bit floating-point value (X87)
Sean Silvaf722b002012-12-07 10:36:55 +00002626
2627 * - ``ppc_fp128``
Sanjay Patel16e9a292018-03-21 14:15:33 +00002628 - 128-bit floating-point value (two 64-bits)
Sean Silvaf722b002012-12-07 10:36:55 +00002629
Sanjay Patelf169e122018-03-21 15:22:09 +00002630The binary format of half, float, double, and fp128 correspond to the
2631IEEE-754-2008 specifications for binary16, binary32, binary64, and binary128
2632respectively.
2633
Reid Kleckner3b9afd32014-03-05 02:41:37 +00002634X86_mmx Type
2635""""""""""""
Sean Silvaf722b002012-12-07 10:36:55 +00002636
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002637:Overview:
Sean Silvaf722b002012-12-07 10:36:55 +00002638
Reid Kleckner3b9afd32014-03-05 02:41:37 +00002639The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvaf722b002012-12-07 10:36:55 +00002640machine. The operations allowed on it are quite limited: parameters and
2641return values, load and store, and bitcast. User-specified MMX
2642instructions are represented as intrinsic or asm calls with arguments
2643and/or results of this type. There are no arrays, vectors or constants
2644of this type.
2645
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002646:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00002647
2648::
2649
Reid Kleckner3b9afd32014-03-05 02:41:37 +00002650 x86_mmx
Sean Silvaf722b002012-12-07 10:36:55 +00002651
Sean Silvaf722b002012-12-07 10:36:55 +00002652
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002653.. _t_pointer:
2654
2655Pointer Type
2656""""""""""""
Sean Silvaf722b002012-12-07 10:36:55 +00002657
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002658:Overview:
Sean Silvaf722b002012-12-07 10:36:55 +00002659
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002660The pointer type is used to specify memory locations. Pointers are
2661commonly used to reference objects in memory.
2662
2663Pointer types may have an optional address space attribute defining the
2664numbered address space where the pointed-to object resides. The default
2665address space is number zero. The semantics of non-zero address spaces
2666are target-specific.
2667
2668Note that LLVM does not permit pointers to void (``void*``) nor does it
2669permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvaf722b002012-12-07 10:36:55 +00002670
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002671:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00002672
2673::
2674
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002675 <type> *
2676
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002677:Examples:
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002678
2679+-------------------------+--------------------------------------------------------------------------------------------------------------+
2680| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2681+-------------------------+--------------------------------------------------------------------------------------------------------------+
2682| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2683+-------------------------+--------------------------------------------------------------------------------------------------------------+
2684| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2685+-------------------------+--------------------------------------------------------------------------------------------------------------+
2686
2687.. _t_vector:
2688
2689Vector Type
2690"""""""""""
2691
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002692:Overview:
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002693
2694A vector type is a simple derived type that represents a vector of
2695elements. Vector types are used when multiple primitive data are
2696operated in parallel using a single instruction (SIMD). A vector type
2697requires a size (number of elements) and an underlying primitive data
2698type. Vector types are considered :ref:`first class <t_firstclass>`.
2699
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002700:Syntax:
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002701
2702::
2703
2704 < <# elements> x <elementtype> >
2705
2706The number of elements is a constant integer value larger than 0;
Sanjay Patel16e9a292018-03-21 14:15:33 +00002707elementtype may be any integer, floating-point or pointer type. Vectors
Manuel Jacobb5b178a2014-07-30 12:30:06 +00002708of size zero are not allowed.
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002709
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002710:Examples:
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002711
2712+-------------------+--------------------------------------------------+
2713| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2714+-------------------+--------------------------------------------------+
2715| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2716+-------------------+--------------------------------------------------+
2717| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2718+-------------------+--------------------------------------------------+
2719| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2720+-------------------+--------------------------------------------------+
Sean Silvaf722b002012-12-07 10:36:55 +00002721
2722.. _t_label:
2723
2724Label Type
2725^^^^^^^^^^
2726
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002727:Overview:
Sean Silvaf722b002012-12-07 10:36:55 +00002728
2729The label type represents code labels.
2730
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002731:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00002732
2733::
2734
2735 label
2736
David Majnemer2dacece2015-08-14 05:09:07 +00002737.. _t_token:
2738
2739Token Type
2740^^^^^^^^^^
2741
2742:Overview:
2743
2744The token type is used when a value is associated with an instruction
2745but all uses of the value must not attempt to introspect or obscure it.
2746As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2747:ref:`select <i_select>` of type token.
2748
2749:Syntax:
2750
2751::
2752
2753 token
2754
2755
2756
Sean Silvaf722b002012-12-07 10:36:55 +00002757.. _t_metadata:
2758
2759Metadata Type
2760^^^^^^^^^^^^^
2761
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002762:Overview:
Sean Silvaf722b002012-12-07 10:36:55 +00002763
2764The metadata type represents embedded metadata. No derived types may be
2765created from metadata except for :ref:`function <t_function>` arguments.
2766
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002767:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00002768
2769::
2770
2771 metadata
2772
Sean Silvaf722b002012-12-07 10:36:55 +00002773.. _t_aggregate:
2774
2775Aggregate Types
2776^^^^^^^^^^^^^^^
2777
2778Aggregate Types are a subset of derived types that can contain multiple
2779member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2780aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2781aggregate types.
2782
2783.. _t_array:
2784
2785Array Type
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002786""""""""""
Sean Silvaf722b002012-12-07 10:36:55 +00002787
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002788:Overview:
Sean Silvaf722b002012-12-07 10:36:55 +00002789
2790The array type is a very simple derived type that arranges elements
2791sequentially in memory. The array type requires a size (number of
2792elements) and an underlying data type.
2793
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002794:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00002795
2796::
2797
2798 [<# elements> x <elementtype>]
2799
2800The number of elements is a constant integer value; ``elementtype`` may
2801be any type with a size.
2802
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002803:Examples:
Sean Silvaf722b002012-12-07 10:36:55 +00002804
2805+------------------+--------------------------------------+
2806| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2807+------------------+--------------------------------------+
2808| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2809+------------------+--------------------------------------+
2810| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2811+------------------+--------------------------------------+
2812
2813Here are some examples of multidimensional arrays:
2814
2815+-----------------------------+----------------------------------------------------------+
2816| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2817+-----------------------------+----------------------------------------------------------+
Sanjay Patel16e9a292018-03-21 14:15:33 +00002818| ``[12 x [10 x float]]`` | 12x10 array of single precision floating-point values. |
Sean Silvaf722b002012-12-07 10:36:55 +00002819+-----------------------------+----------------------------------------------------------+
2820| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2821+-----------------------------+----------------------------------------------------------+
2822
2823There is no restriction on indexing beyond the end of the array implied
2824by a static type (though there are restrictions on indexing beyond the
2825bounds of an allocated object in some cases). This means that
2826single-dimension 'variable sized array' addressing can be implemented in
2827LLVM with a zero length array type. An implementation of 'pascal style
2828arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2829example.
2830
Sean Silvaf722b002012-12-07 10:36:55 +00002831.. _t_struct:
2832
2833Structure Type
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002834""""""""""""""
Sean Silvaf722b002012-12-07 10:36:55 +00002835
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002836:Overview:
Sean Silvaf722b002012-12-07 10:36:55 +00002837
2838The structure type is used to represent a collection of data members
2839together in memory. The elements of a structure may be any type that has
2840a size.
2841
2842Structures in memory are accessed using '``load``' and '``store``' by
2843getting a pointer to a field with the '``getelementptr``' instruction.
2844Structures in registers are accessed using the '``extractvalue``' and
2845'``insertvalue``' instructions.
2846
2847Structures may optionally be "packed" structures, which indicate that
2848the alignment of the struct is one byte, and that there is no padding
2849between the elements. In non-packed structs, padding between field types
2850is inserted as defined by the DataLayout string in the module, which is
2851required to match what the underlying code generator expects.
2852
2853Structures can either be "literal" or "identified". A literal structure
2854is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2855identified types are always defined at the top level with a name.
2856Literal types are uniqued by their contents and can never be recursive
2857or opaque since there is no way to write one. Identified types can be
2858recursive, can be opaqued, and are never uniqued.
2859
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002860:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00002861
2862::
2863
2864 %T1 = type { <type list> } ; Identified normal struct type
2865 %T2 = type <{ <type list> }> ; Identified packed struct type
2866
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002867:Examples:
Sean Silvaf722b002012-12-07 10:36:55 +00002868
2869+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2870| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2871+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002872| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00002873+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2874| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2875+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2876
2877.. _t_opaque:
2878
2879Opaque Structure Types
Rafael Espindolaf7f74c22013-12-07 19:34:20 +00002880""""""""""""""""""""""
Sean Silvaf722b002012-12-07 10:36:55 +00002881
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002882:Overview:
Sean Silvaf722b002012-12-07 10:36:55 +00002883
2884Opaque structure types are used to represent named structure types that
2885do not have a body specified. This corresponds (for example) to the C
2886notion of a forward declared structure.
2887
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002888:Syntax:
Sean Silvaf722b002012-12-07 10:36:55 +00002889
2890::
2891
2892 %X = type opaque
2893 %52 = type opaque
2894
Rafael Espindolabb0e2be2013-12-10 14:53:22 +00002895:Examples:
Sean Silvaf722b002012-12-07 10:36:55 +00002896
2897+--------------+-------------------+
2898| ``opaque`` | An opaque type. |
2899+--------------+-------------------+
2900
Sean Silva0a50cec2014-04-08 21:06:22 +00002901.. _constants:
2902
Sean Silvaf722b002012-12-07 10:36:55 +00002903Constants
2904=========
2905
2906LLVM has several different basic types of constants. This section
2907describes them all and their syntax.
2908
2909Simple Constants
2910----------------
2911
2912**Boolean constants**
2913 The two strings '``true``' and '``false``' are both valid constants
2914 of the ``i1`` type.
2915**Integer constants**
2916 Standard integers (such as '4') are constants of the
2917 :ref:`integer <t_integer>` type. Negative numbers may be used with
2918 integer types.
Sanjay Patel16e9a292018-03-21 14:15:33 +00002919**Floating-point constants**
2920 Floating-point constants use standard decimal notation (e.g.
Sean Silvaf722b002012-12-07 10:36:55 +00002921 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2922 hexadecimal notation (see below). The assembler requires the exact
2923 decimal value of a floating-point constant. For example, the
2924 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
Mandeep Singh Grang08238b72018-11-01 23:22:25 +00002925 decimal in binary. Floating-point constants must have a
Sanjay Patel16e9a292018-03-21 14:15:33 +00002926 :ref:`floating-point <t_floating>` type.
Sean Silvaf722b002012-12-07 10:36:55 +00002927**Null pointer constants**
2928 The identifier '``null``' is recognized as a null pointer constant
2929 and must be of :ref:`pointer type <t_pointer>`.
David Majnemer83fc12a2015-11-11 21:57:16 +00002930**Token constants**
2931 The identifier '``none``' is recognized as an empty token constant
2932 and must be of :ref:`token type <t_token>`.
Sean Silvaf722b002012-12-07 10:36:55 +00002933
2934The one non-intuitive notation for constants is the hexadecimal form of
Sanjay Patel16e9a292018-03-21 14:15:33 +00002935floating-point constants. For example, the form
Sean Silvaf722b002012-12-07 10:36:55 +00002936'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
Sanjay Patel16e9a292018-03-21 14:15:33 +00002937than) '``double 4.5e+15``'. The only time hexadecimal floating-point
Sean Silvaf722b002012-12-07 10:36:55 +00002938constants are required (and the only time that they are generated by the
Sanjay Patel16e9a292018-03-21 14:15:33 +00002939disassembler) is when a floating-point constant must be emitted but it
2940cannot be represented as a decimal floating-point number in a reasonable
Sean Silvaf722b002012-12-07 10:36:55 +00002941number of digits. For example, NaN's, infinities, and other special
2942values are represented in their IEEE hexadecimal format so that assembly
2943and disassembly do not cause any bits to change in the constants.
2944
2945When using the hexadecimal form, constants of types half, float, and
2946double are represented using the 16-digit form shown above (which
2947matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00002948must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00002949precision, respectively. Hexadecimal format is always used for long
2950double, and there are three forms of long double. The 80-bit format used
2951by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2952128-bit format used by PowerPC (two adjacent doubles) is represented by
2953``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00002954represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2955will only work if they match the long double format on your target.
2956The IEEE 16-bit format (half precision) is represented by ``0xH``
2957followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2958(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00002959
Reid Kleckner3b9afd32014-03-05 02:41:37 +00002960There are no constants of type x86_mmx.
Sean Silvaf722b002012-12-07 10:36:55 +00002961
Eli Bendersky88fe6822013-06-07 20:24:43 +00002962.. _complexconstants:
2963
Sean Silvaf722b002012-12-07 10:36:55 +00002964Complex Constants
2965-----------------
2966
2967Complex constants are a (potentially recursive) combination of simple
2968constants and smaller complex constants.
2969
2970**Structure constants**
2971 Structure constants are represented with notation similar to
2972 structure type definitions (a comma separated list of elements,
2973 surrounded by braces (``{}``)). For example:
2974 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2975 "``@G = external global i32``". Structure constants must have
2976 :ref:`structure type <t_struct>`, and the number and types of elements
2977 must match those specified by the type.
2978**Array constants**
2979 Array constants are represented with notation similar to array type
2980 definitions (a comma separated list of elements, surrounded by
2981 square brackets (``[]``)). For example:
2982 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2983 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersd7d96ee2014-09-11 12:02:59 +00002984 match those specified by the type. As a special case, character array
2985 constants may also be represented as a double-quoted string using the ``c``
2986 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvaf722b002012-12-07 10:36:55 +00002987**Vector constants**
2988 Vector constants are represented with notation similar to vector
2989 type definitions (a comma separated list of elements, surrounded by
2990 less-than/greater-than's (``<>``)). For example:
2991 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2992 must have :ref:`vector type <t_vector>`, and the number and types of
2993 elements must match those specified by the type.
2994**Zero initialization**
2995 The string '``zeroinitializer``' can be used to zero initialize a
2996 value to zero of *any* type, including scalar and
2997 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2998 having to print large zero initializers (e.g. for large arrays) and
2999 is always exactly equivalent to using explicit zero initializers.
3000**Metadata node**
Sean Silva7515d332015-08-06 22:56:48 +00003001 A metadata node is a constant tuple without types. For example:
3002 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00003003 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
3004 Unlike other typed constants that are meant to be interpreted as part of
3005 the instruction stream, metadata is a place to attach additional
Sean Silvaf722b002012-12-07 10:36:55 +00003006 information such as debug info.
3007
3008Global Variable and Function Addresses
3009--------------------------------------
3010
3011The addresses of :ref:`global variables <globalvars>` and
3012:ref:`functions <functionstructure>` are always implicitly valid
3013(link-time) constants. These constants are explicitly referenced when
3014the :ref:`identifier for the global <identifiers>` is used and always have
3015:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
3016file:
3017
3018.. code-block:: llvm
3019
3020 @X = global i32 17
3021 @Y = global i32 42
3022 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
3023
3024.. _undefvalues:
3025
3026Undefined Values
3027----------------
3028
3029The string '``undef``' can be used anywhere a constant is expected, and
3030indicates that the user of the value may receive an unspecified
3031bit-pattern. Undefined values may be of any type (other than '``label``'
3032or '``void``') and be used anywhere a constant is permitted.
3033
3034Undefined values are useful because they indicate to the compiler that
3035the program is well defined no matter what value is used. This gives the
3036compiler more freedom to optimize. Here are some examples of
3037(potentially surprising) transformations that are valid (in pseudo IR):
3038
3039.. code-block:: llvm
3040
3041 %A = add %X, undef
3042 %B = sub %X, undef
3043 %C = xor %X, undef
3044 Safe:
3045 %A = undef
3046 %B = undef
3047 %C = undef
3048
3049This is safe because all of the output bits are affected by the undef
3050bits. Any output bit can have a zero or one depending on the input bits.
3051
3052.. code-block:: llvm
3053
3054 %A = or %X, undef
3055 %B = and %X, undef
3056 Safe:
3057 %A = -1
3058 %B = 0
Sanjoy Das81598632016-09-15 01:56:58 +00003059 Safe:
3060 %A = %X ;; By choosing undef as 0
3061 %B = %X ;; By choosing undef as -1
Sean Silvaf722b002012-12-07 10:36:55 +00003062 Unsafe:
3063 %A = undef
3064 %B = undef
3065
3066These logical operations have bits that are not always affected by the
3067input. For example, if ``%X`` has a zero bit, then the output of the
3068'``and``' operation will always be a zero for that bit, no matter what
3069the corresponding bit from the '``undef``' is. As such, it is unsafe to
3070optimize or assume that the result of the '``and``' is '``undef``'.
3071However, it is safe to assume that all bits of the '``undef``' could be
30720, and optimize the '``and``' to 0. Likewise, it is safe to assume that
3073all the bits of the '``undef``' operand to the '``or``' could be set,
3074allowing the '``or``' to be folded to -1.
3075
3076.. code-block:: llvm
3077
3078 %A = select undef, %X, %Y
3079 %B = select undef, 42, %Y
3080 %C = select %X, %Y, undef
3081 Safe:
3082 %A = %X (or %Y)
3083 %B = 42 (or %Y)
3084 %C = %Y
3085 Unsafe:
3086 %A = undef
3087 %B = undef
3088 %C = undef
3089
3090This set of examples shows that undefined '``select``' (and conditional
3091branch) conditions can go *either way*, but they have to come from one
3092of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
3093both known to have a clear low bit, then ``%A`` would have to have a
3094cleared low bit. However, in the ``%C`` example, the optimizer is
3095allowed to assume that the '``undef``' operand could be the same as
3096``%Y``, allowing the whole '``select``' to be eliminated.
3097
Renato Golin88ea57f2016-07-20 12:16:38 +00003098.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00003099
3100 %A = xor undef, undef
3101
3102 %B = undef
3103 %C = xor %B, %B
3104
3105 %D = undef
Jonathan Roelofs0ab5b9f2014-10-16 19:28:10 +00003106 %E = icmp slt %D, 4
Sean Silvaf722b002012-12-07 10:36:55 +00003107 %F = icmp gte %D, 4
3108
3109 Safe:
3110 %A = undef
3111 %B = undef
3112 %C = undef
3113 %D = undef
3114 %E = undef
3115 %F = undef
3116
3117This example points out that two '``undef``' operands are not
3118necessarily the same. This can be surprising to people (and also matches
3119C semantics) where they assume that "``X^X``" is always zero, even if
3120``X`` is undefined. This isn't true for a number of reasons, but the
3121short answer is that an '``undef``' "variable" can arbitrarily change
3122its value over its "live range". This is true because the variable
3123doesn't actually *have a live range*. Instead, the value is logically
3124read from arbitrary registers that happen to be around when needed, so
3125the value is not necessarily consistent over time. In fact, ``%A`` and
3126``%C`` need to have the same semantics or the core LLVM "replace all
3127uses with" concept would not hold.
3128
3129.. code-block:: llvm
3130
Sanjay Patel8fca4622018-03-09 15:27:48 +00003131 %A = sdiv undef, %X
3132 %B = sdiv %X, undef
Sean Silvaf722b002012-12-07 10:36:55 +00003133 Safe:
Sanjay Patel8fca4622018-03-09 15:27:48 +00003134 %A = 0
Sean Silvaf722b002012-12-07 10:36:55 +00003135 b: unreachable
3136
3137These examples show the crucial difference between an *undefined value*
3138and *undefined behavior*. An undefined value (like '``undef``') is
3139allowed to have an arbitrary bit-pattern. This means that the ``%A``
Sanjay Patel8fca4622018-03-09 15:27:48 +00003140operation can be constant folded to '``0``', because the '``undef``'
3141could be zero, and zero divided by any value is zero.
Sean Silvaf722b002012-12-07 10:36:55 +00003142However, in the second example, we can make a more aggressive
3143assumption: because the ``undef`` is allowed to be an arbitrary value,
3144we are allowed to assume that it could be zero. Since a divide by zero
3145has *undefined behavior*, we are allowed to assume that the operation
3146does not execute at all. This allows us to delete the divide and all
3147code after it. Because the undefined operation "can't happen", the
3148optimizer can assume that it occurs in dead code.
3149
Renato Golin88ea57f2016-07-20 12:16:38 +00003150.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00003151
3152 a: store undef -> %X
3153 b: store %X -> undef
3154 Safe:
3155 a: <deleted>
3156 b: unreachable
3157
Sanjay Patel81c70f82018-03-07 17:18:22 +00003158A store *of* an undefined value can be assumed to not have any effect;
3159we can assume that the value is overwritten with bits that happen to
3160match what was already there. However, a store *to* an undefined
3161location could clobber arbitrary memory, therefore, it has undefined
3162behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00003163
3164.. _poisonvalues:
3165
3166Poison Values
3167-------------
3168
3169Poison values are similar to :ref:`undef values <undefvalues>`, however
3170they also represent the fact that an instruction or constant expression
Richard Smithd1d53e82014-07-31 04:25:36 +00003171that cannot evoke side effects has nevertheless detected a condition
3172that results in undefined behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00003173
3174There is currently no way of representing a poison value in the IR; they
3175only exist when produced by operations such as :ref:`add <i_add>` with
3176the ``nsw`` flag.
3177
3178Poison value behavior is defined in terms of value *dependence*:
3179
3180- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
3181- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3182 their dynamic predecessor basic block.
3183- Function arguments depend on the corresponding actual argument values
3184 in the dynamic callers of their functions.
3185- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3186 instructions that dynamically transfer control back to them.
3187- :ref:`Invoke <i_invoke>` instructions depend on the
3188 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3189 call instructions that dynamically transfer control back to them.
3190- Non-volatile loads and stores depend on the most recent stores to all
3191 of the referenced memory addresses, following the order in the IR
3192 (including loads and stores implied by intrinsics such as
3193 :ref:`@llvm.memcpy <int_memcpy>`.)
3194- An instruction with externally visible side effects depends on the
3195 most recent preceding instruction with externally visible side
3196 effects, following the order in the IR. (This includes :ref:`volatile
3197 operations <volatile>`.)
3198- An instruction *control-depends* on a :ref:`terminator
3199 instruction <terminators>` if the terminator instruction has
3200 multiple successors and the instruction is always executed when
3201 control transfers to one of the successors, and may not be executed
3202 when control is transferred to another.
3203- Additionally, an instruction also *control-depends* on a terminator
3204 instruction if the set of instructions it otherwise depends on would
3205 be different if the terminator had transferred control to a different
3206 successor.
3207- Dependence is transitive.
3208
Richard Smithd1d53e82014-07-31 04:25:36 +00003209Poison values have the same behavior as :ref:`undef values <undefvalues>`,
3210with the additional effect that any instruction that has a *dependence*
Sean Silvaf722b002012-12-07 10:36:55 +00003211on a poison value has undefined behavior.
3212
3213Here are some examples:
3214
3215.. code-block:: llvm
3216
3217 entry:
3218 %poison = sub nuw i32 0, 1 ; Results in a poison value.
3219 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikieaf9251f2015-03-04 22:02:58 +00003220 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvaf722b002012-12-07 10:36:55 +00003221 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
3222
3223 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikie0effae82015-03-04 22:06:14 +00003224 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvaf722b002012-12-07 10:36:55 +00003225
3226 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3227
3228 %narrowaddr = bitcast i32* @g to i16*
3229 %wideaddr = bitcast i32* @g to i64*
David Blaikie0effae82015-03-04 22:06:14 +00003230 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3231 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvaf722b002012-12-07 10:36:55 +00003232
3233 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3234 br i1 %cmp, label %true, label %end ; Branch to either destination.
3235
3236 true:
3237 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3238 ; it has undefined behavior.
3239 br label %end
3240
3241 end:
3242 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3243 ; Both edges into this PHI are
3244 ; control-dependent on %cmp, so this
3245 ; always results in a poison value.
3246
3247 store volatile i32 0, i32* @g ; This would depend on the store in %true
3248 ; if %cmp is true, or the store in %entry
3249 ; otherwise, so this is undefined behavior.
3250
3251 br i1 %cmp, label %second_true, label %second_end
3252 ; The same branch again, but this time the
3253 ; true block doesn't have side effects.
3254
3255 second_true:
3256 ; No side effects!
3257 ret void
3258
3259 second_end:
3260 store volatile i32 0, i32* @g ; This time, the instruction always depends
3261 ; on the store in %end. Also, it is
3262 ; control-equivalent to %end, so this is
3263 ; well-defined (ignoring earlier undefined
3264 ; behavior in this example).
3265
3266.. _blockaddress:
3267
3268Addresses of Basic Blocks
3269-------------------------
3270
3271``blockaddress(@function, %block)``
3272
3273The '``blockaddress``' constant computes the address of the specified
3274basic block in the specified function, and always has an ``i8*`` type.
3275Taking the address of the entry block is illegal.
3276
3277This value only has defined behavior when used as an operand to the
3278':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3279against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00003280undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00003281no label is equal to the null pointer. This may be passed around as an
3282opaque pointer sized value as long as the bits are not inspected. This
3283allows ``ptrtoint`` and arithmetic to be performed on these values so
3284long as the original value is reconstituted before the ``indirectbr``
3285instruction.
3286
3287Finally, some targets may provide defined semantics when using the value
3288as the operand to an inline assembly, but that is target specific.
3289
Eli Bendersky88fe6822013-06-07 20:24:43 +00003290.. _constantexprs:
3291
Sean Silvaf722b002012-12-07 10:36:55 +00003292Constant Expressions
3293--------------------
3294
3295Constant expressions are used to allow expressions involving other
3296constants to be used as constants. Constant expressions may be of any
3297:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3298that does not have side effects (e.g. load and call are not supported).
3299The following is the syntax for constant expressions:
3300
3301``trunc (CST to TYPE)``
Bjorn Pettersson7b97ca12017-10-24 11:59:20 +00003302 Perform the :ref:`trunc operation <i_trunc>` on constants.
Sean Silvaf722b002012-12-07 10:36:55 +00003303``zext (CST to TYPE)``
Bjorn Pettersson7b97ca12017-10-24 11:59:20 +00003304 Perform the :ref:`zext operation <i_zext>` on constants.
Sean Silvaf722b002012-12-07 10:36:55 +00003305``sext (CST to TYPE)``
Bjorn Pettersson7b97ca12017-10-24 11:59:20 +00003306 Perform the :ref:`sext operation <i_sext>` on constants.
Sean Silvaf722b002012-12-07 10:36:55 +00003307``fptrunc (CST to TYPE)``
Sanjay Patel16e9a292018-03-21 14:15:33 +00003308 Truncate a floating-point constant to another floating-point type.
Sean Silvaf722b002012-12-07 10:36:55 +00003309 The size of CST must be larger than the size of TYPE. Both types
Sanjay Patel16e9a292018-03-21 14:15:33 +00003310 must be floating-point.
Sean Silvaf722b002012-12-07 10:36:55 +00003311``fpext (CST to TYPE)``
Sanjay Patel16e9a292018-03-21 14:15:33 +00003312 Floating-point extend a constant to another type. The size of CST
Sean Silvaf722b002012-12-07 10:36:55 +00003313 must be smaller or equal to the size of TYPE. Both types must be
Sanjay Patel16e9a292018-03-21 14:15:33 +00003314 floating-point.
Sean Silvaf722b002012-12-07 10:36:55 +00003315``fptoui (CST to TYPE)``
Sanjay Patel16e9a292018-03-21 14:15:33 +00003316 Convert a floating-point constant to the corresponding unsigned
Sean Silvaf722b002012-12-07 10:36:55 +00003317 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel16e9a292018-03-21 14:15:33 +00003318 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvaf722b002012-12-07 10:36:55 +00003319 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc0358162018-06-08 21:33:33 +00003320 value won't fit in the integer type, the result is a
3321 :ref:`poison value <poisonvalues>`.
Sean Silvaf722b002012-12-07 10:36:55 +00003322``fptosi (CST to TYPE)``
Sanjay Patel16e9a292018-03-21 14:15:33 +00003323 Convert a floating-point constant to the corresponding signed
Sean Silvaf722b002012-12-07 10:36:55 +00003324 integer constant. TYPE must be a scalar or vector integer type. CST
Sanjay Patel16e9a292018-03-21 14:15:33 +00003325 must be of scalar or vector floating-point type. Both CST and TYPE
Sean Silvaf722b002012-12-07 10:36:55 +00003326 must be scalars, or vectors of the same number of elements. If the
Eli Friedmanc0358162018-06-08 21:33:33 +00003327 value won't fit in the integer type, the result is a
3328 :ref:`poison value <poisonvalues>`.
Sean Silvaf722b002012-12-07 10:36:55 +00003329``uitofp (CST to TYPE)``
Mandeep Singh Grang08238b72018-11-01 23:22:25 +00003330 Convert an unsigned integer constant to the corresponding
Sanjay Patel16e9a292018-03-21 14:15:33 +00003331 floating-point constant. TYPE must be a scalar or vector floating-point
3332 type. CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedmancaa16ea2018-06-14 22:58:48 +00003333 be scalars, or vectors of the same number of elements.
Sean Silvaf722b002012-12-07 10:36:55 +00003334``sitofp (CST to TYPE)``
Sanjay Patel16e9a292018-03-21 14:15:33 +00003335 Convert a signed integer constant to the corresponding floating-point
3336 constant. TYPE must be a scalar or vector floating-point type.
Sean Silvaf722b002012-12-07 10:36:55 +00003337 CST must be of scalar or vector integer type. Both CST and TYPE must
Eli Friedmancaa16ea2018-06-14 22:58:48 +00003338 be scalars, or vectors of the same number of elements.
Sean Silvaf722b002012-12-07 10:36:55 +00003339``ptrtoint (CST to TYPE)``
Bjorn Pettersson7b97ca12017-10-24 11:59:20 +00003340 Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
Sean Silvaf722b002012-12-07 10:36:55 +00003341``inttoptr (CST to TYPE)``
Bjorn Pettersson7b97ca12017-10-24 11:59:20 +00003342 Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
Sean Silvaf722b002012-12-07 10:36:55 +00003343 This one is *really* dangerous!
3344``bitcast (CST to TYPE)``
Bjorn Pettersson7b97ca12017-10-24 11:59:20 +00003345 Convert a constant, CST, to another TYPE.
3346 The constraints of the operands are the same as those for the
3347 :ref:`bitcast instruction <i_bitcast>`.
Matt Arsenault59d3ae62013-11-15 01:34:59 +00003348``addrspacecast (CST to TYPE)``
3349 Convert a constant pointer or constant vector of pointer, CST, to another
3350 TYPE in a different address space. The constraints of the operands are the
3351 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikie5a70dd12015-03-13 18:20:45 +00003352``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvaf722b002012-12-07 10:36:55 +00003353 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3354 constants. As with the :ref:`getelementptr <i_getelementptr>`
David Blaikie40391812017-06-19 05:34:21 +00003355 instruction, the index list may have one or more indexes, which are
David Blaikie5a70dd12015-03-13 18:20:45 +00003356 required to make sense for the type of "pointer to TY".
Sean Silvaf722b002012-12-07 10:36:55 +00003357``select (COND, VAL1, VAL2)``
3358 Perform the :ref:`select operation <i_select>` on constants.
3359``icmp COND (VAL1, VAL2)``
Bjorn Pettersson7b97ca12017-10-24 11:59:20 +00003360 Perform the :ref:`icmp operation <i_icmp>` on constants.
Sean Silvaf722b002012-12-07 10:36:55 +00003361``fcmp COND (VAL1, VAL2)``
Bjorn Pettersson7b97ca12017-10-24 11:59:20 +00003362 Perform the :ref:`fcmp operation <i_fcmp>` on constants.
Sean Silvaf722b002012-12-07 10:36:55 +00003363``extractelement (VAL, IDX)``
3364 Perform the :ref:`extractelement operation <i_extractelement>` on
3365 constants.
3366``insertelement (VAL, ELT, IDX)``
3367 Perform the :ref:`insertelement operation <i_insertelement>` on
3368 constants.
3369``shufflevector (VEC1, VEC2, IDXMASK)``
3370 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3371 constants.
3372``extractvalue (VAL, IDX0, IDX1, ...)``
3373 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3374 constants. The index list is interpreted in a similar manner as
3375 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3376 least one index value must be specified.
3377``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3378 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3379 The index list is interpreted in a similar manner as indices in a
3380 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3381 value must be specified.
3382``OPCODE (LHS, RHS)``
3383 Perform the specified operation of the LHS and RHS constants. OPCODE
3384 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3385 binary <bitwiseops>` operations. The constraints on operands are
3386 the same as those for the corresponding instruction (e.g. no bitwise
Sanjay Patel16e9a292018-03-21 14:15:33 +00003387 operations on floating-point values are allowed).
Sean Silvaf722b002012-12-07 10:36:55 +00003388
3389Other Values
3390============
3391
Eli Bendersky88fe6822013-06-07 20:24:43 +00003392.. _inlineasmexprs:
3393
Sean Silvaf722b002012-12-07 10:36:55 +00003394Inline Assembler Expressions
3395----------------------------
3396
3397LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knight1ba30c82015-07-08 18:08:36 +00003398Inline Assembly <moduleasm>`) through the use of a special value. This value
3399represents the inline assembler as a template string (containing the
3400instructions to emit), a list of operand constraints (stored as a string), a
3401flag that indicates whether or not the inline asm expression has side effects,
3402and a flag indicating whether the function containing the asm needs to align its
3403stack conservatively.
3404
3405The template string supports argument substitution of the operands using "``$``"
3406followed by a number, to indicate substitution of the given register/memory
3407location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3408be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3409operand (See :ref:`inline-asm-modifiers`).
3410
3411A literal "``$``" may be included by using "``$$``" in the template. To include
3412other special characters into the output, the usual "``\XX``" escapes may be
3413used, just as in other strings. Note that after template substitution, the
3414resulting assembly string is parsed by LLVM's integrated assembler unless it is
3415disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3416syntax known to LLVM.
3417
Reid Kleckner2a4edb62017-02-06 18:08:45 +00003418LLVM also supports a few more substitions useful for writing inline assembly:
3419
3420- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3421 This substitution is useful when declaring a local label. Many standard
3422 compiler optimizations, such as inlining, may duplicate an inline asm blob.
3423 Adding a blob-unique identifier ensures that the two labels will not conflict
3424 during assembly. This is used to implement `GCC's %= special format
3425 string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3426- ``${:comment}``: Expands to the comment character of the current target's
3427 assembly dialect. This is usually ``#``, but many targets use other strings,
3428 such as ``;``, ``//``, or ``!``.
3429- ``${:private}``: Expands to the assembler private label prefix. Labels with
3430 this prefix will not appear in the symbol table of the assembled object.
3431 Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3432 relatively popular.
3433
James Y Knight1ba30c82015-07-08 18:08:36 +00003434LLVM's support for inline asm is modeled closely on the requirements of Clang's
3435GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3436modifier codes listed here are similar or identical to those in GCC's inline asm
3437support. However, to be clear, the syntax of the template and constraint strings
3438described here is *not* the same as the syntax accepted by GCC and Clang, and,
3439while most constraint letters are passed through as-is by Clang, some get
3440translated to other codes when converting from the C source to the LLVM
3441assembly.
3442
3443An example inline assembler expression is:
Sean Silvaf722b002012-12-07 10:36:55 +00003444
3445.. code-block:: llvm
3446
3447 i32 (i32) asm "bswap $0", "=r,r"
3448
3449Inline assembler expressions may **only** be used as the callee operand
3450of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3451Thus, typically we have:
3452
3453.. code-block:: llvm
3454
3455 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3456
3457Inline asms with side effects not visible in the constraint list must be
3458marked as having side effects. This is done through the use of the
3459'``sideeffect``' keyword, like so:
3460
3461.. code-block:: llvm
3462
3463 call void asm sideeffect "eieio", ""()
3464
3465In some cases inline asms will contain code that will not work unless
3466the stack is aligned in some way, such as calls or SSE instructions on
3467x86, yet will not contain code that does that alignment within the asm.
3468The compiler should make conservative assumptions about what the asm
3469might contain and should generate its usual stack alignment code in the
3470prologue if the '``alignstack``' keyword is present:
3471
3472.. code-block:: llvm
3473
3474 call void asm alignstack "eieio", ""()
3475
3476Inline asms also support using non-standard assembly dialects. The
3477assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3478the inline asm is using the Intel dialect. Currently, ATT and Intel are
3479the only supported dialects. An example is:
3480
3481.. code-block:: llvm
3482
3483 call void asm inteldialect "eieio", ""()
3484
3485If multiple keywords appear the '``sideeffect``' keyword must come
3486first, the '``alignstack``' keyword second and the '``inteldialect``'
3487keyword last.
3488
James Y Knight1ba30c82015-07-08 18:08:36 +00003489Inline Asm Constraint String
3490^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3491
3492The constraint list is a comma-separated string, each element containing one or
3493more constraint codes.
3494
3495For each element in the constraint list an appropriate register or memory
3496operand will be chosen, and it will be made available to assembly template
3497string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3498second, etc.
3499
3500There are three different types of constraints, which are distinguished by a
3501prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3502constraints must always be given in that order: outputs first, then inputs, then
3503clobbers. They cannot be intermingled.
3504
3505There are also three different categories of constraint codes:
3506
3507- Register constraint. This is either a register class, or a fixed physical
3508 register. This kind of constraint will allocate a register, and if necessary,
3509 bitcast the argument or result to the appropriate type.
3510- Memory constraint. This kind of constraint is for use with an instruction
3511 taking a memory operand. Different constraints allow for different addressing
3512 modes used by the target.
3513- Immediate value constraint. This kind of constraint is for an integer or other
3514 immediate value which can be rendered directly into an instruction. The
3515 various target-specific constraints allow the selection of a value in the
3516 proper range for the instruction you wish to use it with.
3517
3518Output constraints
3519""""""""""""""""""
3520
3521Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3522indicates that the assembly will write to this operand, and the operand will
3523then be made available as a return value of the ``asm`` expression. Output
3524constraints do not consume an argument from the call instruction. (Except, see
3525below about indirect outputs).
3526
3527Normally, it is expected that no output locations are written to by the assembly
3528expression until *all* of the inputs have been read. As such, LLVM may assign
3529the same register to an output and an input. If this is not safe (e.g. if the
3530assembly contains two instructions, where the first writes to one output, and
3531the second reads an input and writes to a second output), then the "``&``"
3532modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru3c5ec722016-02-14 20:16:22 +00003533"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knight1ba30c82015-07-08 18:08:36 +00003534will not use the same register for any inputs (other than an input tied to this
3535output).
3536
3537Input constraints
3538"""""""""""""""""
3539
3540Input constraints do not have a prefix -- just the constraint codes. Each input
3541constraint will consume one argument from the call instruction. It is not
3542permitted for the asm to write to any input register or memory location (unless
3543that input is tied to an output). Note also that multiple inputs may all be
3544assigned to the same register, if LLVM can determine that they necessarily all
3545contain the same value.
3546
3547Instead of providing a Constraint Code, input constraints may also "tie"
3548themselves to an output constraint, by providing an integer as the constraint
3549string. Tied inputs still consume an argument from the call instruction, and
3550take up a position in the asm template numbering as is usual -- they will simply
3551be constrained to always use the same register as the output they've been tied
3552to. For example, a constraint string of "``=r,0``" says to assign a register for
3553output, and use that register as an input as well (it being the 0'th
3554constraint).
3555
3556It is permitted to tie an input to an "early-clobber" output. In that case, no
3557*other* input may share the same register as the input tied to the early-clobber
3558(even when the other input has the same value).
3559
3560You may only tie an input to an output which has a register constraint, not a
3561memory constraint. Only a single input may be tied to an output.
3562
3563There is also an "interesting" feature which deserves a bit of explanation: if a
3564register class constraint allocates a register which is too small for the value
3565type operand provided as input, the input value will be split into multiple
3566registers, and all of them passed to the inline asm.
3567
3568However, this feature is often not as useful as you might think.
3569
3570Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3571architectures that have instructions which operate on multiple consecutive
3572instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3573SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3574hardware then loads into both the named register, and the next register. This
3575feature of inline asm would not be useful to support that.)
3576
3577A few of the targets provide a template string modifier allowing explicit access
3578to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3579``D``). On such an architecture, you can actually access the second allocated
3580register (yet, still, not any subsequent ones). But, in that case, you're still
3581probably better off simply splitting the value into two separate operands, for
3582clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3583despite existing only for use with this feature, is not really a good idea to
3584use)
3585
3586Indirect inputs and outputs
3587"""""""""""""""""""""""""""
3588
3589Indirect output or input constraints can be specified by the "``*``" modifier
3590(which goes after the "``=``" in case of an output). This indicates that the asm
3591will write to or read from the contents of an *address* provided as an input
3592argument. (Note that in this way, indirect outputs act more like an *input* than
3593an output: just like an input, they consume an argument of the call expression,
3594rather than producing a return value. An indirect output constraint is an
3595"output" only in that the asm is expected to write to the contents of the input
3596memory location, instead of just read from it).
3597
3598This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3599address of a variable as a value.
3600
3601It is also possible to use an indirect *register* constraint, but only on output
3602(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3603value normally, and then, separately emit a store to the address provided as
3604input, after the provided inline asm. (It's not clear what value this
3605functionality provides, compared to writing the store explicitly after the asm
3606statement, and it can only produce worse code, since it bypasses many
3607optimization passes. I would recommend not using it.)
3608
3609
3610Clobber constraints
3611"""""""""""""""""""
3612
3613A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3614consume an input operand, nor generate an output. Clobbers cannot use any of the
3615general constraint code letters -- they may use only explicit register
3616constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3617"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3618memory locations -- not only the memory pointed to by a declared indirect
3619output.
3620
Peter Zotoveaff23d2016-08-30 10:48:31 +00003621Note that clobbering named registers that are also present in output
3622constraints is not legal.
3623
James Y Knight1ba30c82015-07-08 18:08:36 +00003624
3625Constraint Codes
3626""""""""""""""""
3627After a potential prefix comes constraint code, or codes.
3628
3629A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3630followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3631(e.g. "``{eax}``").
3632
3633The one and two letter constraint codes are typically chosen to be the same as
3634GCC's constraint codes.
3635
3636A single constraint may include one or more than constraint code in it, leaving
3637it up to LLVM to choose which one to use. This is included mainly for
3638compatibility with the translation of GCC inline asm coming from clang.
3639
3640There are two ways to specify alternatives, and either or both may be used in an
3641inline asm constraint list:
3642
36431) Append the codes to each other, making a constraint code set. E.g. "``im``"
3644 or "``{eax}m``". This means "choose any of the options in the set". The
3645 choice of constraint is made independently for each constraint in the
3646 constraint list.
3647
36482) Use "``|``" between constraint code sets, creating alternatives. Every
3649 constraint in the constraint list must have the same number of alternative
3650 sets. With this syntax, the same alternative in *all* of the items in the
3651 constraint list will be chosen together.
3652
3653Putting those together, you might have a two operand constraint string like
3654``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3655operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3656may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3657
3658However, the use of either of the alternatives features is *NOT* recommended, as
3659LLVM is not able to make an intelligent choice about which one to use. (At the
3660point it currently needs to choose, not enough information is available to do so
3661in a smart way.) Thus, it simply tries to make a choice that's most likely to
3662compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3663always choose to use memory, not registers). And, if given multiple registers,
3664or multiple register classes, it will simply choose the first one. (In fact, it
3665doesn't currently even ensure explicitly specified physical registers are
3666unique, so specifying multiple physical registers as alternatives, like
3667``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3668intended.)
3669
3670Supported Constraint Code List
3671""""""""""""""""""""""""""""""
3672
3673The constraint codes are, in general, expected to behave the same way they do in
3674GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3675inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3676and GCC likely indicates a bug in LLVM.
3677
3678Some constraint codes are typically supported by all targets:
3679
3680- ``r``: A register in the target's general purpose register class.
3681- ``m``: A memory address operand. It is target-specific what addressing modes
3682 are supported, typical examples are register, or register + register offset,
3683 or register + immediate offset (of some target-specific size).
3684- ``i``: An integer constant (of target-specific width). Allows either a simple
3685 immediate, or a relocatable value.
3686- ``n``: An integer constant -- *not* including relocatable values.
3687- ``s``: An integer constant, but allowing *only* relocatable values.
3688- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3689 useful to pass a label for an asm branch or call.
3690
3691 .. FIXME: but that surely isn't actually okay to jump out of an asm
3692 block without telling llvm about the control transfer???)
3693
3694- ``{register-name}``: Requires exactly the named physical register.
3695
3696Other constraints are target-specific:
3697
3698AArch64:
3699
3700- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3701- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3702 i.e. 0 to 4095 with optional shift by 12.
3703- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3704 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3705- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3706 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3707- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3708 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3709- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3710 32-bit register. This is a superset of ``K``: in addition to the bitmask
3711 immediate, also allows immediate integers which can be loaded with a single
3712 ``MOVZ`` or ``MOVL`` instruction.
3713- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3714 64-bit register. This is a superset of ``L``.
3715- ``Q``: Memory address operand must be in a single register (no
3716 offsets). (However, LLVM currently does this for the ``m`` constraint as
3717 well.)
3718- ``r``: A 32 or 64-bit integer register (W* or X*).
3719- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3720- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3721
3722AMDGPU:
3723
3724- ``r``: A 32 or 64-bit integer register.
3725- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3726- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3727
3728
3729All ARM modes:
3730
3731- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3732 operand. Treated the same as operand ``m``, at the moment.
3733
3734ARM and ARM's Thumb2 mode:
3735
3736- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3737- ``I``: An immediate integer valid for a data-processing instruction.
3738- ``J``: An immediate integer between -4095 and 4095.
3739- ``K``: An immediate integer whose bitwise inverse is valid for a
3740 data-processing instruction. (Can be used with template modifier "``B``" to
3741 print the inverted value).
3742- ``L``: An immediate integer whose negation is valid for a data-processing
3743 instruction. (Can be used with template modifier "``n``" to print the negated
3744 value).
3745- ``M``: A power of two or a integer between 0 and 32.
3746- ``N``: Invalid immediate constraint.
3747- ``O``: Invalid immediate constraint.
3748- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3749- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3750 as ``r``.
3751- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3752 invalid.
3753- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3754 ``d0-d31``, or ``q0-q15``.
3755- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3756 ``d0-d7``, or ``q0-q3``.
Pablo Barrio5f393822018-02-15 14:44:22 +00003757- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3758 ``q0-q8``.
James Y Knight1ba30c82015-07-08 18:08:36 +00003759
3760ARM's Thumb1 mode:
3761
3762- ``I``: An immediate integer between 0 and 255.
3763- ``J``: An immediate integer between -255 and -1.
3764- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3765 some amount.
3766- ``L``: An immediate integer between -7 and 7.
3767- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3768- ``N``: An immediate integer between 0 and 31.
3769- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3770- ``r``: A low 32-bit GPR register (``r0-r7``).
3771- ``l``: A low 32-bit GPR register (``r0-r7``).
3772- ``h``: A high GPR register (``r0-r7``).
3773- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3774 ``d0-d31``, or ``q0-q15``.
3775- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3776 ``d0-d7``, or ``q0-q3``.
Pablo Barrio5f393822018-02-15 14:44:22 +00003777- ``t``: A low floating-point/SIMD register: ``s0-s31``, ``d0-d16``, or
3778 ``q0-q8``.
James Y Knight1ba30c82015-07-08 18:08:36 +00003779
3780
3781Hexagon:
3782
3783- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3784 at the moment.
3785- ``r``: A 32 or 64-bit register.
3786
3787MSP430:
3788
3789- ``r``: An 8 or 16-bit register.
3790
3791MIPS:
3792
3793- ``I``: An immediate signed 16-bit integer.
3794- ``J``: An immediate integer zero.
3795- ``K``: An immediate unsigned 16-bit integer.
3796- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3797- ``N``: An immediate integer between -65535 and -1.
3798- ``O``: An immediate signed 15-bit integer.
3799- ``P``: An immediate integer between 1 and 65535.
3800- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3801 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3802- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3803 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3804 ``m``.
3805- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3806 ``sc`` instruction on the given subtarget (details vary).
3807- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3808- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sandersddb76b42015-07-13 09:24:21 +00003809 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3810 argument modifier for compatibility with GCC.
James Y Knight1ba30c82015-07-08 18:08:36 +00003811- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3812 ``25``).
3813- ``l``: The ``lo`` register, 32 or 64-bit.
3814- ``x``: Invalid.
3815
3816NVPTX:
3817
3818- ``b``: A 1-bit integer register.
3819- ``c`` or ``h``: A 16-bit integer register.
3820- ``r``: A 32-bit integer register.
3821- ``l`` or ``N``: A 64-bit integer register.
3822- ``f``: A 32-bit float register.
3823- ``d``: A 64-bit float register.
3824
3825
3826PowerPC:
3827
3828- ``I``: An immediate signed 16-bit integer.
3829- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3830- ``K``: An immediate unsigned 16-bit integer.
3831- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3832- ``M``: An immediate integer greater than 31.
3833- ``N``: An immediate integer that is an exact power of 2.
3834- ``O``: The immediate integer constant 0.
3835- ``P``: An immediate integer constant whose negation is a signed 16-bit
3836 constant.
3837- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3838 treated the same as ``m``.
3839- ``r``: A 32 or 64-bit integer register.
3840- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3841 ``R1-R31``).
3842- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3843 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3844- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3845 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3846 altivec vector register (``V0-V31``).
3847
3848 .. FIXME: is this a bug that v accepts QPX registers? I think this
3849 is supposed to only use the altivec vector registers?
3850
3851- ``y``: Condition register (``CR0-CR7``).
3852- ``wc``: An individual CR bit in a CR register.
3853- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3854 register set (overlapping both the floating-point and vector register files).
Sanjay Patel16e9a292018-03-21 14:15:33 +00003855- ``ws``: A 32 or 64-bit floating-point register, from the full VSX register
James Y Knight1ba30c82015-07-08 18:08:36 +00003856 set.
3857
3858Sparc:
3859
3860- ``I``: An immediate 13-bit signed integer.
3861- ``r``: A 32-bit integer register.
Sanjay Patel16e9a292018-03-21 14:15:33 +00003862- ``f``: Any floating-point register on SparcV8, or a floating-point
James Y Knightc5d0c882017-05-12 15:59:10 +00003863 register in the "low" half of the registers on SparcV9.
Sanjay Patel16e9a292018-03-21 14:15:33 +00003864- ``e``: Any floating-point register. (Same as ``f`` on SparcV8.)
James Y Knight1ba30c82015-07-08 18:08:36 +00003865
3866SystemZ:
3867
3868- ``I``: An immediate unsigned 8-bit integer.
3869- ``J``: An immediate unsigned 12-bit integer.
3870- ``K``: An immediate signed 16-bit integer.
3871- ``L``: An immediate signed 20-bit integer.
3872- ``M``: An immediate integer 0x7fffffff.
Ulrich Weigand603d6802016-06-13 14:24:05 +00003873- ``Q``: A memory address operand with a base address and a 12-bit immediate
3874 unsigned displacement.
3875- ``R``: A memory address operand with a base address, a 12-bit immediate
3876 unsigned displacement, and an index register.
3877- ``S``: A memory address operand with a base address and a 20-bit immediate
3878 signed displacement.
3879- ``T``: A memory address operand with a base address, a 20-bit immediate
3880 signed displacement, and an index register.
James Y Knight1ba30c82015-07-08 18:08:36 +00003881- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3882- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3883 address context evaluates as zero).
3884- ``h``: A 32-bit value in the high part of a 64bit data register
3885 (LLVM-specific)
Sanjay Patel16e9a292018-03-21 14:15:33 +00003886- ``f``: A 32, 64, or 128-bit floating-point register.
James Y Knight1ba30c82015-07-08 18:08:36 +00003887
3888X86:
3889
3890- ``I``: An immediate integer between 0 and 31.
3891- ``J``: An immediate integer between 0 and 64.
3892- ``K``: An immediate signed 8-bit integer.
3893- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3894 0xffffffff.
3895- ``M``: An immediate integer between 0 and 3.
3896- ``N``: An immediate unsigned 8-bit integer.
3897- ``O``: An immediate integer between 0 and 127.
3898- ``e``: An immediate 32-bit signed integer.
3899- ``Z``: An immediate 32-bit unsigned integer.
3900- ``o``, ``v``: Treated the same as ``m``, at the moment.
3901- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3902 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3903 registers, and on X86-64, it is all of the integer registers.
3904- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3905 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3906- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3907- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3908 existed since i386, and can be accessed without the REX prefix.
3909- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3910- ``y``: A 64-bit MMX register, if MMX is enabled.
3911- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3912 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3913 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3914 512-bit vector operand in an AVX512 register, Otherwise, an error.
3915- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3916- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3917 32-bit mode, a 64-bit integer operand will get split into two registers). It
3918 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3919 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3920 you're better off splitting it yourself, before passing it to the asm
3921 statement.
3922
3923XCore:
3924
3925- ``r``: A 32-bit integer register.
3926
3927
3928.. _inline-asm-modifiers:
3929
3930Asm template argument modifiers
3931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3932
3933In the asm template string, modifiers can be used on the operand reference, like
3934"``${0:n}``".
3935
3936The modifiers are, in general, expected to behave the same way they do in
3937GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3938inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3939and GCC likely indicates a bug in LLVM.
3940
3941Target-independent:
3942
Sean Silva7515d332015-08-06 22:56:48 +00003943- ``c``: Print an immediate integer constant unadorned, without
James Y Knight1ba30c82015-07-08 18:08:36 +00003944 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3945- ``n``: Negate and print immediate integer constant unadorned, without the
3946 target-specific immediate punctuation (e.g. no ``$`` prefix).
3947- ``l``: Print as an unadorned label, without the target-specific label
3948 punctuation (e.g. no ``$`` prefix).
3949
3950AArch64:
3951
3952- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3953 instead of ``x30``, print ``w30``.
3954- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3955- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3956 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3957 ``v*``.
3958
3959AMDGPU:
3960
3961- ``r``: No effect.
3962
3963ARM:
3964
3965- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3966 register).
3967- ``P``: No effect.
3968- ``q``: No effect.
3969- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3970 as ``d4[1]`` instead of ``s9``)
3971- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3972 prefix.
3973- ``L``: Print the low 16-bits of an immediate integer constant.
3974- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3975 register operands subsequent to the specified one (!), so use carefully.
3976- ``Q``: Print the low-order register of a register-pair, or the low-order
3977 register of a two-register operand.
3978- ``R``: Print the high-order register of a register-pair, or the high-order
3979 register of a two-register operand.
3980- ``H``: Print the second register of a register-pair. (On a big-endian system,
3981 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3982 to ``R``.)
3983
3984 .. FIXME: H doesn't currently support printing the second register
3985 of a two-register operand.
3986
3987- ``e``: Print the low doubleword register of a NEON quad register.
3988- ``f``: Print the high doubleword register of a NEON quad register.
3989- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3990 adornment.
3991
3992Hexagon:
3993
3994- ``L``: Print the second register of a two-register operand. Requires that it
3995 has been allocated consecutively to the first.
3996
3997 .. FIXME: why is it restricted to consecutive ones? And there's
3998 nothing that ensures that happens, is there?
3999
4000- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4001 nothing. Used to print 'addi' vs 'add' instructions.
4002
4003MSP430:
4004
4005No additional modifiers.
4006
4007MIPS:
4008
4009- ``X``: Print an immediate integer as hexadecimal
4010- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
4011- ``d``: Print an immediate integer as decimal.
4012- ``m``: Subtract one and print an immediate integer as decimal.
4013- ``z``: Print $0 if an immediate zero, otherwise print normally.
4014- ``L``: Print the low-order register of a two-register operand, or prints the
4015 address of the low-order word of a double-word memory operand.
4016
4017 .. FIXME: L seems to be missing memory operand support.
4018
4019- ``M``: Print the high-order register of a two-register operand, or prints the
4020 address of the high-order word of a double-word memory operand.
4021
4022 .. FIXME: M seems to be missing memory operand support.
4023
4024- ``D``: Print the second register of a two-register operand, or prints the
4025 second word of a double-word memory operand. (On a big-endian system, ``D`` is
4026 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
4027 ``M``.)
Daniel Sandersddb76b42015-07-13 09:24:21 +00004028- ``w``: No effect. Provided for compatibility with GCC which requires this
4029 modifier in order to print MSA registers (``W0-W31``) with the ``f``
4030 constraint.
James Y Knight1ba30c82015-07-08 18:08:36 +00004031
4032NVPTX:
4033
4034- ``r``: No effect.
4035
4036PowerPC:
4037
4038- ``L``: Print the second register of a two-register operand. Requires that it
4039 has been allocated consecutively to the first.
4040
4041 .. FIXME: why is it restricted to consecutive ones? And there's
4042 nothing that ensures that happens, is there?
4043
4044- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4045 nothing. Used to print 'addi' vs 'add' instructions.
4046- ``y``: For a memory operand, prints formatter for a two-register X-form
4047 instruction. (Currently always prints ``r0,OPERAND``).
4048- ``U``: Prints 'u' if the memory operand is an update form, and nothing
4049 otherwise. (NOTE: LLVM does not support update form, so this will currently
4050 always print nothing)
4051- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
4052 not support indexed form, so this will currently always print nothing)
4053
4054Sparc:
4055
4056- ``r``: No effect.
4057
4058SystemZ:
4059
4060SystemZ implements only ``n``, and does *not* support any of the other
4061target-independent modifiers.
4062
4063X86:
4064
4065- ``c``: Print an unadorned integer or symbol name. (The latter is
4066 target-specific behavior for this typically target-independent modifier).
4067- ``A``: Print a register name with a '``*``' before it.
4068- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
4069 operand.
4070- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
4071 memory operand.
4072- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
4073 operand.
4074- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
4075 operand.
4076- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
4077 available, otherwise the 32-bit register name; do nothing on a memory operand.
4078- ``n``: Negate and print an unadorned integer, or, for operands other than an
4079 immediate integer (e.g. a relocatable symbol expression), print a '-' before
4080 the operand. (The behavior for relocatable symbol expressions is a
4081 target-specific behavior for this typically target-independent modifier)
4082- ``H``: Print a memory reference with additional offset +8.
4083- ``P``: Print a memory reference or operand for use as the argument of a call
4084 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
4085
4086XCore:
4087
4088No additional modifiers.
4089
4090
Sean Silvaf722b002012-12-07 10:36:55 +00004091Inline Asm Metadata
4092^^^^^^^^^^^^^^^^^^^
4093
4094The call instructions that wrap inline asm nodes may have a
4095"``!srcloc``" MDNode attached to it that contains a list of constant
4096integers. If present, the code generator will use the integer as the
4097location cookie value when report errors through the ``LLVMContext``
4098error reporting mechanisms. This allows a front-end to correlate backend
4099errors that occur with inline asm back to the source code that produced
4100it. For example:
4101
4102.. code-block:: llvm
4103
4104 call void asm sideeffect "something bad", ""(), !srcloc !42
4105 ...
4106 !42 = !{ i32 1234567 }
4107
4108It is up to the front-end to make sense of the magic numbers it places
4109in the IR. If the MDNode contains multiple constants, the code generator
4110will use the one that corresponds to the line of the asm that the error
4111occurs on.
4112
4113.. _metadata:
4114
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00004115Metadata
4116========
Sean Silvaf722b002012-12-07 10:36:55 +00004117
4118LLVM IR allows metadata to be attached to instructions in the program
4119that can convey extra information about the code to the optimizers and
4120code generator. One example application of metadata is source-level
4121debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00004122
Sean Silva7515d332015-08-06 22:56:48 +00004123Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00004124``call`` instruction, it uses the ``metadata`` type.
4125
4126All metadata are identified in syntax by a exclamation point ('``!``').
4127
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004128.. _metadata-string:
4129
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00004130Metadata Nodes and Metadata Strings
4131-----------------------------------
Sean Silvaf722b002012-12-07 10:36:55 +00004132
4133A metadata string is a string surrounded by double quotes. It can
4134contain any character by escaping non-printable characters with
4135"``\xx``" where "``xx``" is the two digit hex code. For example:
4136"``!"test\00"``".
4137
4138Metadata nodes are represented with notation similar to structure
4139constants (a comma separated list of elements, surrounded by braces and
4140preceded by an exclamation point). Metadata nodes can have any values as
4141their operand. For example:
4142
4143.. code-block:: llvm
4144
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00004145 !{ !"test\00", i32 10}
Sean Silvaf722b002012-12-07 10:36:55 +00004146
Duncan P. N. Exon Smithf416d722015-01-08 22:38:29 +00004147Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4148
Renato Golin88ea57f2016-07-20 12:16:38 +00004149.. code-block:: text
Duncan P. N. Exon Smithf416d722015-01-08 22:38:29 +00004150
4151 !0 = distinct !{!"test\00", i32 10}
4152
Duncan P. N. Exon Smithcce3a8a2015-01-08 23:50:26 +00004153``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silva7515d332015-08-06 22:56:48 +00004154content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smithcce3a8a2015-01-08 23:50:26 +00004155when metadata operands change.
4156
Sean Silvaf722b002012-12-07 10:36:55 +00004157A :ref:`named metadata <namedmetadatastructure>` is a collection of
4158metadata nodes, which can be looked up in the module symbol table. For
4159example:
4160
4161.. code-block:: llvm
4162
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00004163 !foo = !{!4, !3}
Sean Silvaf722b002012-12-07 10:36:55 +00004164
Adrian Prantlabecca72017-07-28 20:44:29 +00004165Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4166intrinsic is using three metadata arguments:
Sean Silvaf722b002012-12-07 10:36:55 +00004167
4168.. code-block:: llvm
4169
Adrian Prantl5d0334a2017-07-28 20:21:02 +00004170 call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
Sean Silvaf722b002012-12-07 10:36:55 +00004171
Peter Collingbourned04e60e2015-11-06 02:41:02 +00004172Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4173to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvaf722b002012-12-07 10:36:55 +00004174
4175.. code-block:: llvm
4176
4177 %indvar.next = add i64 %indvar, 1, !dbg !21
4178
Peter Collingbourne39a5a412017-01-25 21:50:14 +00004179Metadata can also be attached to a function or a global variable. Here metadata
4180``!22`` is attached to the ``f1`` and ``f2 functions, and the globals ``g1``
4181and ``g2`` using the ``!dbg`` identifier:
Peter Collingbourned04e60e2015-11-06 02:41:02 +00004182
4183.. code-block:: llvm
4184
Peter Collingbourne39a5a412017-01-25 21:50:14 +00004185 declare !dbg !22 void @f1()
4186 define void @f2() !dbg !22 {
Peter Collingbourned04e60e2015-11-06 02:41:02 +00004187 ret void
4188 }
4189
Peter Collingbourne39a5a412017-01-25 21:50:14 +00004190 @g1 = global i32 0, !dbg !22
4191 @g2 = external global i32, !dbg !22
4192
4193A transformation is required to drop any metadata attachment that it does not
4194know or know it can't preserve. Currently there is an exception for metadata
4195attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4196unconditionally dropped unless the global is itself deleted.
4197
4198Metadata attached to a module using named metadata may not be dropped, with
4199the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4200
Sean Silvaf722b002012-12-07 10:36:55 +00004201More information about specific metadata nodes recognized by the
4202optimizers and code generator is found below.
4203
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004204.. _specialized-metadata:
4205
Duncan P. N. Exon Smith3b0fe4e2015-01-13 21:10:44 +00004206Specialized Metadata Nodes
4207^^^^^^^^^^^^^^^^^^^^^^^^^^
4208
4209Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silva7515d332015-08-06 22:56:48 +00004210to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith3b0fe4e2015-01-13 21:10:44 +00004211order.
4212
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004213These aren't inherently debug info centric, but currently all the specialized
4214metadata nodes are related to debug info.
4215
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004216.. _DICompileUnit:
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004217
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004218DICompileUnit
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004219"""""""""""""
4220
Sean Silva7515d332015-08-06 22:56:48 +00004221``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Adrian Prantl3f239642017-06-12 23:59:43 +00004222``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4223containing the debug info to be emitted along with the compile unit, regardless
4224of code optimizations (some nodes are only emitted if there are references to
4225them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4226indicating whether or not line-table discriminators are updated to provide
4227more-accurate debug info for profiling results.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004228
Renato Golin88ea57f2016-07-20 12:16:38 +00004229.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004230
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004231 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004232 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantl7876f642016-04-01 00:16:49 +00004233 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Adrian Prantl3f239642017-06-12 23:59:43 +00004234 enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4235 macros: !6, dwoId: 0x0abcd)
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004236
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004237Compile unit descriptors provide the root scope for objects declared in a
Adrian Prantl3f239642017-06-12 23:59:43 +00004238specific compilation unit. File descriptors are defined using this scope. These
4239descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4240track of global variables, type information, and imported entities (declarations
4241and namespaces).
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004242
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004243.. _DIFile:
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004244
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004245DIFile
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004246""""""
4247
Sean Silva7515d332015-08-06 22:56:48 +00004248``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004249
Aaron Ballmane38a9b52017-01-17 21:48:31 +00004250.. code-block:: none
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004251
Amjad Aboud4e2e80b2016-12-25 10:12:09 +00004252 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4253 checksumkind: CSK_MD5,
4254 checksum: "000102030405060708090a0b0c0d0e0f")
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004255
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004256Files are sometimes used in ``scope:`` fields, and are the only valid target
4257for ``file:`` fields.
Amjad Aboud4e2e80b2016-12-25 10:12:09 +00004258Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1}
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004259
Michael Kuperstein6a882f82015-05-14 10:58:59 +00004260.. _DIBasicType:
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004261
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004262DIBasicType
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004263"""""""""""
4264
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004265``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silva7515d332015-08-06 22:56:48 +00004266``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004267
Renato Golin88ea57f2016-07-20 12:16:38 +00004268.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004269
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004270 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004271 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004272 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004273
Sean Silva7515d332015-08-06 22:56:48 +00004274The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004275following:
4276
Renato Golin88ea57f2016-07-20 12:16:38 +00004277.. code-block:: text
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004278
4279 DW_ATE_address = 1
4280 DW_ATE_boolean = 2
4281 DW_ATE_float = 4
4282 DW_ATE_signed = 5
4283 DW_ATE_signed_char = 6
4284 DW_ATE_unsigned = 7
4285 DW_ATE_unsigned_char = 8
4286
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004287.. _DISubroutineType:
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004288
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004289DISubroutineType
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004290""""""""""""""""
4291
Sean Silva7515d332015-08-06 22:56:48 +00004292``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004293refers to a tuple; the first operand is the return type, while the rest are the
Sean Silva7515d332015-08-06 22:56:48 +00004294types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004295represents a function with no return value (such as ``void foo() {}`` in C++).
4296
Renato Golin88ea57f2016-07-20 12:16:38 +00004297.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004298
4299 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4300 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004301 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004302
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004303.. _DIDerivedType:
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004304
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004305DIDerivedType
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004306"""""""""""""
4307
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004308``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004309qualified types.
4310
Renato Golin88ea57f2016-07-20 12:16:38 +00004311.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004312
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004313 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004314 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004315 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004316 align: 32)
4317
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004318The following ``tag:`` values are valid:
4319
Renato Golin88ea57f2016-07-20 12:16:38 +00004320.. code-block:: text
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004321
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004322 DW_TAG_member = 13
4323 DW_TAG_pointer_type = 15
4324 DW_TAG_reference_type = 16
4325 DW_TAG_typedef = 22
Duncan P. N. Exon Smith2c71d392016-04-16 22:46:47 +00004326 DW_TAG_inheritance = 28
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004327 DW_TAG_ptr_to_member_type = 31
4328 DW_TAG_const_type = 38
Duncan P. N. Exon Smith2c71d392016-04-16 22:46:47 +00004329 DW_TAG_friend = 42
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004330 DW_TAG_volatile_type = 53
4331 DW_TAG_restrict_type = 55
Victor Leschukb3395492016-10-31 19:09:38 +00004332 DW_TAG_atomic_type = 71
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004333
Duncan P. N. Exon Smithde748402016-04-23 21:08:00 +00004334.. _DIDerivedTypeMember:
4335
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004336``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith4460c982016-04-17 00:45:00 +00004337<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smithde748402016-04-23 21:08:00 +00004338``offset:`` is the member's bit offset. If the composite type has an ODR
4339``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4340uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004341
Duncan P. N. Exon Smith2c71d392016-04-16 22:46:47 +00004342``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4343field of :ref:`composite types <DICompositeType>` to describe parents and
4344friends.
4345
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004346``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4347
4348``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
Victor Leschukb3395492016-10-31 19:09:38 +00004349``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4350are used to qualify the ``baseType:``.
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004351
4352Note that the ``void *`` type is expressed as a type derived from NULL.
4353
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004354.. _DICompositeType:
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004355
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004356DICompositeType
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004357"""""""""""""""
4358
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004359``DICompositeType`` nodes represent types composed of other types, like
Sean Silva7515d332015-08-06 22:56:48 +00004360structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004361
4362If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smithde748402016-04-23 21:08:00 +00004363identifier used for type merging between modules. When specified,
4364:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4365derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4366``scope:`` change uniquing rules.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004367
Duncan P. N. Exon Smith9bb5d5d2016-04-17 03:58:21 +00004368For a given ``identifier:``, there should only be a single composite type that
4369does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4370together will unique such definitions at parse time via the ``identifier:``
4371field, even if the nodes are ``distinct``.
4372
Renato Golin88ea57f2016-07-20 12:16:38 +00004373.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004374
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004375 !0 = !DIEnumerator(name: "SixKind", value: 7)
4376 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4377 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4378 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004379 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4380 elements: !{!0, !1, !2})
4381
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004382The following ``tag:`` values are valid:
4383
Renato Golin88ea57f2016-07-20 12:16:38 +00004384.. code-block:: text
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004385
4386 DW_TAG_array_type = 1
4387 DW_TAG_class_type = 2
4388 DW_TAG_enumeration_type = 4
4389 DW_TAG_structure_type = 19
4390 DW_TAG_union_type = 23
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004391
4392For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004393descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silva7515d332015-08-06 22:56:48 +00004394level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004395array type is a native packed vector.
4396
4397For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004398descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silva7515d332015-08-06 22:56:48 +00004399value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004400``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004401
4402For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4403``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smith2c71d392016-04-16 22:46:47 +00004404<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4405``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4406``isDefinition: false``.
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004407
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004408.. _DISubrange:
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004409
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004410DISubrange
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004411""""""""""
4412
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004413``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sander de Smalen52662522018-01-24 10:30:23 +00004414:ref:`DICompositeType`.
4415
4416- ``count: -1`` indicates an empty array.
4417- ``count: !9`` describes the count with a :ref:`DILocalVariable`.
4418- ``count: !11`` describes the count with a :ref:`DIGlobalVariable`.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004419
Chandler Carruth63c6ded2018-08-06 03:35:36 +00004420.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004421
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004422 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4423 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4424 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004425
Sander de Smalen959cee72018-01-24 09:56:07 +00004426 ; Scopes used in rest of example
4427 !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
Chandler Carruth512e3172018-08-06 02:30:01 +00004428 !7 = distinct !DICompileUnit(language: DW_LANG_C99, file: !6)
4429 !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5)
Sander de Smalen959cee72018-01-24 09:56:07 +00004430
4431 ; Use of local variable as count value
4432 !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
4433 !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
Chandler Carruth512e3172018-08-06 02:30:01 +00004434 !11 = !DISubrange(count: !10, lowerBound: 0)
Sander de Smalen959cee72018-01-24 09:56:07 +00004435
4436 ; Use of global variable as count value
4437 !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
Chandler Carruth512e3172018-08-06 02:30:01 +00004438 !13 = !DISubrange(count: !12, lowerBound: 0)
Sander de Smalen959cee72018-01-24 09:56:07 +00004439
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004440.. _DIEnumerator:
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004441
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004442DIEnumerator
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004443""""""""""""
4444
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004445``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4446variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004447
Chandler Carruth63c6ded2018-08-06 03:35:36 +00004448.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004449
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004450 !0 = !DIEnumerator(name: "SixKind", value: 7)
4451 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4452 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004453
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004454DITemplateTypeParameter
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004455"""""""""""""""""""""""
4456
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004457``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silva7515d332015-08-06 22:56:48 +00004458language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004459:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004460
Chandler Carruth63c6ded2018-08-06 03:35:36 +00004461.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004462
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004463 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004464
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004465DITemplateValueParameter
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004466""""""""""""""""""""""""
4467
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004468``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silva7515d332015-08-06 22:56:48 +00004469language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004470but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silva7515d332015-08-06 22:56:48 +00004471``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004472:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004473
Chandler Carruth63c6ded2018-08-06 03:35:36 +00004474.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004475
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004476 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004477
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004478DINamespace
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004479"""""""""""
4480
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004481``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004482
Chandler Carruth63c6ded2018-08-06 03:35:36 +00004483.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004484
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004485 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004486
Sander de Smalen52662522018-01-24 10:30:23 +00004487.. _DIGlobalVariable:
4488
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004489DIGlobalVariable
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004490""""""""""""""""
4491
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004492``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004493
Chandler Carruth63c6ded2018-08-06 03:35:36 +00004494.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004495
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004496 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004497 file: !2, line: 7, type: !3, isLocal: true,
4498 isDefinition: false, variable: i32* @foo,
4499 declaration: !4)
4500
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004501All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004502:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004503
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004504.. _DISubprogram:
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004505
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004506DISubprogram
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004507""""""""""""
4508
Peter Collingbourned04e60e2015-11-06 02:41:02 +00004509``DISubprogram`` nodes represent functions from the source language. A
4510``DISubprogram`` may be attached to a function definition using ``!dbg``
4511metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4512that must be retained, even if their IR counterparts are optimized out of
4513the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004514
Duncan P. N. Exon Smithde748402016-04-23 21:08:00 +00004515.. _DISubprogramDeclaration:
4516
Duncan P. N. Exon Smith12a8b142016-04-17 02:30:20 +00004517When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smithde748402016-04-23 21:08:00 +00004518tree as opposed to a definition of a function. If the scope is a composite
4519type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4520then the subprogram declaration is uniqued based only on its ``linkageName:``
4521and ``scope:``.
Duncan P. N. Exon Smith12a8b142016-04-17 02:30:20 +00004522
Renato Golin88ea57f2016-07-20 12:16:38 +00004523.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004524
Peter Collingbourned04e60e2015-11-06 02:41:02 +00004525 define void @_Z3foov() !dbg !0 {
4526 ...
4527 }
4528
4529 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4530 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith12a8b142016-04-17 02:30:20 +00004531 isDefinition: true, scopeLine: 8,
Peter Collingbourned04e60e2015-11-06 02:41:02 +00004532 containingType: !4,
4533 virtuality: DW_VIRTUALITY_pure_virtual,
4534 virtualIndex: 10, flags: DIFlagPrototyped,
Adrian Prantl3f239642017-06-12 23:59:43 +00004535 isOptimized: true, unit: !5, templateParams: !6,
4536 declaration: !7, variables: !8, thrownTypes: !9)
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004537
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004538.. _DILexicalBlock:
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004539
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004540DILexicalBlock
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004541""""""""""""""
4542
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004543``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchener767c34a2015-09-12 01:17:08 +00004544<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silva7515d332015-08-06 22:56:48 +00004545two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004546fields.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004547
Renato Golin88ea57f2016-07-20 12:16:38 +00004548.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004549
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004550 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smith89064932015-03-17 23:41:05 +00004551
4552Usually lexical blocks are ``distinct`` to prevent node merging based on
4553operands.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004554
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004555.. _DILexicalBlockFile:
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004556
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004557DILexicalBlockFile
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004558""""""""""""""""""
4559
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004560``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silva7515d332015-08-06 22:56:48 +00004561:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004562indicate textual inclusion, or the ``discriminator:`` field can be used to
4563discriminate between control flow within a single block in the source language.
4564
Chandler Carruth63c6ded2018-08-06 03:35:36 +00004565.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004566
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004567 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4568 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4569 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004570
Michael Kuperstein6a882f82015-05-14 10:58:59 +00004571.. _DILocation:
4572
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004573DILocation
Duncan P. N. Exon Smith3b0fe4e2015-01-13 21:10:44 +00004574""""""""""
4575
Sean Silva7515d332015-08-06 22:56:48 +00004576``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004577mandatory, and points at an :ref:`DILexicalBlockFile`, an
4578:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith3b0fe4e2015-01-13 21:10:44 +00004579
Chandler Carruth63c6ded2018-08-06 03:35:36 +00004580.. code-block:: text
Duncan P. N. Exon Smith3b0fe4e2015-01-13 21:10:44 +00004581
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004582 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith3b0fe4e2015-01-13 21:10:44 +00004583
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004584.. _DILocalVariable:
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004585
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004586DILocalVariable
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004587"""""""""""""""
4588
Sean Silva7515d332015-08-06 22:56:48 +00004589``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithbf2040f2015-07-31 18:58:39 +00004590the ``arg:`` field is set to non-zero, then this variable is a subprogram
4591parameter, and it will be included in the ``variables:`` field of its
4592:ref:`DISubprogram`.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004593
Renato Golin88ea57f2016-07-20 12:16:38 +00004594.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004595
Duncan P. N. Exon Smithbf2040f2015-07-31 18:58:39 +00004596 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4597 type: !3, flags: DIFlagArtificial)
4598 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4599 type: !3)
4600 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004601
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004602DIExpression
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004603""""""""""""
4604
Adrian Prantlfbf2dad2017-03-22 18:01:01 +00004605``DIExpression`` nodes represent expressions that are inspired by the DWARF
4606expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
4607(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
Vedant Kumar17313452018-07-28 00:33:47 +00004608referenced LLVM variable relates to the source language variable. Debug
4609intrinsics are interpreted left-to-right: start by pushing the value/address
4610operand of the intrinsic onto a stack, then repeatedly push and evaluate
4611opcodes from the DIExpression until the final variable description is produced.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004612
Vedant Kumar17313452018-07-28 00:33:47 +00004613The current supported opcode vocabulary is limited:
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004614
Adrian Prantlb560ea72017-04-18 01:21:53 +00004615- ``DW_OP_deref`` dereferences the top of the expression stack.
Florian Hahn50963b32017-06-14 13:14:38 +00004616- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
4617 them together and appends the result to the expression stack.
4618- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
4619 the last entry from the second last entry and appends the result to the
4620 expression stack.
Florian Hahn10ccfa62017-06-13 16:54:44 +00004621- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
Adrian Prantlfbf2dad2017-03-22 18:01:01 +00004622- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
4623 here, respectively) of the variable fragment from the working expression. Note
Hiroshi Inouef90f5512018-01-16 13:19:48 +00004624 that contrary to DW_OP_bit_piece, the offset is describing the location
Adrian Prantlfbf2dad2017-03-22 18:01:01 +00004625 within the described source variable.
Konstantin Zhuravlyovdf032da2017-03-08 00:28:57 +00004626- ``DW_OP_swap`` swaps top two stack entries.
4627- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
4628 of the stack is treated as an address. The second stack entry is treated as an
4629 address space identifier.
Adrian Prantlfbf2dad2017-03-22 18:01:01 +00004630- ``DW_OP_stack_value`` marks a constant value.
4631
Adrian Prantlb560ea72017-04-18 01:21:53 +00004632DWARF specifies three kinds of simple location descriptions: Register, memory,
Vedant Kumar17313452018-07-28 00:33:47 +00004633and implicit location descriptions. Note that a location description is
4634defined over certain ranges of a program, i.e the location of a variable may
4635change over the course of the program. Register and memory location
4636descriptions describe the *concrete location* of a source variable (in the
4637sense that a debugger might modify its value), whereas *implicit locations*
4638describe merely the actual *value* of a source variable which might not exist
4639in registers or in memory (see ``DW_OP_stack_value``).
4640
4641A ``llvm.dbg.addr`` or ``llvm.dbg.declare`` intrinsic describes an indirect
4642value (the address) of a source variable. The first operand of the intrinsic
4643must be an address of some kind. A DIExpression attached to the intrinsic
4644refines this address to produce a concrete location for the source variable.
4645
4646A ``llvm.dbg.value`` intrinsic describes the direct value of a source variable.
4647The first operand of the intrinsic may be a direct or indirect value. A
4648DIExpresion attached to the intrinsic refines the first operand to produce a
4649direct value. For example, if the first operand is an indirect value, it may be
4650necessary to insert ``DW_OP_deref`` into the DIExpresion in order to produce a
4651valid debug intrinsic.
4652
4653.. note::
4654
4655 A DIExpression is interpreted in the same way regardless of which kind of
4656 debug intrinsic it's attached to.
Adrian Prantlb560ea72017-04-18 01:21:53 +00004657
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00004658.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004659
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004660 !0 = !DIExpression(DW_OP_deref)
Florian Hahn10ccfa62017-06-13 16:54:44 +00004661 !1 = !DIExpression(DW_OP_plus_uconst, 3)
Florian Hahn50963b32017-06-14 13:14:38 +00004662 !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004663 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
Florian Hahn50963b32017-06-14 13:14:38 +00004664 !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
Konstantin Zhuravlyovdf032da2017-03-08 00:28:57 +00004665 !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
Adrian Prantlfbf2dad2017-03-22 18:01:01 +00004666 !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004667
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004668DIObjCProperty
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004669""""""""""""""
4670
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004671``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004672
Chandler Carruth63c6ded2018-08-06 03:35:36 +00004673.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004674
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004675 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004676 getter: "getFoo", attributes: 7, type: !2)
4677
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004678DIImportedEntity
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004679""""""""""""""""
4680
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004681``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004682compile unit.
4683
Renato Golin88ea57f2016-07-20 12:16:38 +00004684.. code-block:: text
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004685
Duncan P. N. Exon Smithe56023a2015-04-29 16:38:44 +00004686 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +00004687 entity: !1, line: 7)
4688
Amjad Aboud7db39802015-12-10 12:56:35 +00004689DIMacro
4690"""""""
4691
4692``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4693The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledrue0f2f602016-07-02 19:28:40 +00004694defining a function-like macro, and the ``value`` field is the token-string
Amjad Aboud7db39802015-12-10 12:56:35 +00004695used to expand the macro identifier.
4696
Renato Golin88ea57f2016-07-20 12:16:38 +00004697.. code-block:: text
Amjad Aboud7db39802015-12-10 12:56:35 +00004698
4699 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4700 value: "((x) + 1)")
4701 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4702
4703DIMacroFile
4704"""""""""""
4705
4706``DIMacroFile`` nodes represent inclusion of source files.
4707The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4708appear in the included source file.
4709
Renato Golin88ea57f2016-07-20 12:16:38 +00004710.. code-block:: text
Amjad Aboud7db39802015-12-10 12:56:35 +00004711
4712 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4713 nodes: !3)
4714
Sean Silvaf722b002012-12-07 10:36:55 +00004715'``tbaa``' Metadata
4716^^^^^^^^^^^^^^^^^^^
4717
4718In LLVM IR, memory does not have types, so LLVM's own type system is not
Sanjoy Dasc812cd62017-02-13 23:14:03 +00004719suitable for doing type based alias analysis (TBAA). Instead, metadata is
4720added to the IR to describe a type system of a higher level language. This
4721can be used to implement C/C++ strict type aliasing rules, but it can also
4722be used to implement custom alias analysis behavior for other languages.
Sean Silvaf722b002012-12-07 10:36:55 +00004723
Sanjoy Dasc812cd62017-02-13 23:14:03 +00004724This description of LLVM's TBAA system is broken into two parts:
4725:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
4726:ref:`Representation<tbaa_node_representation>` talks about the metadata
4727encoding of various entities.
Sean Silvaf722b002012-12-07 10:36:55 +00004728
Sanjoy Dasc812cd62017-02-13 23:14:03 +00004729It is always possible to trace any TBAA node to a "root" TBAA node (details
4730in the :ref:`Representation<tbaa_node_representation>` section). TBAA
4731nodes with different roots have an unknown aliasing relationship, and LLVM
4732conservatively infers ``MayAlias`` between them. The rules mentioned in
4733this section only pertain to TBAA nodes living under the same root.
Sean Silvaf722b002012-12-07 10:36:55 +00004734
Sanjoy Dasc812cd62017-02-13 23:14:03 +00004735.. _tbaa_node_semantics:
Sean Silvaf722b002012-12-07 10:36:55 +00004736
Sanjoy Dasc812cd62017-02-13 23:14:03 +00004737Semantics
4738"""""""""
Sean Silvaf722b002012-12-07 10:36:55 +00004739
Sanjoy Dasc812cd62017-02-13 23:14:03 +00004740The TBAA metadata system, referred to as "struct path TBAA" (not to be
4741confused with ``tbaa.struct``), consists of the following high level
4742concepts: *Type Descriptors*, further subdivided into scalar type
4743descriptors and struct type descriptors; and *Access Tags*.
Sean Silvaf722b002012-12-07 10:36:55 +00004744
Sanjoy Dasc812cd62017-02-13 23:14:03 +00004745**Type descriptors** describe the type system of the higher level language
4746being compiled. **Scalar type descriptors** describe types that do not
4747contain other types. Each scalar type has a parent type, which must also
4748be a scalar type or the TBAA root. Via this parent relation, scalar types
4749within a TBAA root form a tree. **Struct type descriptors** denote types
4750that contain a sequence of other type descriptors, at known offsets. These
4751contained type descriptors can either be struct type descriptors themselves
4752or scalar type descriptors.
4753
4754**Access tags** are metadata nodes attached to load and store instructions.
4755Access tags use type descriptors to describe the *location* being accessed
4756in terms of the type system of the higher level language. Access tags are
4757tuples consisting of a base type, an access type and an offset. The base
4758type is a scalar type descriptor or a struct type descriptor, the access
4759type is a scalar type descriptor, and the offset is a constant integer.
4760
4761The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
4762things:
4763
4764 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
4765 or store) of a value of type ``AccessTy`` contained in the struct type
4766 ``BaseTy`` at offset ``Offset``.
4767
4768 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
4769 ``AccessTy`` must be the same; and the access tag describes a scalar
4770 access with scalar type ``AccessTy``.
4771
4772We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
4773tuples this way:
4774
4775 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
4776 ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
4777 described in the TBAA metadata. ``ImmediateParent(BaseTy, Offset)`` is
4778 undefined if ``Offset`` is non-zero.
4779
4780 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
4781 is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
4782 ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
4783 to be relative within that inner type.
4784
4785A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
4786aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
4787Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
4788Offset2)`` via the ``Parent`` relation or vice versa.
4789
4790As a concrete example, the type descriptor graph for the following program
4791
4792.. code-block:: c
4793
4794 struct Inner {
4795 int i; // offset 0
4796 float f; // offset 4
4797 };
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00004798
Sanjoy Dasc812cd62017-02-13 23:14:03 +00004799 struct Outer {
4800 float f; // offset 0
4801 double d; // offset 4
4802 struct Inner inner_a; // offset 12
4803 };
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00004804
Sanjoy Dasc812cd62017-02-13 23:14:03 +00004805 void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
4806 outer->f = 0; // tag0: (OuterStructTy, FloatScalarTy, 0)
4807 outer->inner_a.i = 0; // tag1: (OuterStructTy, IntScalarTy, 12)
Fangrui Song7cdb0e22018-05-29 05:38:05 +00004808 outer->inner_a.f = 0.0; // tag2: (OuterStructTy, FloatScalarTy, 16)
Sanjoy Dasc812cd62017-02-13 23:14:03 +00004809 *f = 0.0; // tag3: (FloatScalarTy, FloatScalarTy, 0)
4810 }
4811
4812is (note that in C and C++, ``char`` can be used to access any arbitrary
4813type):
4814
4815.. code-block:: text
4816
4817 Root = "TBAA Root"
4818 CharScalarTy = ("char", Root, 0)
4819 FloatScalarTy = ("float", CharScalarTy, 0)
4820 DoubleScalarTy = ("double", CharScalarTy, 0)
4821 IntScalarTy = ("int", CharScalarTy, 0)
4822 InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
4823 OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
4824 (InnerStructTy, 12)}
4825
4826
4827with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
48280)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
4829``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
4830
4831.. _tbaa_node_representation:
4832
4833Representation
4834""""""""""""""
4835
4836The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
4837with exactly one ``MDString`` operand.
4838
4839Scalar type descriptors are represented as an ``MDNode`` s with two
4840operands. The first operand is an ``MDString`` denoting the name of the
4841struct type. LLVM does not assign meaning to the value of this operand, it
4842only cares about it being an ``MDString``. The second operand is an
4843``MDNode`` which points to the parent for said scalar type descriptor,
4844which is either another scalar type descriptor or the TBAA root. Scalar
4845type descriptors can have an optional third argument, but that must be the
4846constant integer zero.
4847
4848Struct type descriptors are represented as ``MDNode`` s with an odd number
4849of operands greater than 1. The first operand is an ``MDString`` denoting
4850the name of the struct type. Like in scalar type descriptors the actual
4851value of this name operand is irrelevant to LLVM. After the name operand,
4852the struct type descriptors have a sequence of alternating ``MDNode`` and
4853``ConstantInt`` operands. With N starting from 1, the 2N - 1 th operand,
4854an ``MDNode``, denotes a contained field, and the 2N th operand, a
4855``ConstantInt``, is the offset of the said contained field. The offsets
4856must be in non-decreasing order.
4857
4858Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
4859The first operand is an ``MDNode`` pointing to the node representing the
4860base type. The second operand is an ``MDNode`` pointing to the node
4861representing the access type. The third operand is a ``ConstantInt`` that
4862states the offset of the access. If a fourth field is present, it must be
4863a ``ConstantInt`` valued at 0 or 1. If it is 1 then the access tag states
4864that the location being accessed is "constant" (meaning
Sean Silvaf722b002012-12-07 10:36:55 +00004865``pointsToConstantMemory`` should return true; see `other useful
Sanjoy Dasc812cd62017-02-13 23:14:03 +00004866AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). The TBAA root of
4867the access type and the base type of an access tag must be the same, and
4868that is the TBAA root of the access tag.
Sean Silvaf722b002012-12-07 10:36:55 +00004869
4870'``tbaa.struct``' Metadata
4871^^^^^^^^^^^^^^^^^^^^^^^^^^
4872
4873The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4874aggregate assignment operations in C and similar languages, however it
4875is defined to copy a contiguous region of memory, which is more than
4876strictly necessary for aggregate types which contain holes due to
4877padding. Also, it doesn't contain any TBAA information about the fields
4878of the aggregate.
4879
4880``!tbaa.struct`` metadata can describe which memory subregions in a
4881memcpy are padding and what the TBAA tags of the struct are.
4882
4883The current metadata format is very simple. ``!tbaa.struct`` metadata
4884nodes are a list of operands which are in conceptual groups of three.
4885For each group of three, the first operand gives the byte offset of a
4886field in bytes, the second gives its size in bytes, and the third gives
4887its tbaa tag. e.g.:
4888
4889.. code-block:: llvm
4890
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00004891 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvaf722b002012-12-07 10:36:55 +00004892
4893This describes a struct with two fields. The first is at offset 0 bytes
4894with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4895and has size 4 bytes and has tbaa tag !2.
4896
4897Note that the fields need not be contiguous. In this example, there is a
48984 byte gap between the two fields. This gap represents padding which
4899does not carry useful data and need not be preserved.
4900
Hal Finkel16fd27b2014-07-24 14:25:39 +00004901'``noalias``' and '``alias.scope``' Metadata
Dan Liewe301e0b2014-07-28 13:33:51 +00004902^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel16fd27b2014-07-24 14:25:39 +00004903
4904``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4905noalias memory-access sets. This means that some collection of memory access
4906instructions (loads, stores, memory-accessing calls, etc.) that carry
4907``noalias`` metadata can specifically be specified not to alias with some other
4908collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel6f5c6092014-07-25 15:50:02 +00004909Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet9f23dcd2016-04-27 00:52:48 +00004910a domain.
4911
4912When evaluating an aliasing query, if for some domain, the set
Hal Finkel6f5c6092014-07-25 15:50:02 +00004913of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison16310942015-02-24 20:11:49 +00004914subset of (or equal to) the set of scopes for that domain in another
Hal Finkel6f5c6092014-07-25 15:50:02 +00004915instruction's ``noalias`` list, then the two memory accesses are assumed not to
4916alias.
Hal Finkel16fd27b2014-07-24 14:25:39 +00004917
Adam Nemet9f23dcd2016-04-27 00:52:48 +00004918Because scopes in one domain don't affect scopes in other domains, separate
4919domains can be used to compose multiple independent noalias sets. This is
4920used for example during inlining. As the noalias function parameters are
4921turned into noalias scope metadata, a new domain is used every time the
4922function is inlined.
4923
Hal Finkel6f5c6092014-07-25 15:50:02 +00004924The metadata identifying each domain is itself a list containing one or two
4925entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchener767c34a2015-09-12 01:17:08 +00004926string then it can be combined across functions and translation units. A
Hal Finkel6f5c6092014-07-25 15:50:02 +00004927self-reference can be used to create globally unique domain names. A
4928descriptive string may optionally be provided as a second list entry.
4929
4930The metadata identifying each scope is also itself a list containing two or
4931three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchener767c34a2015-09-12 01:17:08 +00004932is a string then it can be combined across functions and translation units. A
Hal Finkel6f5c6092014-07-25 15:50:02 +00004933self-reference can be used to create globally unique scope names. A metadata
4934reference to the scope's domain is the second entry. A descriptive string may
4935optionally be provided as a third list entry.
Hal Finkel16fd27b2014-07-24 14:25:39 +00004936
4937For example,
4938
4939.. code-block:: llvm
4940
Hal Finkel6f5c6092014-07-25 15:50:02 +00004941 ; Two scope domains:
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00004942 !0 = !{!0}
4943 !1 = !{!1}
Hal Finkel16fd27b2014-07-24 14:25:39 +00004944
Hal Finkel6f5c6092014-07-25 15:50:02 +00004945 ; Some scopes in these domains:
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00004946 !2 = !{!2, !0}
4947 !3 = !{!3, !0}
4948 !4 = !{!4, !1}
Hal Finkel16fd27b2014-07-24 14:25:39 +00004949
Hal Finkel6f5c6092014-07-25 15:50:02 +00004950 ; Some scope lists:
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00004951 !5 = !{!4} ; A list containing only scope !4
4952 !6 = !{!4, !3, !2}
4953 !7 = !{!3}
Hal Finkel16fd27b2014-07-24 14:25:39 +00004954
4955 ; These two instructions don't alias:
David Blaikie0effae82015-03-04 22:06:14 +00004956 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel6f5c6092014-07-25 15:50:02 +00004957 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel16fd27b2014-07-24 14:25:39 +00004958
Hal Finkel6f5c6092014-07-25 15:50:02 +00004959 ; These two instructions also don't alias (for domain !1, the set of scopes
4960 ; in the !alias.scope equals that in the !noalias list):
David Blaikie0effae82015-03-04 22:06:14 +00004961 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel6f5c6092014-07-25 15:50:02 +00004962 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel16fd27b2014-07-24 14:25:39 +00004963
Adam Nemetd6a9af62015-05-11 08:30:28 +00004964 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel6f5c6092014-07-25 15:50:02 +00004965 ; the !noalias list is not a superset of, or equal to, the scopes in the
4966 ; !alias.scope list):
David Blaikie0effae82015-03-04 22:06:14 +00004967 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel6f5c6092014-07-25 15:50:02 +00004968 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel16fd27b2014-07-24 14:25:39 +00004969
Sean Silvaf722b002012-12-07 10:36:55 +00004970'``fpmath``' Metadata
4971^^^^^^^^^^^^^^^^^^^^^
4972
Sanjay Patel16e9a292018-03-21 14:15:33 +00004973``fpmath`` metadata may be attached to any instruction of floating-point
Sean Silvaf722b002012-12-07 10:36:55 +00004974type. It can be used to express the maximum acceptable error in the
4975result of that instruction, in ULPs, thus potentially allowing the
4976compiler to use a more efficient but less accurate method of computing
4977it. ULP is defined as follows:
4978
4979 If ``x`` is a real number that lies between two finite consecutive
4980 floating-point numbers ``a`` and ``b``, without being equal to one
4981 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4982 distance between the two non-equal finite floating-point numbers
4983 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4984
Matt Arsenault1d88d3b2016-06-27 19:43:15 +00004985The metadata node shall consist of a single positive float type number
4986representing the maximum relative error, for example:
Sean Silvaf722b002012-12-07 10:36:55 +00004987
4988.. code-block:: llvm
4989
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00004990 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvaf722b002012-12-07 10:36:55 +00004991
Philip Reamesb16dac52015-02-27 23:14:50 +00004992.. _range-metadata:
4993
Sean Silvaf722b002012-12-07 10:36:55 +00004994'``range``' Metadata
4995^^^^^^^^^^^^^^^^^^^^
4996
Jingyue Wue4d0a5e2014-06-19 16:50:16 +00004997``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4998integer types. It expresses the possible ranges the loaded value or the value
Eli Friedman48ef58e2018-07-17 20:38:11 +00004999returned by the called function at this call site is in. If the loaded or
5000returned value is not in the specified range, the behavior is undefined. The
5001ranges are represented with a flattened list of integers. The loaded value or
5002the value returned is known to be in the union of the ranges defined by each
5003consecutive pair. Each pair has the following properties:
Sean Silvaf722b002012-12-07 10:36:55 +00005004
5005- The type must match the type loaded by the instruction.
5006- The pair ``a,b`` represents the range ``[a,b)``.
5007- Both ``a`` and ``b`` are constants.
5008- The range is allowed to wrap.
5009- The range should not represent the full or empty set. That is,
5010 ``a!=b``.
5011
5012In addition, the pairs must be in signed order of the lower bound and
5013they must be non-contiguous.
5014
5015Examples:
5016
5017.. code-block:: llvm
5018
David Blaikie0effae82015-03-04 22:06:14 +00005019 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
5020 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wue4d0a5e2014-06-19 16:50:16 +00005021 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
5022 %d = invoke i8 @bar() to label %cont
5023 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvaf722b002012-12-07 10:36:55 +00005024 ...
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00005025 !0 = !{ i8 0, i8 2 }
5026 !1 = !{ i8 255, i8 2 }
5027 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
5028 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvaf722b002012-12-07 10:36:55 +00005029
Peter Collingbourneb29976c2016-12-08 19:01:00 +00005030'``absolute_symbol``' Metadata
5031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5032
5033``absolute_symbol`` metadata may be attached to a global variable
5034declaration. It marks the declaration as a reference to an absolute symbol,
5035which causes the backend to use absolute relocations for the symbol even
5036in position independent code, and expresses the possible ranges that the
5037global variable's *address* (not its value) is in, in the same format as
Peter Collingbourneb7862582017-01-20 21:56:37 +00005038``range`` metadata, with the extension that the pair ``all-ones,all-ones``
5039may be used to represent the full set.
Peter Collingbourneb29976c2016-12-08 19:01:00 +00005040
Peter Collingbourneb7862582017-01-20 21:56:37 +00005041Example (assuming 64-bit pointers):
Peter Collingbourneb29976c2016-12-08 19:01:00 +00005042
5043.. code-block:: llvm
5044
5045 @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
Peter Collingbourneb7862582017-01-20 21:56:37 +00005046 @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
Peter Collingbourneb29976c2016-12-08 19:01:00 +00005047
5048 ...
5049 !0 = !{ i64 0, i64 256 }
Peter Collingbourneb7862582017-01-20 21:56:37 +00005050 !1 = !{ i64 -1, i64 -1 }
Peter Collingbourneb29976c2016-12-08 19:01:00 +00005051
Matthew Simpson9f219e8d2017-10-16 22:22:11 +00005052'``callees``' Metadata
5053^^^^^^^^^^^^^^^^^^^^^^
5054
5055``callees`` metadata may be attached to indirect call sites. If ``callees``
5056metadata is attached to a call site, and any callee is not among the set of
5057functions provided by the metadata, the behavior is undefined. The intent of
5058this metadata is to facilitate optimizations such as indirect-call promotion.
5059For example, in the code below, the call instruction may only target the
5060``add`` or ``sub`` functions:
5061
5062.. code-block:: llvm
5063
5064 %result = call i64 %binop(i64 %x, i64 %y), !callees !0
5065
5066 ...
5067 !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
5068
Sanjay Patel1cded9a2015-09-02 19:06:43 +00005069'``unpredictable``' Metadata
Sanjay Patel97cac332015-09-02 19:35:31 +00005070^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patel1cded9a2015-09-02 19:06:43 +00005071
5072``unpredictable`` metadata may be attached to any branch or switch
5073instruction. It can be used to express the unpredictability of control
5074flow. Similar to the llvm.expect intrinsic, it may be used to alter
5075optimizations related to compare and branch instructions. The metadata
5076is treated as a boolean value; if it exists, it signals that the branch
5077or switch that it is attached to is completely unpredictable.
5078
Michael Kruse9a395de2018-12-12 17:32:52 +00005079.. _llvm.loop:
5080
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005081'``llvm.loop``'
5082^^^^^^^^^^^^^^^
5083
5084It is sometimes useful to attach information to loop constructs. Currently,
5085loop metadata is implemented as metadata attached to the branch instruction
5086in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005087guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmondee21b6f2013-05-28 20:00:34 +00005088specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005089
5090The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00005091itself to avoid merging it with any other identifier metadata, e.g.,
5092during module linkage or function inlining. That is, each loop should refer
5093to their own identification metadata even if they reside in separate functions.
5094The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00005095constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005096
5097.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00005098
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00005099 !0 = !{!0}
5100 !1 = !{!1}
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00005101
Mark Heffernan8ec15462014-07-18 19:24:51 +00005102The loop identifier metadata can be used to specify additional
5103per-loop metadata. Any operands after the first operand can be treated
5104as user-defined metadata. For example the ``llvm.loop.unroll.count``
5105suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005106
Paul Redmondee21b6f2013-05-28 20:00:34 +00005107.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005108
Paul Redmondee21b6f2013-05-28 20:00:34 +00005109 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
5110 ...
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00005111 !0 = !{!0, !1}
5112 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan8ec15462014-07-18 19:24:51 +00005113
Michael Kruse9a395de2018-12-12 17:32:52 +00005114'``llvm.loop.disable_nonforced``'
5115^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5116
5117This metadata disables all optional loop transformations unless
5118explicitly instructed using other transformation metdata such as
Michael Kruse5c959052018-12-12 17:59:01 +00005119``llvm.loop.unroll.enable``. That is, no heuristic will try to determine
Michael Kruse9a395de2018-12-12 17:32:52 +00005120whether a transformation is profitable. The purpose is to avoid that the
5121loop is transformed to a different loop before an explicitly requested
5122(forced) transformation is applied. For instance, loop fusion can make
5123other transformations impossible. Mandatory loop canonicalizations such
5124as loop rotation are still applied.
5125
5126It is recommended to use this metadata in addition to any llvm.loop.*
5127transformation directive. Also, any loop should have at most one
5128directive applied to it (and a sequence of transformations built using
5129followup-attributes). Otherwise, which transformation will be applied
5130depends on implementation details such as the pass pipeline order.
5131
5132See :ref:`transformation-metadata` for details.
5133
Mark Heffernanbc7f1ab2014-07-21 23:11:03 +00005134'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
5135^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan8ec15462014-07-18 19:24:51 +00005136
Mark Heffernanbc7f1ab2014-07-21 23:11:03 +00005137Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
5138used to control per-loop vectorization and interleaving parameters such as
Sean Silva7515d332015-08-06 22:56:48 +00005139vectorization width and interleave count. These metadata should be used in
5140conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernanbc7f1ab2014-07-21 23:11:03 +00005141``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
5142optimization hints and the optimizer will only interleave and vectorize loops if
Michael Kruse42a382c2018-12-20 04:58:07 +00005143it believes it is safe to do so. The ``llvm.loop.parallel_accesses`` metadata
Mark Heffernanbc7f1ab2014-07-21 23:11:03 +00005144which contains information about loop-carried memory dependencies can be helpful
5145in determining the safety of these transformations.
Mark Heffernan8ec15462014-07-18 19:24:51 +00005146
Mark Heffernanbc7f1ab2014-07-21 23:11:03 +00005147'``llvm.loop.interleave.count``' Metadata
Mark Heffernan8ec15462014-07-18 19:24:51 +00005148^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5149
Mark Heffernanbc7f1ab2014-07-21 23:11:03 +00005150This metadata suggests an interleave count to the loop interleaver.
5151The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan8ec15462014-07-18 19:24:51 +00005152second operand is an integer specifying the interleave count. For
5153example:
5154
5155.. code-block:: llvm
5156
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00005157 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan8ec15462014-07-18 19:24:51 +00005158
Mark Heffernanbc7f1ab2014-07-21 23:11:03 +00005159Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silva7515d332015-08-06 22:56:48 +00005160multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernanbc7f1ab2014-07-21 23:11:03 +00005161then the interleave count will be determined automatically.
5162
5163'``llvm.loop.vectorize.enable``' Metadata
Dan Liewd8831102014-07-22 14:59:38 +00005164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernanbc7f1ab2014-07-21 23:11:03 +00005165
5166This metadata selectively enables or disables vectorization for the loop. The
5167first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silva7515d332015-08-06 22:56:48 +00005168is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernanbc7f1ab2014-07-21 23:11:03 +000051690 disables vectorization:
5170
5171.. code-block:: llvm
5172
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00005173 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5174 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan8ec15462014-07-18 19:24:51 +00005175
5176'``llvm.loop.vectorize.width``' Metadata
5177^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5178
5179This metadata sets the target width of the vectorizer. The first
5180operand is the string ``llvm.loop.vectorize.width`` and the second
5181operand is an integer specifying the width. For example:
5182
5183.. code-block:: llvm
5184
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00005185 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan8ec15462014-07-18 19:24:51 +00005186
5187Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silva7515d332015-08-06 22:56:48 +00005188vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan8ec15462014-07-18 19:24:51 +000051890 or if the loop does not have this metadata the width will be
5190determined automatically.
5191
Michael Kruse9a395de2018-12-12 17:32:52 +00005192'``llvm.loop.vectorize.followup_vectorized``' Metadata
5193^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5194
5195This metadata defines which loop attributes the vectorized loop will
5196have. See :ref:`transformation-metadata` for details.
5197
5198'``llvm.loop.vectorize.followup_epilogue``' Metadata
5199^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5200
5201This metadata defines which loop attributes the epilogue will have. The
5202epilogue is not vectorized and is executed when either the vectorized
5203loop is not known to preserve semantics (because e.g., it processes two
5204arrays that are found to alias by a runtime check) or for the last
5205iterations that do not fill a complete set of vector lanes. See
5206:ref:`Transformation Metadata <transformation-metadata>` for details.
5207
5208'``llvm.loop.vectorize.followup_all``' Metadata
5209^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5210
5211Attributes in the metadata will be added to both the vectorized and
5212epilogue loop.
5213See :ref:`Transformation Metadata <transformation-metadata>` for details.
5214
Mark Heffernan8ec15462014-07-18 19:24:51 +00005215'``llvm.loop.unroll``'
5216^^^^^^^^^^^^^^^^^^^^^^
5217
5218Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5219optimization hints such as the unroll factor. ``llvm.loop.unroll``
5220metadata should be used in conjunction with ``llvm.loop`` loop
5221identification metadata. The ``llvm.loop.unroll`` metadata are only
5222optimization hints and the unrolling will only be performed if the
5223optimizer believes it is safe to do so.
5224
Mark Heffernan8ec15462014-07-18 19:24:51 +00005225'``llvm.loop.unroll.count``' Metadata
5226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5227
5228This metadata suggests an unroll factor to the loop unroller. The
5229first operand is the string ``llvm.loop.unroll.count`` and the second
5230operand is a positive integer specifying the unroll factor. For
5231example:
5232
5233.. code-block:: llvm
5234
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00005235 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan8ec15462014-07-18 19:24:51 +00005236
5237If the trip count of the loop is less than the unroll count the loop
5238will be partially unrolled.
5239
Mark Heffernane8d7ebc2014-07-23 17:31:37 +00005240'``llvm.loop.unroll.disable``' Metadata
5241^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5242
Mark Heffernan8043a592015-06-30 22:48:51 +00005243This metadata disables loop unrolling. The metadata has a single operand
Sean Silva7515d332015-08-06 22:56:48 +00005244which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane8d7ebc2014-07-23 17:31:37 +00005245
5246.. code-block:: llvm
5247
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00005248 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane8d7ebc2014-07-23 17:31:37 +00005249
Kevin Qin994b4c72015-03-09 06:14:18 +00005250'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liewbd07f432015-03-11 13:34:49 +00005251^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin994b4c72015-03-09 06:14:18 +00005252
Mark Heffernan8043a592015-06-30 22:48:51 +00005253This metadata disables runtime loop unrolling. The metadata has a single
Sean Silva7515d332015-08-06 22:56:48 +00005254operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin994b4c72015-03-09 06:14:18 +00005255
5256.. code-block:: llvm
5257
5258 !0 = !{!"llvm.loop.unroll.runtime.disable"}
5259
Mark Heffernan214aad92015-08-10 17:28:08 +00005260'``llvm.loop.unroll.enable``' Metadata
5261^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5262
5263This metadata suggests that the loop should be fully unrolled if the trip count
5264is known at compile time and partially unrolled if the trip count is not known
5265at compile time. The metadata has a single operand which is the string
5266``llvm.loop.unroll.enable``. For example:
5267
5268.. code-block:: llvm
5269
5270 !0 = !{!"llvm.loop.unroll.enable"}
5271
Mark Heffernane8d7ebc2014-07-23 17:31:37 +00005272'``llvm.loop.unroll.full``' Metadata
5273^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5274
Mark Heffernan8043a592015-06-30 22:48:51 +00005275This metadata suggests that the loop should be unrolled fully. The
5276metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane8d7ebc2014-07-23 17:31:37 +00005277For example:
5278
5279.. code-block:: llvm
5280
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00005281 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005282
Michael Kruse9a395de2018-12-12 17:32:52 +00005283'``llvm.loop.unroll.followup``' Metadata
5284^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5285
5286This metadata defines which loop attributes the unrolled loop will have.
5287See :ref:`Transformation Metadata <transformation-metadata>` for details.
5288
5289'``llvm.loop.unroll.followup_remainder``' Metadata
5290^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5291
5292This metadata defines which loop attributes the remainder loop after
5293partial/runtime unrolling will have. See
5294:ref:`Transformation Metadata <transformation-metadata>` for details.
5295
David Green91823932018-07-19 12:37:00 +00005296'``llvm.loop.unroll_and_jam``'
5297^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5298
5299This metadata is treated very similarly to the ``llvm.loop.unroll`` metadata
5300above, but affect the unroll and jam pass. In addition any loop with
5301``llvm.loop.unroll`` metadata but no ``llvm.loop.unroll_and_jam`` metadata will
5302disable unroll and jam (so ``llvm.loop.unroll`` metadata will be left to the
5303unroller, plus ``llvm.loop.unroll.disable`` metadata will disable unroll and jam
5304too.)
5305
5306The metadata for unroll and jam otherwise is the same as for ``unroll``.
5307``llvm.loop.unroll_and_jam.enable``, ``llvm.loop.unroll_and_jam.disable`` and
5308``llvm.loop.unroll_and_jam.count`` do the same as for unroll.
5309``llvm.loop.unroll_and_jam.full`` is not supported. Again these are only hints
5310and the normal safety checks will still be performed.
5311
5312'``llvm.loop.unroll_and_jam.count``' Metadata
5313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5314
5315This metadata suggests an unroll and jam factor to use, similarly to
5316``llvm.loop.unroll.count``. The first operand is the string
5317``llvm.loop.unroll_and_jam.count`` and the second operand is a positive integer
5318specifying the unroll factor. For example:
5319
5320.. code-block:: llvm
5321
5322 !0 = !{!"llvm.loop.unroll_and_jam.count", i32 4}
5323
5324If the trip count of the loop is less than the unroll count the loop
5325will be partially unroll and jammed.
5326
5327'``llvm.loop.unroll_and_jam.disable``' Metadata
5328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5329
5330This metadata disables loop unroll and jamming. The metadata has a single
5331operand which is the string ``llvm.loop.unroll_and_jam.disable``. For example:
5332
5333.. code-block:: llvm
5334
5335 !0 = !{!"llvm.loop.unroll_and_jam.disable"}
5336
5337'``llvm.loop.unroll_and_jam.enable``' Metadata
5338^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5339
5340This metadata suggests that the loop should be fully unroll and jammed if the
5341trip count is known at compile time and partially unrolled if the trip count is
5342not known at compile time. The metadata has a single operand which is the
5343string ``llvm.loop.unroll_and_jam.enable``. For example:
5344
5345.. code-block:: llvm
5346
5347 !0 = !{!"llvm.loop.unroll_and_jam.enable"}
5348
Michael Kruse9a395de2018-12-12 17:32:52 +00005349'``llvm.loop.unroll_and_jam.followup_outer``' Metadata
5350^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5351
5352This metadata defines which loop attributes the outer unrolled loop will
5353have. See :ref:`Transformation Metadata <transformation-metadata>` for
5354details.
5355
5356'``llvm.loop.unroll_and_jam.followup_inner``' Metadata
5357^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5358
5359This metadata defines which loop attributes the inner jammed loop will
5360have. See :ref:`Transformation Metadata <transformation-metadata>` for
5361details.
5362
5363'``llvm.loop.unroll_and_jam.followup_remainder_outer``' Metadata
5364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5365
5366This metadata defines which attributes the epilogue of the outer loop
5367will have. This loop is usually unrolled, meaning there is no such
5368loop. This attribute will be ignored in this case. See
5369:ref:`Transformation Metadata <transformation-metadata>` for details.
5370
5371'``llvm.loop.unroll_and_jam.followup_remainder_inner``' Metadata
5372^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5373
5374This metadata defines which attributes the inner loop of the epilogue
5375will have. The outer epilogue will usually be unrolled, meaning there
5376can be multiple inner remainder loops. See
5377:ref:`Transformation Metadata <transformation-metadata>` for details.
5378
5379'``llvm.loop.unroll_and_jam.followup_all``' Metadata
5380^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5381
5382Attributes specified in the metadata is added to all
5383``llvm.loop.unroll_and_jam.*`` loops. See
5384:ref:`Transformation Metadata <transformation-metadata>` for details.
5385
Ashutosh Nema9feccf42016-02-06 07:47:48 +00005386'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema393c3c62016-02-06 09:24:37 +00005387^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nema9feccf42016-02-06 07:47:48 +00005388
5389This metadata indicates that the loop should not be versioned for the purpose
5390of enabling loop-invariant code motion (LICM). The metadata has a single operand
5391which is the string ``llvm.loop.licm_versioning.disable``. For example:
5392
5393.. code-block:: llvm
5394
5395 !0 = !{!"llvm.loop.licm_versioning.disable"}
5396
Adam Nemet8d171c82016-04-27 05:28:18 +00005397'``llvm.loop.distribute.enable``' Metadata
Adam Nemeta47271f2016-04-27 05:59:51 +00005398^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemet8d171c82016-04-27 05:28:18 +00005399
5400Loop distribution allows splitting a loop into multiple loops. Currently,
5401this is only performed if the entire loop cannot be vectorized due to unsafe
Hiroshi Inouebc6790d2017-07-02 12:44:27 +00005402memory dependencies. The transformation will attempt to isolate the unsafe
Adam Nemet8d171c82016-04-27 05:28:18 +00005403dependencies into their own loop.
5404
5405This metadata can be used to selectively enable or disable distribution of the
5406loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
5407second operand is a bit. If the bit operand value is 1 distribution is
5408enabled. A value of 0 disables distribution:
5409
5410.. code-block:: llvm
5411
5412 !0 = !{!"llvm.loop.distribute.enable", i1 0}
5413 !1 = !{!"llvm.loop.distribute.enable", i1 1}
5414
5415This metadata should be used in conjunction with ``llvm.loop`` loop
5416identification metadata.
5417
Michael Kruse9a395de2018-12-12 17:32:52 +00005418'``llvm.loop.distribute.followup_coincident``' Metadata
5419^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5420
5421This metadata defines which attributes extracted loops with no cyclic
5422dependencies will have (i.e. can be vectorized). See
5423:ref:`Transformation Metadata <transformation-metadata>` for details.
5424
5425'``llvm.loop.distribute.followup_sequential``' Metadata
5426^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5427
5428This metadata defines which attributes the isolated loops with unsafe
5429memory dependencies will have. See
5430:ref:`Transformation Metadata <transformation-metadata>` for details.
5431
5432'``llvm.loop.distribute.followup_fallback``' Metadata
5433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5434
5435If loop versioning is necessary, this metadata defined the attributes
5436the non-distributed fallback version will have. See
5437:ref:`Transformation Metadata <transformation-metadata>` for details.
5438
5439'``llvm.loop.distribute.followup_all``' Metadata
5440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5441
5442Thes attributes in this metdata is added to all followup loops of the
5443loop distribution pass. See
5444:ref:`Transformation Metadata <transformation-metadata>` for details.
5445
Michael Kruse42a382c2018-12-20 04:58:07 +00005446'``llvm.access.group``' Metadata
5447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005448
Michael Kruse42a382c2018-12-20 04:58:07 +00005449``llvm.access.group`` metadata can be attached to any instruction that
5450potentially accesses memory. It can point to a single distinct metadata
5451node, which we call access group. This node represents all memory access
5452instructions referring to it via ``llvm.access.group``. When an
5453instruction belongs to multiple access groups, it can also point to a
5454list of accesses groups, illustrated by the following example.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005455
Michael Kruse42a382c2018-12-20 04:58:07 +00005456.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005457
Michael Kruse42a382c2018-12-20 04:58:07 +00005458 %val = load i32, i32* %arrayidx, !llvm.access.group !0
5459 ...
5460 !0 = !{!1, !2}
5461 !1 = distinct !{}
5462 !2 = distinct !{}
Pekka Jaaskelainen4f22c982014-05-23 11:35:46 +00005463
Michael Kruse42a382c2018-12-20 04:58:07 +00005464It is illegal for the list node to be empty since it might be confused
5465with an access group.
Pekka Jaaskelainen4f22c982014-05-23 11:35:46 +00005466
Michael Kruse42a382c2018-12-20 04:58:07 +00005467The access group metadata node must be 'distinct' to avoid collapsing
5468multiple access groups by content. A access group metadata node must
5469always be empty which can be used to distinguish an access group
5470metadata node from a list of access groups. Being empty avoids the
5471situation that the content must be updated which, because metadata is
5472immutable by design, would required finding and updating all references
5473to the access group node.
Pekka Jaaskelainen4f22c982014-05-23 11:35:46 +00005474
Michael Kruse42a382c2018-12-20 04:58:07 +00005475The access group can be used to refer to a memory access instruction
5476without pointing to it directly (which is not possible in global
5477metadata). Currently, the only metadata making use of it is
5478``llvm.loop.parallel_accesses``.
5479
5480'``llvm.loop.parallel_accesses``' Metadata
5481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5482
5483The ``llvm.loop.parallel_accesses`` metadata refers to one or more
5484access group metadata nodes (see ``llvm.access.group``). It denotes that
5485no loop-carried memory dependence exist between it and other instructions
5486in the loop with this metadata.
5487
5488Let ``m1`` and ``m2`` be two instructions that both have the
5489``llvm.access.group`` metadata to the access group ``g1``, respectively
5490``g2`` (which might be identical). If a loop contains both access groups
5491in its ``llvm.loop.parallel_accesses`` metadata, then the compiler can
5492assume that there is no dependency between ``m1`` and ``m2`` carried by
5493this loop. Instructions that belong to multiple access groups are
5494considered having this property if at least one of the access groups
5495matches the ``llvm.loop.parallel_accesses`` list.
5496
5497If all memory-accessing instructions in a loop have
5498``llvm.loop.parallel_accesses`` metadata that refers to that loop, then the
5499loop has no loop carried memory dependences and is considered to be a
5500parallel loop.
5501
5502Note that if not all memory access instructions belong to an access
5503group referred to by ``llvm.loop.parallel_accesses``, then the loop must
5504not be considered trivially parallel. Additional
Sean Silva7515d332015-08-06 22:56:48 +00005505memory dependence analysis is required to make that determination. As a fail
Mehdi Amini18233dc2015-03-14 22:04:06 +00005506safe mechanism, this causes loops that were originally parallel to be considered
5507sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen4f22c982014-05-23 11:35:46 +00005508insert new memory instructions into the loop body).
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005509
5510Example of a loop that is considered parallel due to its correct use of
Michael Kruse42a382c2018-12-20 04:58:07 +00005511both ``llvm.access.group`` and ``llvm.loop.parallel_accesses``
5512metadata types.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005513
5514.. code-block:: llvm
5515
5516 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00005517 ...
Michael Kruse42a382c2018-12-20 04:58:07 +00005518 %val0 = load i32, i32* %arrayidx, !llvm.access.group !1
Paul Redmondee21b6f2013-05-28 20:00:34 +00005519 ...
Michael Kruse42a382c2018-12-20 04:58:07 +00005520 store i32 %val0, i32* %arrayidx1, !llvm.access.group !1
Paul Redmondee21b6f2013-05-28 20:00:34 +00005521 ...
5522 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005523
5524 for.end:
5525 ...
Michael Kruse42a382c2018-12-20 04:58:07 +00005526 !0 = distinct !{!0, !{!"llvm.loop.parallel_accesses", !1}}
5527 !1 = distinct !{}
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005528
Michael Kruse42a382c2018-12-20 04:58:07 +00005529It is also possible to have nested parallel loops:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005530
5531.. code-block:: llvm
5532
5533 outer.for.body:
Tobias Grosser4c16a162014-03-05 13:36:04 +00005534 ...
Michael Kruse42a382c2018-12-20 04:58:07 +00005535 %val1 = load i32, i32* %arrayidx3, !llvm.access.group !4
Tobias Grosser4c16a162014-03-05 13:36:04 +00005536 ...
5537 br label %inner.for.body
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005538
5539 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00005540 ...
Michael Kruse42a382c2018-12-20 04:58:07 +00005541 %val0 = load i32, i32* %arrayidx1, !llvm.access.group !3
Paul Redmondee21b6f2013-05-28 20:00:34 +00005542 ...
Michael Kruse42a382c2018-12-20 04:58:07 +00005543 store i32 %val0, i32* %arrayidx2, !llvm.access.group !3
Paul Redmondee21b6f2013-05-28 20:00:34 +00005544 ...
5545 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005546
5547 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00005548 ...
Michael Kruse42a382c2018-12-20 04:58:07 +00005549 store i32 %val1, i32* %arrayidx4, !llvm.access.group !4
Paul Redmondee21b6f2013-05-28 20:00:34 +00005550 ...
5551 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005552
5553 outer.for.end: ; preds = %for.body
5554 ...
Michael Kruse42a382c2018-12-20 04:58:07 +00005555 !1 = distinct !{!1, !{!"llvm.loop.parallel_accesses", !3}} ; metadata for the inner loop
5556 !2 = distinct !{!2, !{!"llvm.loop.parallel_accesses", !3, !4}} ; metadata for the outer loop
5557 !3 = distinct !{} ; access group for instructions in the inner loop (which are implicitly contained in outer loop as well)
5558 !4 = distinct !{} ; access group for instructions in the outer, but not the inner loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00005559
Hiroshi Yamauchidd33e172017-11-02 22:26:51 +00005560'``irr_loop``' Metadata
5561^^^^^^^^^^^^^^^^^^^^^^^
5562
5563``irr_loop`` metadata may be attached to the terminator instruction of a basic
5564block that's an irreducible loop header (note that an irreducible loop has more
5565than once header basic blocks.) If ``irr_loop`` metadata is attached to the
5566terminator instruction of a basic block that is not really an irreducible loop
5567header, the behavior is undefined. The intent of this metadata is to improve the
5568accuracy of the block frequency propagation. For example, in the code below, the
5569block ``header0`` may have a loop header weight (relative to the other headers of
5570the irreducible loop) of 100:
5571
5572.. code-block:: llvm
5573
5574 header0:
5575 ...
5576 br i1 %cmp, label %t1, label %t2, !irr_loop !0
5577
5578 ...
5579 !0 = !{"loop_header_weight", i64 100}
5580
5581Irreducible loop header weights are typically based on profile data.
5582
Piotr Padlewskif3abce42015-09-15 18:32:14 +00005583'``invariant.group``' Metadata
5584^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5585
Mandeep Singh Grang08238b72018-11-01 23:22:25 +00005586The experimental ``invariant.group`` metadata may be attached to
Piotr Padlewski6ebd0542018-05-18 23:53:46 +00005587``load``/``store`` instructions referencing a single metadata with no entries.
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00005588The existence of the ``invariant.group`` metadata on the instruction tells
5589the optimizer that every ``load`` and ``store`` to the same pointer operand
Piotr Padlewski6ebd0542018-05-18 23:53:46 +00005590can be assumed to load or store the same
Piotr Padlewski9648b462018-05-03 11:03:01 +00005591value (but see the ``llvm.launder.invariant.group`` intrinsic which affects
Piotr Padlewski35f35d32016-12-30 18:45:07 +00005592when two pointers are considered the same). Pointers returned by bitcast or
5593getelementptr with only zero indices are considered the same.
Piotr Padlewskif3abce42015-09-15 18:32:14 +00005594
5595Examples:
5596
5597.. code-block:: llvm
5598
5599 @unknownPtr = external global i8
5600 ...
5601 %ptr = alloca i8
5602 store i8 42, i8* %ptr, !invariant.group !0
5603 call void @foo(i8* %ptr)
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00005604
Piotr Padlewskif3abce42015-09-15 18:32:14 +00005605 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
5606 call void @foo(i8* %ptr)
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00005607
5608 %newPtr = call i8* @getPointer(i8* %ptr)
Piotr Padlewskif3abce42015-09-15 18:32:14 +00005609 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00005610
Piotr Padlewskif3abce42015-09-15 18:32:14 +00005611 %unknownValue = load i8, i8* @unknownPtr
5612 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00005613
Piotr Padlewskif3abce42015-09-15 18:32:14 +00005614 call void @foo(i8* %ptr)
Piotr Padlewski9648b462018-05-03 11:03:01 +00005615 %newPtr2 = call i8* @llvm.launder.invariant.group(i8* %ptr)
5616 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through launder.invariant.group to get value of %ptr
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00005617
Piotr Padlewskif3abce42015-09-15 18:32:14 +00005618 ...
5619 declare void @foo(i8*)
5620 declare i8* @getPointer(i8*)
Piotr Padlewski9648b462018-05-03 11:03:01 +00005621 declare i8* @llvm.launder.invariant.group(i8*)
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00005622
Piotr Padlewski6ebd0542018-05-18 23:53:46 +00005623 !0 = !{}
Piotr Padlewskif3abce42015-09-15 18:32:14 +00005624
Piotr Padlewski3512d222017-04-12 07:59:35 +00005625The invariant.group metadata must be dropped when replacing one pointer by
5626another based on aliasing information. This is because invariant.group is tied
5627to the SSA value of the pointer operand.
5628
5629.. code-block:: llvm
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00005630
Piotr Padlewski3512d222017-04-12 07:59:35 +00005631 %v = load i8, i8* %x, !invariant.group !0
5632 ; if %x mustalias %y then we can replace the above instruction with
5633 %v = load i8, i8* %y
5634
Piotr Padlewski9b484d42018-04-08 13:53:04 +00005635Note that this is an experimental feature, which means that its semantics might
5636change in the future.
Piotr Padlewski3512d222017-04-12 07:59:35 +00005637
Peter Collingbourneaaba6ed2016-07-26 22:31:30 +00005638'``type``' Metadata
5639^^^^^^^^^^^^^^^^^^^
5640
5641See :doc:`TypeMetadata`.
Piotr Padlewskif3abce42015-09-15 18:32:14 +00005642
Evgeniy Stepanovdf808fe2017-03-17 22:17:24 +00005643'``associated``' Metadata
Evgeniy Stepanov7c452532017-03-17 22:31:13 +00005644^^^^^^^^^^^^^^^^^^^^^^^^^
Evgeniy Stepanovdf808fe2017-03-17 22:17:24 +00005645
5646The ``associated`` metadata may be attached to a global object
5647declaration with a single argument that references another global object.
5648
5649This metadata prevents discarding of the global object in linker GC
5650unless the referenced object is also discarded. The linker support for
5651this feature is spotty. For best compatibility, globals carrying this
5652metadata may also:
5653
5654- Be in a comdat with the referenced global.
5655- Be in @llvm.compiler.used.
5656- Have an explicit section with a name which is a valid C identifier.
5657
5658It does not have any effect on non-ELF targets.
5659
5660Example:
5661
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00005662.. code-block:: text
Evgeniy Stepanov7c452532017-03-17 22:31:13 +00005663
Evgeniy Stepanovdf808fe2017-03-17 22:17:24 +00005664 $a = comdat any
5665 @a = global i32 1, comdat $a
5666 @b = internal global i32 2, comdat $a, section "abc", !associated !0
5667 !0 = !{i32* @a}
5668
Piotr Padlewskif3abce42015-09-15 18:32:14 +00005669
Teresa Johnsone3960182017-06-15 15:57:12 +00005670'``prof``' Metadata
5671^^^^^^^^^^^^^^^^^^^
5672
5673The ``prof`` metadata is used to record profile data in the IR.
5674The first operand of the metadata node indicates the profile metadata
5675type. There are currently 3 types:
5676:ref:`branch_weights<prof_node_branch_weights>`,
5677:ref:`function_entry_count<prof_node_function_entry_count>`, and
5678:ref:`VP<prof_node_VP>`.
5679
5680.. _prof_node_branch_weights:
5681
5682branch_weights
5683""""""""""""""
5684
5685Branch weight metadata attached to a branch, select, switch or call instruction
5686represents the likeliness of the associated branch being taken.
5687For more information, see :doc:`BranchWeightMetadata`.
5688
5689.. _prof_node_function_entry_count:
5690
5691function_entry_count
5692""""""""""""""""""""
5693
5694Function entry count metadata can be attached to function definitions
5695to record the number of times the function is called. Used with BFI
5696information, it is also used to derive the basic block profile count.
5697For more information, see :doc:`BranchWeightMetadata`.
5698
5699.. _prof_node_VP:
5700
5701VP
5702""
5703
5704VP (value profile) metadata can be attached to instructions that have
5705value profile information. Currently this is indirect calls (where it
5706records the hottest callees) and calls to memory intrinsics such as memcpy,
5707memmove, and memset (where it records the hottest byte lengths).
5708
5709Each VP metadata node contains "VP" string, then a uint32_t value for the value
5710profiling kind, a uint64_t value for the total number of times the instruction
5711is executed, followed by uint64_t value and execution count pairs.
5712The value profiling kind is 0 for indirect call targets and 1 for memory
5713operations. For indirect call targets, each profile value is a hash
5714of the callee function name, and for memory operations each value is the
5715byte length.
5716
5717Note that the value counts do not need to add up to the total count
5718listed in the third operand (in practice only the top hottest values
5719are tracked and reported).
5720
5721Indirect call example:
5722
5723.. code-block:: llvm
5724
5725 call void %f(), !prof !1
5726 !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
5727
5728Note that the VP type is 0 (the second operand), which indicates this is
5729an indirect call value profile data. The third operand indicates that the
5730indirect call executed 1600 times. The 4th and 6th operands give the
5731hashes of the 2 hottest target functions' names (this is the same hash used
5732to represent function names in the profile database), and the 5th and 7th
5733operands give the execution count that each of the respective prior target
5734functions was called.
5735
Sean Silvaf722b002012-12-07 10:36:55 +00005736Module Flags Metadata
5737=====================
5738
5739Information about the module as a whole is difficult to convey to LLVM's
5740subsystems. The LLVM IR isn't sufficient to transmit this information.
5741The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00005742this. These flags are in the form of key / value pairs --- much like a
5743dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00005744look it up.
5745
5746The ``llvm.module.flags`` metadata contains a list of metadata triplets.
5747Each triplet has the following form:
5748
5749- The first element is a *behavior* flag, which specifies the behavior
5750 when two (or more) modules are merged together, and it encounters two
5751 (or more) metadata with the same ID. The supported behaviors are
5752 described below.
5753- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00005754 metadata. Each module may only have one flag entry for each unique ID (not
5755 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00005756- The third element is the value of the flag.
5757
5758When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00005759``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
5760each unique metadata ID string, there will be exactly one entry in the merged
5761modules ``llvm.module.flags`` metadata table, and the value for that entry will
5762be determined by the merge behavior flag, as described below. The only exception
5763is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00005764
5765The following behaviors are supported:
5766
5767.. list-table::
5768 :header-rows: 1
5769 :widths: 10 90
5770
5771 * - Value
5772 - Behavior
5773
5774 * - 1
5775 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00005776 Emits an error if two values disagree, otherwise the resulting value
5777 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00005778
5779 * - 2
5780 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00005781 Emits a warning if two values disagree. The result value will be the
5782 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00005783
5784 * - 3
5785 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00005786 Adds a requirement that another module flag be present and have a
5787 specified value after linking is performed. The value must be a
5788 metadata pair, where the first element of the pair is the ID of the
5789 module flag to be restricted, and the second element of the pair is
5790 the value the module flag should be restricted to. This behavior can
5791 be used to restrict the allowable results (via triggering of an
5792 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00005793
5794 * - 4
5795 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00005796 Uses the specified value, regardless of the behavior or value of the
5797 other module. If both modules specify **Override**, but the values
5798 differ, an error will be emitted.
5799
Daniel Dunbar5db391c2013-01-16 21:38:56 +00005800 * - 5
5801 - **Append**
5802 Appends the two values, which are required to be metadata nodes.
5803
5804 * - 6
5805 - **AppendUnique**
5806 Appends the two values, which are required to be metadata
5807 nodes. However, duplicate entries in the second list are dropped
5808 during the append operation.
5809
Steven Wu8cf65492017-08-15 16:16:33 +00005810 * - 7
5811 - **Max**
5812 Takes the max of the two values, which are required to be integers.
5813
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00005814It is an error for a particular unique flag ID to have multiple behaviors,
5815except in the case of **Require** (which adds restrictions on another metadata
5816value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00005817
5818An example of module flags:
5819
5820.. code-block:: llvm
5821
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00005822 !0 = !{ i32 1, !"foo", i32 1 }
5823 !1 = !{ i32 4, !"bar", i32 37 }
5824 !2 = !{ i32 2, !"qux", i32 42 }
5825 !3 = !{ i32 3, !"qux",
5826 !{
5827 !"foo", i32 1
Sean Silvaf722b002012-12-07 10:36:55 +00005828 }
5829 }
5830 !llvm.module.flags = !{ !0, !1, !2, !3 }
5831
5832- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5833 if two or more ``!"foo"`` flags are seen is to emit an error if their
5834 values are not equal.
5835
5836- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5837 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00005838 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00005839
5840- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5841 behavior if two or more ``!"qux"`` flags are seen is to emit a
5842 warning if their values are not equal.
5843
5844- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5845
5846 ::
5847
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00005848 !{ !"foo", i32 1 }
Sean Silvaf722b002012-12-07 10:36:55 +00005849
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00005850 The behavior is to emit an error if the ``llvm.module.flags`` does not
5851 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5852 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00005853
5854Objective-C Garbage Collection Module Flags Metadata
5855----------------------------------------------------
5856
5857On the Mach-O platform, Objective-C stores metadata about garbage
5858collection in a special section called "image info". The metadata
5859consists of a version number and a bitmask specifying what types of
5860garbage collection are supported (if any) by the file. If two or more
5861modules are linked together their garbage collection metadata needs to
5862be merged rather than appended together.
5863
5864The Objective-C garbage collection module flags metadata consists of the
5865following key-value pairs:
5866
5867.. list-table::
5868 :header-rows: 1
5869 :widths: 30 70
5870
5871 * - Key
5872 - Value
5873
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00005874 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00005875 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00005876
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00005877 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00005878 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00005879 always 0.
5880
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00005881 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00005882 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00005883 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5884 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5885 Objective-C ABI version 2.
5886
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00005887 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00005888 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00005889 not. Valid values are 0, for no garbage collection, and 2, for garbage
5890 collection supported.
5891
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00005892 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00005893 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00005894 If present, its value must be 6. This flag requires that the
5895 ``Objective-C Garbage Collection`` flag have the value 2.
5896
5897Some important flag interactions:
5898
5899- If a module with ``Objective-C Garbage Collection`` set to 0 is
5900 merged with a module with ``Objective-C Garbage Collection`` set to
5901 2, then the resulting module has the
5902 ``Objective-C Garbage Collection`` flag set to 0.
5903- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5904 merged with a module with ``Objective-C GC Only`` set to 6.
5905
Oliver Stannarde5241cc2014-06-20 10:08:11 +00005906C type width Module Flags Metadata
5907----------------------------------
5908
5909The ARM backend emits a section into each generated object file describing the
5910options that it was compiled with (in a compiler-independent way) to prevent
5911linking incompatible objects, and to allow automatic library selection. Some
5912of these options are not visible at the IR level, namely wchar_t width and enum
5913width.
5914
5915To pass this information to the backend, these options are encoded in module
5916flags metadata, using the following key-value pairs:
5917
5918.. list-table::
5919 :header-rows: 1
5920 :widths: 30 70
5921
5922 * - Key
5923 - Value
5924
5925 * - short_wchar
5926 - * 0 --- sizeof(wchar_t) == 4
5927 * 1 --- sizeof(wchar_t) == 2
5928
5929 * - short_enum
5930 - * 0 --- Enums are at least as large as an ``int``.
5931 * 1 --- Enums are stored in the smallest integer type which can
5932 represent all of its values.
5933
5934For example, the following metadata section specifies that the module was
5935compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5936enum is the smallest type which can represent all of its values::
5937
5938 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +00005939 !0 = !{i32 1, !"short_wchar", i32 1}
5940 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannarde5241cc2014-06-20 10:08:11 +00005941
Peter Collingbourne9283a092017-06-12 20:10:48 +00005942Automatic Linker Flags Named Metadata
5943=====================================
5944
5945Some targets support embedding flags to the linker inside individual object
5946files. Typically this is used in conjunction with language extensions which
5947allow source files to explicitly declare the libraries they depend on, and have
5948these automatically be transmitted to the linker via object files.
5949
5950These flags are encoded in the IR using named metadata with the name
5951``!llvm.linker.options``. Each operand is expected to be a metadata node
5952which should be a list of other metadata nodes, each of which should be a
5953list of metadata strings defining linker options.
5954
5955For example, the following metadata section specifies two separate sets of
5956linker options, presumably to link against ``libz`` and the ``Cocoa``
5957framework::
5958
5959 !0 = !{ !"-lz" },
5960 !1 = !{ !"-framework", !"Cocoa" } } }
5961 !llvm.linker.options = !{ !0, !1 }
5962
5963The metadata encoding as lists of lists of options, as opposed to a collapsed
5964list of options, is chosen so that the IR encoding can use multiple option
5965strings to specify e.g., a single library, while still having that specifier be
5966preserved as an atomic element that can be recognized by a target specific
5967assembly writer or object file emitter.
5968
5969Each individual option is required to be either a valid option for the target's
5970linker, or an option that is reserved by the target specific assembly writer or
5971object file emitter. No other aspect of these options is defined by the IR.
5972
Teresa Johnsona9a21472018-05-26 02:34:13 +00005973.. _summary:
5974
5975ThinLTO Summary
5976===============
5977
5978Compiling with `ThinLTO <https://clang.llvm.org/docs/ThinLTO.html>`_
5979causes the building of a compact summary of the module that is emitted into
5980the bitcode. The summary is emitted into the LLVM assembly and identified
5981in syntax by a caret ('``^``').
5982
Teresa Johnson28bc0ab2018-09-18 13:44:13 +00005983The summary is parsed into a bitcode output, along with the Module
Teresa Johnsona9a21472018-05-26 02:34:13 +00005984IR, via the "``llvm-as``" tool. Tools that parse the Module IR for the purposes
5985of optimization (e.g. "``clang -x ir``" and "``opt``"), will ignore the
5986summary entries (just as they currently ignore summary entries in a bitcode
5987input file).
5988
Teresa Johnson28bc0ab2018-09-18 13:44:13 +00005989Eventually, the summary will be parsed into a ModuleSummaryIndex object under
5990the same conditions where summary index is currently built from bitcode.
5991Specifically, tools that test the Thin Link portion of a ThinLTO compile
5992(i.e. llvm-lto and llvm-lto2), or when parsing a combined index
5993for a distributed ThinLTO backend via clang's "``-fthinlto-index=<>``" flag
5994(this part is not yet implemented, use llvm-as to create a bitcode object
5995before feeding into thin link tools for now).
5996
Teresa Johnsona9a21472018-05-26 02:34:13 +00005997There are currently 3 types of summary entries in the LLVM assembly:
5998:ref:`module paths<module_path_summary>`,
5999:ref:`global values<gv_summary>`, and
6000:ref:`type identifiers<typeid_summary>`.
6001
6002.. _module_path_summary:
6003
6004Module Path Summary Entry
6005-------------------------
6006
6007Each module path summary entry lists a module containing global values included
6008in the summary. For a single IR module there will be one such entry, but
6009in a combined summary index produced during the thin link, there will be
6010one module path entry per linked module with summary.
6011
6012Example:
6013
Chandler Carruth86b15092018-08-06 09:46:59 +00006014.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006015
6016 ^0 = module: (path: "/path/to/file.o", hash: (2468601609, 1329373163, 1565878005, 638838075, 3148790418))
6017
6018The ``path`` field is a string path to the bitcode file, and the ``hash``
6019field is the 160-bit SHA-1 hash of the IR bitcode contents, used for
6020incremental builds and caching.
6021
6022.. _gv_summary:
6023
6024Global Value Summary Entry
6025--------------------------
6026
6027Each global value summary entry corresponds to a global value defined or
6028referenced by a summarized module.
6029
6030Example:
6031
Chandler Carruth86b15092018-08-06 09:46:59 +00006032.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006033
6034 ^4 = gv: (name: "f"[, summaries: (Summary)[, (Summary)]*]?) ; guid = 14740650423002898831
6035
6036For declarations, there will not be a summary list. For definitions, a
6037global value will contain a list of summaries, one per module containing
6038a definition. There can be multiple entries in a combined summary index
6039for symbols with weak linkage.
6040
6041Each ``Summary`` format will depend on whether the global value is a
6042:ref:`function<function_summary>`, :ref:`variable<variable_summary>`, or
6043:ref:`alias<alias_summary>`.
6044
6045.. _function_summary:
6046
6047Function Summary
6048^^^^^^^^^^^^^^^^
6049
6050If the global value is a function, the ``Summary`` entry will look like:
6051
Chandler Carruth86b15092018-08-06 09:46:59 +00006052.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006053
6054 function: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), insts: 2[, FuncFlags]?[, Calls]?[, TypeIdInfo]?[, Refs]?
6055
6056The ``module`` field includes the summary entry id for the module containing
6057this definition, and the ``flags`` field contains information such as
6058the linkage type, a flag indicating whether it is legal to import the
6059definition, whether it is globally live and whether the linker resolved it
6060to a local definition (the latter two are populated during the thin link).
6061The ``insts`` field contains the number of IR instructions in the function.
6062Finally, there are several optional fields: :ref:`FuncFlags<funcflags_summary>`,
6063:ref:`Calls<calls_summary>`, :ref:`TypeIdInfo<typeidinfo_summary>`,
6064:ref:`Refs<refs_summary>`.
6065
6066.. _variable_summary:
6067
6068Global Variable Summary
6069^^^^^^^^^^^^^^^^^^^^^^^
6070
6071If the global value is a variable, the ``Summary`` entry will look like:
6072
Chandler Carruth86b15092018-08-06 09:46:59 +00006073.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006074
6075 variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0)[, Refs]?
6076
6077The variable entry contains a subset of the fields in a
6078:ref:`function summary <function_summary>`, see the descriptions there.
6079
6080.. _alias_summary:
6081
6082Alias Summary
6083^^^^^^^^^^^^^
6084
6085If the global value is an alias, the ``Summary`` entry will look like:
6086
Chandler Carruth86b15092018-08-06 09:46:59 +00006087.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006088
6089 alias: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), aliasee: ^2)
6090
6091The ``module`` and ``flags`` fields are as described for a
6092:ref:`function summary <function_summary>`. The ``aliasee`` field
6093contains a reference to the global value summary entry of the aliasee.
6094
6095.. _funcflags_summary:
6096
6097Function Flags
6098^^^^^^^^^^^^^^
6099
6100The optional ``FuncFlags`` field looks like:
6101
Chandler Carruth86b15092018-08-06 09:46:59 +00006102.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006103
6104 funcFlags: (readNone: 0, readOnly: 0, noRecurse: 0, returnDoesNotAlias: 0)
6105
6106If unspecified, flags are assumed to hold the conservative ``false`` value of
6107``0``.
6108
6109.. _calls_summary:
6110
6111Calls
6112^^^^^
6113
6114The optional ``Calls`` field looks like:
6115
Chandler Carruth86b15092018-08-06 09:46:59 +00006116.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006117
6118 calls: ((Callee)[, (Callee)]*)
6119
6120where each ``Callee`` looks like:
6121
Chandler Carruth86b15092018-08-06 09:46:59 +00006122.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006123
6124 callee: ^1[, hotness: None]?[, relbf: 0]?
6125
6126The ``callee`` refers to the summary entry id of the callee. At most one
6127of ``hotness`` (which can take the values ``Unknown``, ``Cold``, ``None``,
6128``Hot``, and ``Critical``), and ``relbf`` (which holds the integer
6129branch frequency relative to the entry frequency, scaled down by 2^8)
6130may be specified. The defaults are ``Unknown`` and ``0``, respectively.
6131
6132.. _refs_summary:
6133
6134Refs
6135^^^^
6136
6137The optional ``Refs`` field looks like:
6138
Chandler Carruth86b15092018-08-06 09:46:59 +00006139.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006140
6141 refs: ((Ref)[, (Ref)]*)
6142
6143where each ``Ref`` contains a reference to the summary id of the referenced
6144value (e.g. ``^1``).
6145
6146.. _typeidinfo_summary:
6147
6148TypeIdInfo
6149^^^^^^^^^^
6150
6151The optional ``TypeIdInfo`` field, used for
6152`Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
6153looks like:
6154
Chandler Carruth86b15092018-08-06 09:46:59 +00006155.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006156
6157 typeIdInfo: [(TypeTests)]?[, (TypeTestAssumeVCalls)]?[, (TypeCheckedLoadVCalls)]?[, (TypeTestAssumeConstVCalls)]?[, (TypeCheckedLoadConstVCalls)]?
6158
6159These optional fields have the following forms:
6160
6161TypeTests
6162"""""""""
6163
Chandler Carruth86b15092018-08-06 09:46:59 +00006164.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006165
6166 typeTests: (TypeIdRef[, TypeIdRef]*)
6167
6168Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
6169by summary id or ``GUID``.
6170
6171TypeTestAssumeVCalls
6172""""""""""""""""""""
6173
Chandler Carruth86b15092018-08-06 09:46:59 +00006174.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006175
6176 typeTestAssumeVCalls: (VFuncId[, VFuncId]*)
6177
6178Where each VFuncId has the format:
6179
Chandler Carruth86b15092018-08-06 09:46:59 +00006180.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006181
6182 vFuncId: (TypeIdRef, offset: 16)
6183
6184Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
6185by summary id or ``GUID`` preceeded by a ``guid:`` tag.
6186
6187TypeCheckedLoadVCalls
6188"""""""""""""""""""""
6189
Chandler Carruth86b15092018-08-06 09:46:59 +00006190.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006191
6192 typeCheckedLoadVCalls: (VFuncId[, VFuncId]*)
6193
6194Where each VFuncId has the format described for ``TypeTestAssumeVCalls``.
6195
6196TypeTestAssumeConstVCalls
6197"""""""""""""""""""""""""
6198
Chandler Carruth86b15092018-08-06 09:46:59 +00006199.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006200
6201 typeTestAssumeConstVCalls: (ConstVCall[, ConstVCall]*)
6202
6203Where each ConstVCall has the format:
6204
Chandler Carruth86b15092018-08-06 09:46:59 +00006205.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006206
Teresa Johnson28bc0ab2018-09-18 13:44:13 +00006207 (VFuncId, args: (Arg[, Arg]*))
Teresa Johnsona9a21472018-05-26 02:34:13 +00006208
6209and where each VFuncId has the format described for ``TypeTestAssumeVCalls``,
6210and each Arg is an integer argument number.
6211
6212TypeCheckedLoadConstVCalls
6213""""""""""""""""""""""""""
6214
Chandler Carruth86b15092018-08-06 09:46:59 +00006215.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006216
6217 typeCheckedLoadConstVCalls: (ConstVCall[, ConstVCall]*)
6218
6219Where each ConstVCall has the format described for
6220``TypeTestAssumeConstVCalls``.
6221
6222.. _typeid_summary:
6223
6224Type ID Summary Entry
6225---------------------
6226
6227Each type id summary entry corresponds to a type identifier resolution
6228which is generated during the LTO link portion of the compile when building
6229with `Control Flow Integrity <http://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
6230so these are only present in a combined summary index.
6231
6232Example:
6233
Chandler Carruth86b15092018-08-06 09:46:59 +00006234.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006235
6236 ^4 = typeid: (name: "_ZTS1A", summary: (typeTestRes: (kind: allOnes, sizeM1BitWidth: 7[, alignLog2: 0]?[, sizeM1: 0]?[, bitMask: 0]?[, inlineBits: 0]?)[, WpdResolutions]?)) ; guid = 7004155349499253778
6237
6238The ``typeTestRes`` gives the type test resolution ``kind`` (which may
6239be ``unsat``, ``byteArray``, ``inline``, ``single``, or ``allOnes``), and
6240the ``size-1`` bit width. It is followed by optional flags, which default to 0,
6241and an optional WpdResolutions (whole program devirtualization resolution)
6242field that looks like:
6243
Chandler Carruth86b15092018-08-06 09:46:59 +00006244.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006245
6246 wpdResolutions: ((offset: 0, WpdRes)[, (offset: 1, WpdRes)]*
6247
6248where each entry is a mapping from the given byte offset to the whole-program
6249devirtualization resolution WpdRes, that has one of the following formats:
6250
Chandler Carruth86b15092018-08-06 09:46:59 +00006251.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006252
6253 wpdRes: (kind: branchFunnel)
6254 wpdRes: (kind: singleImpl, singleImplName: "_ZN1A1nEi")
6255 wpdRes: (kind: indir)
6256
6257Additionally, each wpdRes has an optional ``resByArg`` field, which
6258describes the resolutions for calls with all constant integer arguments:
6259
Chandler Carruth86b15092018-08-06 09:46:59 +00006260.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006261
6262 resByArg: (ResByArg[, ResByArg]*)
6263
6264where ResByArg is:
6265
Chandler Carruth86b15092018-08-06 09:46:59 +00006266.. code-block:: text
Teresa Johnsona9a21472018-05-26 02:34:13 +00006267
6268 args: (Arg[, Arg]*), byArg: (kind: UniformRetVal[, info: 0][, byte: 0][, bit: 0])
6269
6270Where the ``kind`` can be ``Indir``, ``UniformRetVal``, ``UniqueRetVal``
6271or ``VirtualConstProp``. The ``info`` field is only used if the kind
6272is ``UniformRetVal`` (indicates the uniform return value), or
6273``UniqueRetVal`` (holds the return value associated with the unique vtable
6274(0 or 1)). The ``byte`` and ``bit`` fields are only used if the target does
6275not support the use of absolute symbols to store constants.
6276
Eli Bendersky88fe6822013-06-07 20:24:43 +00006277.. _intrinsicglobalvariables:
6278
Sean Silvaf722b002012-12-07 10:36:55 +00006279Intrinsic Global Variables
6280==========================
6281
6282LLVM has a number of "magic" global variables that contain data that
6283affect code generation or other IR semantics. These are documented here.
6284All globals of this sort should have a section specified as
6285"``llvm.metadata``". This section and all globals that start with
6286"``llvm.``" are reserved for use by LLVM.
6287
Eli Bendersky88fe6822013-06-07 20:24:43 +00006288.. _gv_llvmused:
6289
Sean Silvaf722b002012-12-07 10:36:55 +00006290The '``llvm.used``' Global Variable
6291-----------------------------------
6292
Rafael Espindolacde25b42013-04-22 14:58:02 +00006293The ``@llvm.used`` global is an array which has
Paul Redmond26266a12013-05-30 17:24:32 +00006294:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00006295pointers to named global variables, functions and aliases which may optionally
6296have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvaf722b002012-12-07 10:36:55 +00006297use of it is:
6298
6299.. code-block:: llvm
6300
6301 @X = global i8 4
6302 @Y = global i32 123
6303
6304 @llvm.used = appending global [2 x i8*] [
6305 i8* @X,
6306 i8* bitcast (i32* @Y to i8*)
6307 ], section "llvm.metadata"
6308
Rafael Espindolacde25b42013-04-22 14:58:02 +00006309If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
6310and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00006311symbol that it cannot see (which is why they have to be named). For example, if
6312a variable has internal linkage and no references other than that from the
6313``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
6314references from inline asms and other things the compiler cannot "see", and
6315corresponds to "``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00006316
6317On some targets, the code generator must emit a directive to the
6318assembler or object file to prevent the assembler and linker from
6319molesting the symbol.
6320
Eli Bendersky88fe6822013-06-07 20:24:43 +00006321.. _gv_llvmcompilerused:
6322
Sean Silvaf722b002012-12-07 10:36:55 +00006323The '``llvm.compiler.used``' Global Variable
6324--------------------------------------------
6325
6326The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
6327directive, except that it only prevents the compiler from touching the
6328symbol. On targets that support it, this allows an intelligent linker to
6329optimize references to the symbol without being impeded as it would be
6330by ``@llvm.used``.
6331
6332This is a rare construct that should only be used in rare circumstances,
6333and should not be exposed to source languages.
6334
Eli Bendersky88fe6822013-06-07 20:24:43 +00006335.. _gv_llvmglobalctors:
6336
Sean Silvaf722b002012-12-07 10:36:55 +00006337The '``llvm.global_ctors``' Global Variable
6338-------------------------------------------
6339
6340.. code-block:: llvm
6341
Reid Kleckner1ce30882014-05-16 20:39:27 +00006342 %0 = type { i32, void ()*, i8* }
6343 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvaf722b002012-12-07 10:36:55 +00006344
6345The ``@llvm.global_ctors`` array contains a list of constructor
Reid Kleckner1ce30882014-05-16 20:39:27 +00006346functions, priorities, and an optional associated global or function.
6347The functions referenced by this array will be called in ascending order
6348of priority (i.e. lowest first) when the module is loaded. The order of
6349functions with the same priority is not defined.
6350
6351If the third field is present, non-null, and points to a global variable
6352or function, the initializer function will only run if the associated
6353data from the current module is not discarded.
Sean Silvaf722b002012-12-07 10:36:55 +00006354
Eli Bendersky88fe6822013-06-07 20:24:43 +00006355.. _llvmglobaldtors:
6356
Sean Silvaf722b002012-12-07 10:36:55 +00006357The '``llvm.global_dtors``' Global Variable
6358-------------------------------------------
6359
6360.. code-block:: llvm
6361
Reid Kleckner1ce30882014-05-16 20:39:27 +00006362 %0 = type { i32, void ()*, i8* }
6363 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvaf722b002012-12-07 10:36:55 +00006364
Reid Kleckner1ce30882014-05-16 20:39:27 +00006365The ``@llvm.global_dtors`` array contains a list of destructor
6366functions, priorities, and an optional associated global or function.
6367The functions referenced by this array will be called in descending
Reid Kleckner54ba0df2014-05-27 21:35:17 +00006368order of priority (i.e. highest first) when the module is unloaded. The
Reid Kleckner1ce30882014-05-16 20:39:27 +00006369order of functions with the same priority is not defined.
6370
6371If the third field is present, non-null, and points to a global variable
6372or function, the destructor function will only run if the associated
6373data from the current module is not discarded.
Sean Silvaf722b002012-12-07 10:36:55 +00006374
6375Instruction Reference
6376=====================
6377
6378The LLVM instruction set consists of several different classifications
6379of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
6380instructions <binaryops>`, :ref:`bitwise binary
6381instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
6382:ref:`other instructions <otherops>`.
6383
6384.. _terminators:
6385
6386Terminator Instructions
6387-----------------------
6388
6389As mentioned :ref:`previously <functionstructure>`, every basic block in a
6390program ends with a "Terminator" instruction, which indicates which
6391block should be executed after the current block is finished. These
6392terminator instructions typically yield a '``void``' value: they produce
6393control flow, not values (the one exception being the
6394':ref:`invoke <i_invoke>`' instruction).
6395
6396The terminator instructions are: ':ref:`ret <i_ret>`',
6397':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
6398':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8cec2f22015-12-12 05:38:55 +00006399':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer4a45f082015-07-31 17:58:14 +00006400':ref:`catchret <i_catchret>`',
6401':ref:`cleanupret <i_cleanupret>`',
David Majnemer4a45f082015-07-31 17:58:14 +00006402and ':ref:`unreachable <i_unreachable>`'.
Sean Silvaf722b002012-12-07 10:36:55 +00006403
6404.. _i_ret:
6405
6406'``ret``' Instruction
6407^^^^^^^^^^^^^^^^^^^^^
6408
6409Syntax:
6410"""""""
6411
6412::
6413
6414 ret <type> <value> ; Return a value from a non-void function
6415 ret void ; Return from void function
6416
6417Overview:
6418"""""""""
6419
6420The '``ret``' instruction is used to return control flow (and optionally
6421a value) from a function back to the caller.
6422
6423There are two forms of the '``ret``' instruction: one that returns a
6424value and then causes control flow, and one that just causes control
6425flow to occur.
6426
6427Arguments:
6428""""""""""
6429
6430The '``ret``' instruction optionally accepts a single argument, the
6431return value. The type of the return value must be a ':ref:`first
6432class <t_firstclass>`' type.
6433
6434A function is not :ref:`well formed <wellformed>` if it it has a non-void
6435return type and contains a '``ret``' instruction with no return value or
6436a return value with a type that does not match its type, or if it has a
6437void return type and contains a '``ret``' instruction with a return
6438value.
6439
6440Semantics:
6441""""""""""
6442
6443When the '``ret``' instruction is executed, control flow returns back to
6444the calling function's context. If the caller is a
6445":ref:`call <i_call>`" instruction, execution continues at the
6446instruction after the call. If the caller was an
6447":ref:`invoke <i_invoke>`" instruction, execution continues at the
6448beginning of the "normal" destination block. If the instruction returns
6449a value, that value shall set the call or invoke instruction's return
6450value.
6451
6452Example:
6453""""""""
6454
6455.. code-block:: llvm
6456
6457 ret i32 5 ; Return an integer value of 5
6458 ret void ; Return from a void function
6459 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
6460
6461.. _i_br:
6462
6463'``br``' Instruction
6464^^^^^^^^^^^^^^^^^^^^
6465
6466Syntax:
6467"""""""
6468
6469::
6470
6471 br i1 <cond>, label <iftrue>, label <iffalse>
6472 br label <dest> ; Unconditional branch
6473
6474Overview:
6475"""""""""
6476
6477The '``br``' instruction is used to cause control flow to transfer to a
6478different basic block in the current function. There are two forms of
6479this instruction, corresponding to a conditional branch and an
6480unconditional branch.
6481
6482Arguments:
6483""""""""""
6484
6485The conditional branch form of the '``br``' instruction takes a single
6486'``i1``' value and two '``label``' values. The unconditional form of the
6487'``br``' instruction takes a single '``label``' value as a target.
6488
6489Semantics:
6490""""""""""
6491
6492Upon execution of a conditional '``br``' instruction, the '``i1``'
6493argument is evaluated. If the value is ``true``, control flows to the
6494'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
6495to the '``iffalse``' ``label`` argument.
6496
6497Example:
6498""""""""
6499
6500.. code-block:: llvm
6501
6502 Test:
6503 %cond = icmp eq i32 %a, %b
6504 br i1 %cond, label %IfEqual, label %IfUnequal
6505 IfEqual:
6506 ret i32 1
6507 IfUnequal:
6508 ret i32 0
6509
6510.. _i_switch:
6511
6512'``switch``' Instruction
6513^^^^^^^^^^^^^^^^^^^^^^^^
6514
6515Syntax:
6516"""""""
6517
6518::
6519
6520 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
6521
6522Overview:
6523"""""""""
6524
6525The '``switch``' instruction is used to transfer control flow to one of
6526several different places. It is a generalization of the '``br``'
6527instruction, allowing a branch to occur to one of many possible
6528destinations.
6529
6530Arguments:
6531""""""""""
6532
6533The '``switch``' instruction uses three parameters: an integer
6534comparison value '``value``', a default '``label``' destination, and an
6535array of pairs of comparison value constants and '``label``'s. The table
6536is not allowed to contain duplicate constant entries.
6537
6538Semantics:
6539""""""""""
6540
6541The ``switch`` instruction specifies a table of values and destinations.
6542When the '``switch``' instruction is executed, this table is searched
6543for the given value. If the value is found, control flow is transferred
6544to the corresponding destination; otherwise, control flow is transferred
6545to the default destination.
6546
6547Implementation:
6548"""""""""""""""
6549
6550Depending on properties of the target machine and the particular
6551``switch`` instruction, this instruction may be code generated in
6552different ways. For example, it could be generated as a series of
6553chained conditional branches or with a lookup table.
6554
6555Example:
6556""""""""
6557
6558.. code-block:: llvm
6559
6560 ; Emulate a conditional br instruction
6561 %Val = zext i1 %value to i32
6562 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
6563
6564 ; Emulate an unconditional br instruction
6565 switch i32 0, label %dest [ ]
6566
6567 ; Implement a jump table:
6568 switch i32 %val, label %otherwise [ i32 0, label %onzero
6569 i32 1, label %onone
6570 i32 2, label %ontwo ]
6571
6572.. _i_indirectbr:
6573
6574'``indirectbr``' Instruction
6575^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6576
6577Syntax:
6578"""""""
6579
6580::
6581
6582 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
6583
6584Overview:
6585"""""""""
6586
6587The '``indirectbr``' instruction implements an indirect branch to a
6588label within the current function, whose address is specified by
6589"``address``". Address must be derived from a
6590:ref:`blockaddress <blockaddress>` constant.
6591
6592Arguments:
6593""""""""""
6594
6595The '``address``' argument is the address of the label to jump to. The
6596rest of the arguments indicate the full set of possible destinations
6597that the address may point to. Blocks are allowed to occur multiple
6598times in the destination list, though this isn't particularly useful.
6599
6600This destination list is required so that dataflow analysis has an
6601accurate understanding of the CFG.
6602
6603Semantics:
6604""""""""""
6605
6606Control transfers to the block specified in the address argument. All
6607possible destination blocks must be listed in the label list, otherwise
6608this instruction has undefined behavior. This implies that jumps to
6609labels defined in other functions have undefined behavior as well.
6610
6611Implementation:
6612"""""""""""""""
6613
6614This is typically implemented with a jump through a register.
6615
6616Example:
6617""""""""
6618
6619.. code-block:: llvm
6620
6621 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
6622
6623.. _i_invoke:
6624
6625'``invoke``' Instruction
6626^^^^^^^^^^^^^^^^^^^^^^^^
6627
6628Syntax:
6629"""""""
6630
6631::
6632
Alexander Richardson47ff67b2018-08-23 09:25:17 +00006633 <result> = invoke [cconv] [ret attrs] [addrspace(<num>)] [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasf70eb722015-09-24 23:34:52 +00006634 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvaf722b002012-12-07 10:36:55 +00006635
6636Overview:
6637"""""""""
6638
6639The '``invoke``' instruction causes control to transfer to a specified
6640function, with the possibility of control flow transfer to either the
6641'``normal``' label or the '``exception``' label. If the callee function
6642returns with the "``ret``" instruction, control flow will return to the
6643"normal" label. If the callee (or any indirect callees) returns via the
6644":ref:`resume <i_resume>`" instruction or other exception handling
6645mechanism, control is interrupted and continued at the dynamically
6646nearest "exception" label.
6647
6648The '``exception``' label is a `landing
6649pad <ExceptionHandling.html#overview>`_ for the exception. As such,
6650'``exception``' label is required to have the
6651":ref:`landingpad <i_landingpad>`" instruction, which contains the
6652information about the behavior of the program after unwinding happens,
6653as its first non-PHI instruction. The restrictions on the
6654"``landingpad``" instruction's tightly couples it to the "``invoke``"
6655instruction, so that the important information contained within the
6656"``landingpad``" instruction can't be lost through normal code motion.
6657
6658Arguments:
6659""""""""""
6660
6661This instruction requires several arguments:
6662
6663#. The optional "cconv" marker indicates which :ref:`calling
6664 convention <callingconv>` the call should use. If none is
6665 specified, the call defaults to using C calling conventions.
6666#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6667 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6668 are valid here.
Craig Topper1b044af2019-01-16 00:21:59 +00006669#. The optional addrspace attribute can be used to indicate the address space
Alexander Richardson47ff67b2018-08-23 09:25:17 +00006670 of the called function. If it is not specified, the program address space
6671 from the :ref:`datalayout string<langref_datalayout>` will be used.
David Blaikiec0ba7ba2016-07-13 17:21:34 +00006672#. '``ty``': the type of the call instruction itself which is also the
6673 type of the return value. Functions that return no value are marked
6674 ``void``.
6675#. '``fnty``': shall be the signature of the function being invoked. The
6676 argument types must match the types implied by this signature. This
6677 type can be omitted if the function is not varargs.
6678#. '``fnptrval``': An LLVM value containing a pointer to a function to
6679 be invoked. In most cases, this is a direct function invocation, but
6680 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
6681 to function value.
Sean Silvaf722b002012-12-07 10:36:55 +00006682#. '``function args``': argument list whose types match the function
6683 signature argument types and parameter attributes. All arguments must
6684 be of :ref:`first class <t_firstclass>` type. If the function signature
6685 indicates the function accepts a variable number of arguments, the
6686 extra arguments can be specified.
6687#. '``normal label``': the label reached when the called function
6688 executes a '``ret``' instruction.
6689#. '``exception label``': the label reached when a callee returns via
6690 the :ref:`resume <i_resume>` instruction or other exception handling
6691 mechanism.
George Burgess IVd6137702017-04-13 05:00:31 +00006692#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasf70eb722015-09-24 23:34:52 +00006693#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvaf722b002012-12-07 10:36:55 +00006694
6695Semantics:
6696""""""""""
6697
6698This instruction is designed to operate as a standard '``call``'
6699instruction in most regards. The primary difference is that it
6700establishes an association with a label, which is used by the runtime
6701library to unwind the stack.
6702
6703This instruction is used in languages with destructors to ensure that
6704proper cleanup is performed in the case of either a ``longjmp`` or a
6705thrown exception. Additionally, this is important for implementation of
6706'``catch``' clauses in high-level languages that support them.
6707
6708For the purposes of the SSA form, the definition of the value returned
6709by the '``invoke``' instruction is deemed to occur on the edge from the
6710current block to the "normal" label. If the callee unwinds then no
6711return value is available.
6712
6713Example:
6714""""""""
6715
6716.. code-block:: llvm
6717
6718 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover6eaf8402014-06-13 14:24:23 +00006719 unwind label %TestCleanup ; i32:retval set
Sean Silvaf722b002012-12-07 10:36:55 +00006720 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover6eaf8402014-06-13 14:24:23 +00006721 unwind label %TestCleanup ; i32:retval set
Sean Silvaf722b002012-12-07 10:36:55 +00006722
6723.. _i_resume:
6724
6725'``resume``' Instruction
6726^^^^^^^^^^^^^^^^^^^^^^^^
6727
6728Syntax:
6729"""""""
6730
6731::
6732
6733 resume <type> <value>
6734
6735Overview:
6736"""""""""
6737
6738The '``resume``' instruction is a terminator instruction that has no
6739successors.
6740
6741Arguments:
6742""""""""""
6743
6744The '``resume``' instruction requires one argument, which must have the
6745same type as the result of any '``landingpad``' instruction in the same
6746function.
6747
6748Semantics:
6749""""""""""
6750
6751The '``resume``' instruction resumes propagation of an existing
6752(in-flight) exception whose unwinding was interrupted with a
6753:ref:`landingpad <i_landingpad>` instruction.
6754
6755Example:
6756""""""""
6757
6758.. code-block:: llvm
6759
6760 resume { i8*, i32 } %exn
6761
David Majnemer8cec2f22015-12-12 05:38:55 +00006762.. _i_catchswitch:
6763
6764'``catchswitch``' Instruction
Akira Hatanakac179deb2015-12-14 05:15:40 +00006765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8cec2f22015-12-12 05:38:55 +00006766
6767Syntax:
6768"""""""
6769
6770::
6771
6772 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
6773 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
6774
6775Overview:
6776"""""""""
6777
6778The '``catchswitch``' instruction is used by `LLVM's exception handling system
6779<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
6780that may be executed by the :ref:`EH personality routine <personalityfn>`.
6781
6782Arguments:
6783""""""""""
6784
6785The ``parent`` argument is the token of the funclet that contains the
6786``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
6787this operand may be the token ``none``.
6788
Joseph Tremouletfe9953a2016-01-10 04:28:38 +00006789The ``default`` argument is the label of another basic block beginning with
6790either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
6791must be a legal target with respect to the ``parent`` links, as described in
6792the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8cec2f22015-12-12 05:38:55 +00006793
Joseph Tremouletfe9953a2016-01-10 04:28:38 +00006794The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8cec2f22015-12-12 05:38:55 +00006795:ref:`catchpad <i_catchpad>` instruction.
6796
6797Semantics:
6798""""""""""
6799
6800Executing this instruction transfers control to one of the successors in
6801``handlers``, if appropriate, or continues to unwind via the unwind label if
6802present.
6803
6804The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
6805it must be both the first non-phi instruction and last instruction in the basic
6806block. Therefore, it must be the only non-phi instruction in the block.
6807
6808Example:
6809""""""""
6810
Renato Golin88ea57f2016-07-20 12:16:38 +00006811.. code-block:: text
David Majnemer8cec2f22015-12-12 05:38:55 +00006812
6813 dispatch1:
6814 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
6815 dispatch2:
6816 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
6817
David Majnemer4a45f082015-07-31 17:58:14 +00006818.. _i_catchret:
6819
6820'``catchret``' Instruction
6821^^^^^^^^^^^^^^^^^^^^^^^^^^
6822
6823Syntax:
6824"""""""
6825
6826::
6827
David Majnemer8cec2f22015-12-12 05:38:55 +00006828 catchret from <token> to label <normal>
David Majnemer4a45f082015-07-31 17:58:14 +00006829
6830Overview:
6831"""""""""
6832
6833The '``catchret``' instruction is a terminator instruction that has a
6834single successor.
6835
6836
6837Arguments:
6838""""""""""
6839
Joseph Tremouletd4a765f2015-08-23 00:26:33 +00006840The first argument to a '``catchret``' indicates which ``catchpad`` it
6841exits. It must be a :ref:`catchpad <i_catchpad>`.
6842The second argument to a '``catchret``' specifies where control will
6843transfer to next.
David Majnemer4a45f082015-07-31 17:58:14 +00006844
6845Semantics:
6846""""""""""
6847
David Majnemer8cec2f22015-12-12 05:38:55 +00006848The '``catchret``' instruction ends an existing (in-flight) exception whose
6849unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
6850:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
6851code to, for example, destroy the active exception. Control then transfers to
6852``normal``.
Joseph Tremoulet226889e2015-09-03 09:09:43 +00006853
Joseph Tremouletfe9953a2016-01-10 04:28:38 +00006854The ``token`` argument must be a token produced by a ``catchpad`` instruction.
6855If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
6856funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6857the ``catchret``'s behavior is undefined.
David Majnemer4a45f082015-07-31 17:58:14 +00006858
6859Example:
6860""""""""
6861
Renato Golin88ea57f2016-07-20 12:16:38 +00006862.. code-block:: text
David Majnemer4a45f082015-07-31 17:58:14 +00006863
David Majnemer8cec2f22015-12-12 05:38:55 +00006864 catchret from %catch label %continue
Joseph Tremoulet226889e2015-09-03 09:09:43 +00006865
David Majnemer4a45f082015-07-31 17:58:14 +00006866.. _i_cleanupret:
6867
6868'``cleanupret``' Instruction
6869^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6870
6871Syntax:
6872"""""""
6873
6874::
6875
David Majnemer8cec2f22015-12-12 05:38:55 +00006876 cleanupret from <value> unwind label <continue>
6877 cleanupret from <value> unwind to caller
David Majnemer4a45f082015-07-31 17:58:14 +00006878
6879Overview:
6880"""""""""
6881
6882The '``cleanupret``' instruction is a terminator instruction that has
6883an optional successor.
6884
6885
6886Arguments:
6887""""""""""
6888
Joseph Tremouletd4a765f2015-08-23 00:26:33 +00006889The '``cleanupret``' instruction requires one argument, which indicates
6890which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremouletfe9953a2016-01-10 04:28:38 +00006891If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
6892funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
6893the ``cleanupret``'s behavior is undefined.
6894
6895The '``cleanupret``' instruction also has an optional successor, ``continue``,
6896which must be the label of another basic block beginning with either a
6897``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
6898be a legal target with respect to the ``parent`` links, as described in the
6899`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer4a45f082015-07-31 17:58:14 +00006900
6901Semantics:
6902""""""""""
6903
6904The '``cleanupret``' instruction indicates to the
6905:ref:`personality function <personalityfn>` that one
6906:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
6907It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet226889e2015-09-03 09:09:43 +00006908
David Majnemer4a45f082015-07-31 17:58:14 +00006909Example:
6910""""""""
6911
Renato Golin88ea57f2016-07-20 12:16:38 +00006912.. code-block:: text
David Majnemer4a45f082015-07-31 17:58:14 +00006913
David Majnemer8cec2f22015-12-12 05:38:55 +00006914 cleanupret from %cleanup unwind to caller
6915 cleanupret from %cleanup unwind label %continue
David Majnemer4a45f082015-07-31 17:58:14 +00006916
Sean Silvaf722b002012-12-07 10:36:55 +00006917.. _i_unreachable:
6918
6919'``unreachable``' Instruction
6920^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6921
6922Syntax:
6923"""""""
6924
6925::
6926
6927 unreachable
6928
6929Overview:
6930"""""""""
6931
6932The '``unreachable``' instruction has no defined semantics. This
6933instruction is used to inform the optimizer that a particular portion of
6934the code is not reachable. This can be used to indicate that the code
6935after a no-return function cannot be reached, and other facts.
6936
6937Semantics:
6938""""""""""
6939
6940The '``unreachable``' instruction has no defined semantics.
6941
Cameron McInallyf265ec52018-11-16 19:52:59 +00006942.. _unaryops:
6943
6944Unary Operations
6945-----------------
6946
6947Unary operators require a single operand, execute an operation on
6948it, and produce a single value. The operand might represent multiple
6949data, as is the case with the :ref:`vector <t_vector>` data type. The
6950result value has the same type as its operand.
6951
6952.. _i_fneg:
6953
6954'``fneg``' Instruction
6955^^^^^^^^^^^^^^^^^^^^^^
6956
6957Syntax:
6958"""""""
6959
6960::
6961
6962 <result> = fneg [fast-math flags]* <ty> <op1> ; yields ty:result
6963
6964Overview:
6965"""""""""
6966
6967The '``fneg``' instruction returns the negation of its operand.
6968
6969Arguments:
6970""""""""""
6971
6972The argument to the '``fneg``' instruction must be a
6973:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Michael Kruse42a382c2018-12-20 04:58:07 +00006974floating-point values.
Cameron McInallyf265ec52018-11-16 19:52:59 +00006975
6976Semantics:
6977""""""""""
6978
6979The value produced is a copy of the operand with its sign bit flipped.
6980This instruction can also take any number of :ref:`fast-math
6981flags <fastmath>`, which are optimization hints to enable otherwise
6982unsafe floating-point optimizations:
6983
6984Example:
6985""""""""
6986
6987.. code-block:: text
6988
6989 <result> = fneg float %val ; yields float:result = -%var
6990
Sean Silvaf722b002012-12-07 10:36:55 +00006991.. _binaryops:
6992
6993Binary Operations
6994-----------------
6995
6996Binary operators are used to do most of the computation in a program.
6997They require two operands of the same type, execute an operation on
6998them, and produce a single value. The operands might represent multiple
6999data, as is the case with the :ref:`vector <t_vector>` data type. The
7000result value has the same type as its operands.
7001
7002There are several different binary operators:
7003
7004.. _i_add:
7005
7006'``add``' Instruction
7007^^^^^^^^^^^^^^^^^^^^^
7008
7009Syntax:
7010"""""""
7011
7012::
7013
Tim Northover6eaf8402014-06-13 14:24:23 +00007014 <result> = add <ty> <op1>, <op2> ; yields ty:result
7015 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
7016 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
7017 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007018
7019Overview:
7020"""""""""
7021
7022The '``add``' instruction returns the sum of its two operands.
7023
7024Arguments:
7025""""""""""
7026
7027The two arguments to the '``add``' instruction must be
7028:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7029arguments must have identical types.
7030
7031Semantics:
7032""""""""""
7033
7034The value produced is the integer sum of the two operands.
7035
7036If the sum has unsigned overflow, the result returned is the
7037mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
7038the result.
7039
7040Because LLVM integers use a two's complement representation, this
7041instruction is appropriate for both signed and unsigned integers.
7042
7043``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7044respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7045result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
7046unsigned and/or signed overflow, respectively, occurs.
7047
7048Example:
7049""""""""
7050
Renato Golin88ea57f2016-07-20 12:16:38 +00007051.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007052
Tim Northover6eaf8402014-06-13 14:24:23 +00007053 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvaf722b002012-12-07 10:36:55 +00007054
7055.. _i_fadd:
7056
7057'``fadd``' Instruction
7058^^^^^^^^^^^^^^^^^^^^^^
7059
7060Syntax:
7061"""""""
7062
7063::
7064
Tim Northover6eaf8402014-06-13 14:24:23 +00007065 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007066
7067Overview:
7068"""""""""
7069
7070The '``fadd``' instruction returns the sum of its two operands.
7071
7072Arguments:
7073""""""""""
7074
Sanjay Patel16e9a292018-03-21 14:15:33 +00007075The two arguments to the '``fadd``' instruction must be
Mandeep Singh Grang08238b72018-11-01 23:22:25 +00007076:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel16e9a292018-03-21 14:15:33 +00007077floating-point values. Both arguments must have identical types.
Sean Silvaf722b002012-12-07 10:36:55 +00007078
7079Semantics:
7080""""""""""
7081
Sanjay Patel81c70f82018-03-07 17:18:22 +00007082The value produced is the floating-point sum of the two operands.
Sanjay Patelf60cf822018-03-20 17:05:19 +00007083This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang08238b72018-11-01 23:22:25 +00007084environment <floatenv>`.
Sanjay Patel81c70f82018-03-07 17:18:22 +00007085This instruction can also take any number of :ref:`fast-math
7086flags <fastmath>`, which are optimization hints to enable otherwise
7087unsafe floating-point optimizations:
Sean Silvaf722b002012-12-07 10:36:55 +00007088
7089Example:
7090""""""""
7091
Renato Golin88ea57f2016-07-20 12:16:38 +00007092.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007093
Tim Northover6eaf8402014-06-13 14:24:23 +00007094 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvaf722b002012-12-07 10:36:55 +00007095
7096'``sub``' Instruction
7097^^^^^^^^^^^^^^^^^^^^^
7098
7099Syntax:
7100"""""""
7101
7102::
7103
Tim Northover6eaf8402014-06-13 14:24:23 +00007104 <result> = sub <ty> <op1>, <op2> ; yields ty:result
7105 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
7106 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
7107 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007108
7109Overview:
7110"""""""""
7111
7112The '``sub``' instruction returns the difference of its two operands.
7113
7114Note that the '``sub``' instruction is used to represent the '``neg``'
7115instruction present in most other intermediate representations.
7116
7117Arguments:
7118""""""""""
7119
7120The two arguments to the '``sub``' instruction must be
7121:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7122arguments must have identical types.
7123
7124Semantics:
7125""""""""""
7126
7127The value produced is the integer difference of the two operands.
7128
7129If the difference has unsigned overflow, the result returned is the
7130mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
7131the result.
7132
7133Because LLVM integers use a two's complement representation, this
7134instruction is appropriate for both signed and unsigned integers.
7135
7136``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7137respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7138result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
7139unsigned and/or signed overflow, respectively, occurs.
7140
7141Example:
7142""""""""
7143
Renato Golin88ea57f2016-07-20 12:16:38 +00007144.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007145
Tim Northover6eaf8402014-06-13 14:24:23 +00007146 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
7147 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvaf722b002012-12-07 10:36:55 +00007148
7149.. _i_fsub:
7150
7151'``fsub``' Instruction
7152^^^^^^^^^^^^^^^^^^^^^^
7153
7154Syntax:
7155"""""""
7156
7157::
7158
Tim Northover6eaf8402014-06-13 14:24:23 +00007159 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007160
7161Overview:
7162"""""""""
7163
7164The '``fsub``' instruction returns the difference of its two operands.
7165
Sean Silvaf722b002012-12-07 10:36:55 +00007166Arguments:
7167""""""""""
7168
Sanjay Patel16e9a292018-03-21 14:15:33 +00007169The two arguments to the '``fsub``' instruction must be
Mandeep Singh Grang08238b72018-11-01 23:22:25 +00007170:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel16e9a292018-03-21 14:15:33 +00007171floating-point values. Both arguments must have identical types.
Sean Silvaf722b002012-12-07 10:36:55 +00007172
7173Semantics:
7174""""""""""
7175
Sanjay Patel81c70f82018-03-07 17:18:22 +00007176The value produced is the floating-point difference of the two operands.
Sanjay Patelf60cf822018-03-20 17:05:19 +00007177This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang08238b72018-11-01 23:22:25 +00007178environment <floatenv>`.
Sean Silvaf722b002012-12-07 10:36:55 +00007179This instruction can also take any number of :ref:`fast-math
7180flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel81c70f82018-03-07 17:18:22 +00007181unsafe floating-point optimizations:
Sean Silvaf722b002012-12-07 10:36:55 +00007182
7183Example:
7184""""""""
7185
Renato Golin88ea57f2016-07-20 12:16:38 +00007186.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007187
Tim Northover6eaf8402014-06-13 14:24:23 +00007188 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
7189 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvaf722b002012-12-07 10:36:55 +00007190
7191'``mul``' Instruction
7192^^^^^^^^^^^^^^^^^^^^^
7193
7194Syntax:
7195"""""""
7196
7197::
7198
Tim Northover6eaf8402014-06-13 14:24:23 +00007199 <result> = mul <ty> <op1>, <op2> ; yields ty:result
7200 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
7201 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
7202 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007203
7204Overview:
7205"""""""""
7206
7207The '``mul``' instruction returns the product of its two operands.
7208
7209Arguments:
7210""""""""""
7211
7212The two arguments to the '``mul``' instruction must be
7213:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7214arguments must have identical types.
7215
7216Semantics:
7217""""""""""
7218
7219The value produced is the integer product of the two operands.
7220
7221If the result of the multiplication has unsigned overflow, the result
7222returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
7223bit width of the result.
7224
7225Because LLVM integers use a two's complement representation, and the
7226result is the same width as the operands, this instruction returns the
7227correct result for both signed and unsigned integers. If a full product
7228(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
7229sign-extended or zero-extended as appropriate to the width of the full
7230product.
7231
7232``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
7233respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
7234result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
7235unsigned and/or signed overflow, respectively, occurs.
7236
7237Example:
7238""""""""
7239
Renato Golin88ea57f2016-07-20 12:16:38 +00007240.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007241
Tim Northover6eaf8402014-06-13 14:24:23 +00007242 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvaf722b002012-12-07 10:36:55 +00007243
7244.. _i_fmul:
7245
7246'``fmul``' Instruction
7247^^^^^^^^^^^^^^^^^^^^^^
7248
7249Syntax:
7250"""""""
7251
7252::
7253
Tim Northover6eaf8402014-06-13 14:24:23 +00007254 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007255
7256Overview:
7257"""""""""
7258
7259The '``fmul``' instruction returns the product of its two operands.
7260
7261Arguments:
7262""""""""""
7263
Sanjay Patel16e9a292018-03-21 14:15:33 +00007264The two arguments to the '``fmul``' instruction must be
Mandeep Singh Grang08238b72018-11-01 23:22:25 +00007265:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel16e9a292018-03-21 14:15:33 +00007266floating-point values. Both arguments must have identical types.
Sean Silvaf722b002012-12-07 10:36:55 +00007267
7268Semantics:
7269""""""""""
7270
Sanjay Patel81c70f82018-03-07 17:18:22 +00007271The value produced is the floating-point product of the two operands.
Sanjay Patelf60cf822018-03-20 17:05:19 +00007272This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang08238b72018-11-01 23:22:25 +00007273environment <floatenv>`.
Sean Silvaf722b002012-12-07 10:36:55 +00007274This instruction can also take any number of :ref:`fast-math
7275flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel81c70f82018-03-07 17:18:22 +00007276unsafe floating-point optimizations:
Sean Silvaf722b002012-12-07 10:36:55 +00007277
7278Example:
7279""""""""
7280
Renato Golin88ea57f2016-07-20 12:16:38 +00007281.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007282
Tim Northover6eaf8402014-06-13 14:24:23 +00007283 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvaf722b002012-12-07 10:36:55 +00007284
7285'``udiv``' Instruction
7286^^^^^^^^^^^^^^^^^^^^^^
7287
7288Syntax:
7289"""""""
7290
7291::
7292
Tim Northover6eaf8402014-06-13 14:24:23 +00007293 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
7294 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007295
7296Overview:
7297"""""""""
7298
7299The '``udiv``' instruction returns the quotient of its two operands.
7300
7301Arguments:
7302""""""""""
7303
7304The two arguments to the '``udiv``' instruction must be
7305:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7306arguments must have identical types.
7307
7308Semantics:
7309""""""""""
7310
7311The value produced is the unsigned integer quotient of the two operands.
7312
7313Note that unsigned integer division and signed integer division are
7314distinct operations; for signed integer division, use '``sdiv``'.
7315
Sanjay Pateldccf5a12017-03-09 16:20:52 +00007316Division by zero is undefined behavior. For vectors, if any element
7317of the divisor is zero, the operation has undefined behavior.
7318
Sean Silvaf722b002012-12-07 10:36:55 +00007319
7320If the ``exact`` keyword is present, the result value of the ``udiv`` is
7321a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
7322such, "((a udiv exact b) mul b) == a").
7323
7324Example:
7325""""""""
7326
Renato Golin88ea57f2016-07-20 12:16:38 +00007327.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007328
Tim Northover6eaf8402014-06-13 14:24:23 +00007329 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvaf722b002012-12-07 10:36:55 +00007330
7331'``sdiv``' Instruction
7332^^^^^^^^^^^^^^^^^^^^^^
7333
7334Syntax:
7335"""""""
7336
7337::
7338
Tim Northover6eaf8402014-06-13 14:24:23 +00007339 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
7340 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007341
7342Overview:
7343"""""""""
7344
7345The '``sdiv``' instruction returns the quotient of its two operands.
7346
7347Arguments:
7348""""""""""
7349
7350The two arguments to the '``sdiv``' instruction must be
7351:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7352arguments must have identical types.
7353
7354Semantics:
7355""""""""""
7356
7357The value produced is the signed integer quotient of the two operands
7358rounded towards zero.
7359
7360Note that signed integer division and unsigned integer division are
7361distinct operations; for unsigned integer division, use '``udiv``'.
7362
Sanjay Pateldccf5a12017-03-09 16:20:52 +00007363Division by zero is undefined behavior. For vectors, if any element
7364of the divisor is zero, the operation has undefined behavior.
7365Overflow also leads to undefined behavior; this is a rare case, but can
7366occur, for example, by doing a 32-bit division of -2147483648 by -1.
Sean Silvaf722b002012-12-07 10:36:55 +00007367
7368If the ``exact`` keyword is present, the result value of the ``sdiv`` is
7369a :ref:`poison value <poisonvalues>` if the result would be rounded.
7370
7371Example:
7372""""""""
7373
Renato Golin88ea57f2016-07-20 12:16:38 +00007374.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007375
Tim Northover6eaf8402014-06-13 14:24:23 +00007376 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvaf722b002012-12-07 10:36:55 +00007377
7378.. _i_fdiv:
7379
7380'``fdiv``' Instruction
7381^^^^^^^^^^^^^^^^^^^^^^
7382
7383Syntax:
7384"""""""
7385
7386::
7387
Tim Northover6eaf8402014-06-13 14:24:23 +00007388 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007389
7390Overview:
7391"""""""""
7392
7393The '``fdiv``' instruction returns the quotient of its two operands.
7394
7395Arguments:
7396""""""""""
7397
Sanjay Patel16e9a292018-03-21 14:15:33 +00007398The two arguments to the '``fdiv``' instruction must be
Mandeep Singh Grang08238b72018-11-01 23:22:25 +00007399:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel16e9a292018-03-21 14:15:33 +00007400floating-point values. Both arguments must have identical types.
Sean Silvaf722b002012-12-07 10:36:55 +00007401
7402Semantics:
7403""""""""""
7404
Sanjay Patel81c70f82018-03-07 17:18:22 +00007405The value produced is the floating-point quotient of the two operands.
Sanjay Patelf60cf822018-03-20 17:05:19 +00007406This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang08238b72018-11-01 23:22:25 +00007407environment <floatenv>`.
Sean Silvaf722b002012-12-07 10:36:55 +00007408This instruction can also take any number of :ref:`fast-math
7409flags <fastmath>`, which are optimization hints to enable otherwise
Sanjay Patel81c70f82018-03-07 17:18:22 +00007410unsafe floating-point optimizations:
Sean Silvaf722b002012-12-07 10:36:55 +00007411
7412Example:
7413""""""""
7414
Renato Golin88ea57f2016-07-20 12:16:38 +00007415.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007416
Tim Northover6eaf8402014-06-13 14:24:23 +00007417 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvaf722b002012-12-07 10:36:55 +00007418
7419'``urem``' Instruction
7420^^^^^^^^^^^^^^^^^^^^^^
7421
7422Syntax:
7423"""""""
7424
7425::
7426
Tim Northover6eaf8402014-06-13 14:24:23 +00007427 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007428
7429Overview:
7430"""""""""
7431
7432The '``urem``' instruction returns the remainder from the unsigned
7433division of its two arguments.
7434
7435Arguments:
7436""""""""""
7437
7438The two arguments to the '``urem``' instruction must be
7439:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7440arguments must have identical types.
7441
7442Semantics:
7443""""""""""
7444
7445This instruction returns the unsigned integer *remainder* of a division.
7446This instruction always performs an unsigned division to get the
7447remainder.
7448
7449Note that unsigned integer remainder and signed integer remainder are
7450distinct operations; for signed integer remainder, use '``srem``'.
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00007451
Sanjay Pateldccf5a12017-03-09 16:20:52 +00007452Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00007453For vectors, if any element of the divisor is zero, the operation has
Sanjay Pateldccf5a12017-03-09 16:20:52 +00007454undefined behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00007455
7456Example:
7457""""""""
7458
Renato Golin88ea57f2016-07-20 12:16:38 +00007459.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007460
Tim Northover6eaf8402014-06-13 14:24:23 +00007461 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvaf722b002012-12-07 10:36:55 +00007462
7463'``srem``' Instruction
7464^^^^^^^^^^^^^^^^^^^^^^
7465
7466Syntax:
7467"""""""
7468
7469::
7470
Tim Northover6eaf8402014-06-13 14:24:23 +00007471 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007472
7473Overview:
7474"""""""""
7475
7476The '``srem``' instruction returns the remainder from the signed
7477division of its two operands. This instruction can also take
7478:ref:`vector <t_vector>` versions of the values in which case the elements
7479must be integers.
7480
7481Arguments:
7482""""""""""
7483
7484The two arguments to the '``srem``' instruction must be
7485:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7486arguments must have identical types.
7487
7488Semantics:
7489""""""""""
7490
7491This instruction returns the *remainder* of a division (where the result
7492is either zero or has the same sign as the dividend, ``op1``), not the
7493*modulo* operator (where the result is either zero or has the same sign
7494as the divisor, ``op2``) of a value. For more information about the
7495difference, see `The Math
7496Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
7497table of how this is implemented in various languages, please see
7498`Wikipedia: modulo
7499operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
7500
7501Note that signed integer remainder and unsigned integer remainder are
7502distinct operations; for unsigned integer remainder, use '``urem``'.
7503
Sanjay Pateldccf5a12017-03-09 16:20:52 +00007504Taking the remainder of a division by zero is undefined behavior.
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00007505For vectors, if any element of the divisor is zero, the operation has
Sanjay Pateldccf5a12017-03-09 16:20:52 +00007506undefined behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00007507Overflow also leads to undefined behavior; this is a rare case, but can
7508occur, for example, by taking the remainder of a 32-bit division of
7509-2147483648 by -1. (The remainder doesn't actually overflow, but this
7510rule lets srem be implemented using instructions that return both the
7511result of the division and the remainder.)
7512
7513Example:
7514""""""""
7515
Renato Golin88ea57f2016-07-20 12:16:38 +00007516.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007517
Tim Northover6eaf8402014-06-13 14:24:23 +00007518 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvaf722b002012-12-07 10:36:55 +00007519
7520.. _i_frem:
7521
7522'``frem``' Instruction
7523^^^^^^^^^^^^^^^^^^^^^^
7524
7525Syntax:
7526"""""""
7527
7528::
7529
Tim Northover6eaf8402014-06-13 14:24:23 +00007530 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007531
7532Overview:
7533"""""""""
7534
7535The '``frem``' instruction returns the remainder from the division of
7536its two operands.
7537
7538Arguments:
7539""""""""""
7540
Sanjay Patel16e9a292018-03-21 14:15:33 +00007541The two arguments to the '``frem``' instruction must be
Mandeep Singh Grang08238b72018-11-01 23:22:25 +00007542:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
Sanjay Patel16e9a292018-03-21 14:15:33 +00007543floating-point values. Both arguments must have identical types.
Sean Silvaf722b002012-12-07 10:36:55 +00007544
7545Semantics:
7546""""""""""
7547
Sanjay Patel81c70f82018-03-07 17:18:22 +00007548The value produced is the floating-point remainder of the two operands.
7549This is the same output as a libm '``fmod``' function, but without any
Mandeep Singh Grang08238b72018-11-01 23:22:25 +00007550possibility of setting ``errno``. The remainder has the same sign as the
Sanjay Patel81c70f82018-03-07 17:18:22 +00007551dividend.
Sanjay Patelf60cf822018-03-20 17:05:19 +00007552This instruction is assumed to execute in the default :ref:`floating-point
Mandeep Singh Grang08238b72018-11-01 23:22:25 +00007553environment <floatenv>`.
Sanjay Patel81c70f82018-03-07 17:18:22 +00007554This instruction can also take any number of :ref:`fast-math
7555flags <fastmath>`, which are optimization hints to enable otherwise
7556unsafe floating-point optimizations:
Sean Silvaf722b002012-12-07 10:36:55 +00007557
7558Example:
7559""""""""
7560
Renato Golin88ea57f2016-07-20 12:16:38 +00007561.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007562
Tim Northover6eaf8402014-06-13 14:24:23 +00007563 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvaf722b002012-12-07 10:36:55 +00007564
7565.. _bitwiseops:
7566
7567Bitwise Binary Operations
7568-------------------------
7569
7570Bitwise binary operators are used to do various forms of bit-twiddling
7571in a program. They are generally very efficient instructions and can
7572commonly be strength reduced from other instructions. They require two
7573operands of the same type, execute an operation on them, and produce a
7574single value. The resulting value is the same type as its operands.
7575
7576'``shl``' Instruction
7577^^^^^^^^^^^^^^^^^^^^^
7578
7579Syntax:
7580"""""""
7581
7582::
7583
Tim Northover6eaf8402014-06-13 14:24:23 +00007584 <result> = shl <ty> <op1>, <op2> ; yields ty:result
7585 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
7586 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
7587 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007588
7589Overview:
7590"""""""""
7591
7592The '``shl``' instruction returns the first operand shifted to the left
7593a specified number of bits.
7594
7595Arguments:
7596""""""""""
7597
7598Both arguments to the '``shl``' instruction must be the same
7599:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7600'``op2``' is treated as an unsigned value.
7601
7602Semantics:
7603""""""""""
7604
7605The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
7606where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silva586a7852015-04-17 21:58:55 +00007607dynamically) equal to or larger than the number of bits in
Nuno Lopesbac91bf2017-06-06 08:28:17 +00007608``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
7609If the arguments are vectors, each vector element of ``op1`` is shifted
7610by the corresponding shift amount in ``op2``.
Sean Silvaf722b002012-12-07 10:36:55 +00007611
Nuno Lopesbac91bf2017-06-06 08:28:17 +00007612If the ``nuw`` keyword is present, then the shift produces a poison
7613value if it shifts out any non-zero bits.
7614If the ``nsw`` keyword is present, then the shift produces a poison
Sanjay Patel3d9d2072018-06-01 15:21:14 +00007615value if it shifts out any bits that disagree with the resultant sign bit.
Sean Silvaf722b002012-12-07 10:36:55 +00007616
7617Example:
7618""""""""
7619
Renato Golin88ea57f2016-07-20 12:16:38 +00007620.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007621
Tim Northover6eaf8402014-06-13 14:24:23 +00007622 <result> = shl i32 4, %var ; yields i32: 4 << %var
7623 <result> = shl i32 4, 2 ; yields i32: 16
7624 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvaf722b002012-12-07 10:36:55 +00007625 <result> = shl i32 1, 32 ; undefined
7626 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
7627
7628'``lshr``' Instruction
7629^^^^^^^^^^^^^^^^^^^^^^
7630
7631Syntax:
7632"""""""
7633
7634::
7635
Tim Northover6eaf8402014-06-13 14:24:23 +00007636 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
7637 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007638
7639Overview:
7640"""""""""
7641
7642The '``lshr``' instruction (logical shift right) returns the first
7643operand shifted to the right a specified number of bits with zero fill.
7644
7645Arguments:
7646""""""""""
7647
7648Both arguments to the '``lshr``' instruction must be the same
7649:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7650'``op2``' is treated as an unsigned value.
7651
7652Semantics:
7653""""""""""
7654
7655This instruction always performs a logical shift right operation. The
7656most significant bits of the result will be filled with zero bits after
7657the shift. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesbac91bf2017-06-06 08:28:17 +00007658than the number of bits in ``op1``, this instruction returns a :ref:`poison
7659value <poisonvalues>`. If the arguments are vectors, each vector element
7660of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvaf722b002012-12-07 10:36:55 +00007661
7662If the ``exact`` keyword is present, the result value of the ``lshr`` is
Nuno Lopesbac91bf2017-06-06 08:28:17 +00007663a poison value if any of the bits shifted out are non-zero.
Sean Silvaf722b002012-12-07 10:36:55 +00007664
7665Example:
7666""""""""
7667
Renato Golin88ea57f2016-07-20 12:16:38 +00007668.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007669
Tim Northover6eaf8402014-06-13 14:24:23 +00007670 <result> = lshr i32 4, 1 ; yields i32:result = 2
7671 <result> = lshr i32 4, 2 ; yields i32:result = 1
7672 <result> = lshr i8 4, 3 ; yields i8:result = 0
7673 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00007674 <result> = lshr i32 1, 32 ; undefined
7675 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
7676
7677'``ashr``' Instruction
7678^^^^^^^^^^^^^^^^^^^^^^
7679
7680Syntax:
7681"""""""
7682
7683::
7684
Tim Northover6eaf8402014-06-13 14:24:23 +00007685 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
7686 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007687
7688Overview:
7689"""""""""
7690
7691The '``ashr``' instruction (arithmetic shift right) returns the first
7692operand shifted to the right a specified number of bits with sign
7693extension.
7694
7695Arguments:
7696""""""""""
7697
7698Both arguments to the '``ashr``' instruction must be the same
7699:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
7700'``op2``' is treated as an unsigned value.
7701
7702Semantics:
7703""""""""""
7704
7705This instruction always performs an arithmetic shift right operation,
7706The most significant bits of the result will be filled with the sign bit
7707of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
Nuno Lopesbac91bf2017-06-06 08:28:17 +00007708than the number of bits in ``op1``, this instruction returns a :ref:`poison
7709value <poisonvalues>`. If the arguments are vectors, each vector element
7710of ``op1`` is shifted by the corresponding shift amount in ``op2``.
Sean Silvaf722b002012-12-07 10:36:55 +00007711
7712If the ``exact`` keyword is present, the result value of the ``ashr`` is
Nuno Lopesbac91bf2017-06-06 08:28:17 +00007713a poison value if any of the bits shifted out are non-zero.
Sean Silvaf722b002012-12-07 10:36:55 +00007714
7715Example:
7716""""""""
7717
Renato Golin88ea57f2016-07-20 12:16:38 +00007718.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007719
Tim Northover6eaf8402014-06-13 14:24:23 +00007720 <result> = ashr i32 4, 1 ; yields i32:result = 2
7721 <result> = ashr i32 4, 2 ; yields i32:result = 1
7722 <result> = ashr i8 4, 3 ; yields i8:result = 0
7723 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvaf722b002012-12-07 10:36:55 +00007724 <result> = ashr i32 1, 32 ; undefined
7725 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
7726
7727'``and``' Instruction
7728^^^^^^^^^^^^^^^^^^^^^
7729
7730Syntax:
7731"""""""
7732
7733::
7734
Tim Northover6eaf8402014-06-13 14:24:23 +00007735 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007736
7737Overview:
7738"""""""""
7739
7740The '``and``' instruction returns the bitwise logical and of its two
7741operands.
7742
7743Arguments:
7744""""""""""
7745
7746The two arguments to the '``and``' instruction must be
7747:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7748arguments must have identical types.
7749
7750Semantics:
7751""""""""""
7752
7753The truth table used for the '``and``' instruction is:
7754
7755+-----+-----+-----+
7756| In0 | In1 | Out |
7757+-----+-----+-----+
7758| 0 | 0 | 0 |
7759+-----+-----+-----+
7760| 0 | 1 | 0 |
7761+-----+-----+-----+
7762| 1 | 0 | 0 |
7763+-----+-----+-----+
7764| 1 | 1 | 1 |
7765+-----+-----+-----+
7766
7767Example:
7768""""""""
7769
Renato Golin88ea57f2016-07-20 12:16:38 +00007770.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007771
Tim Northover6eaf8402014-06-13 14:24:23 +00007772 <result> = and i32 4, %var ; yields i32:result = 4 & %var
7773 <result> = and i32 15, 40 ; yields i32:result = 8
7774 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvaf722b002012-12-07 10:36:55 +00007775
7776'``or``' Instruction
7777^^^^^^^^^^^^^^^^^^^^
7778
7779Syntax:
7780"""""""
7781
7782::
7783
Tim Northover6eaf8402014-06-13 14:24:23 +00007784 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007785
7786Overview:
7787"""""""""
7788
7789The '``or``' instruction returns the bitwise logical inclusive or of its
7790two operands.
7791
7792Arguments:
7793""""""""""
7794
7795The two arguments to the '``or``' instruction must be
7796:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7797arguments must have identical types.
7798
7799Semantics:
7800""""""""""
7801
7802The truth table used for the '``or``' instruction is:
7803
7804+-----+-----+-----+
7805| In0 | In1 | Out |
7806+-----+-----+-----+
7807| 0 | 0 | 0 |
7808+-----+-----+-----+
7809| 0 | 1 | 1 |
7810+-----+-----+-----+
7811| 1 | 0 | 1 |
7812+-----+-----+-----+
7813| 1 | 1 | 1 |
7814+-----+-----+-----+
7815
7816Example:
7817""""""""
7818
7819::
7820
Tim Northover6eaf8402014-06-13 14:24:23 +00007821 <result> = or i32 4, %var ; yields i32:result = 4 | %var
7822 <result> = or i32 15, 40 ; yields i32:result = 47
7823 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvaf722b002012-12-07 10:36:55 +00007824
7825'``xor``' Instruction
7826^^^^^^^^^^^^^^^^^^^^^
7827
7828Syntax:
7829"""""""
7830
7831::
7832
Tim Northover6eaf8402014-06-13 14:24:23 +00007833 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvaf722b002012-12-07 10:36:55 +00007834
7835Overview:
7836"""""""""
7837
7838The '``xor``' instruction returns the bitwise logical exclusive or of
7839its two operands. The ``xor`` is used to implement the "one's
7840complement" operation, which is the "~" operator in C.
7841
7842Arguments:
7843""""""""""
7844
7845The two arguments to the '``xor``' instruction must be
7846:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
7847arguments must have identical types.
7848
7849Semantics:
7850""""""""""
7851
7852The truth table used for the '``xor``' instruction is:
7853
7854+-----+-----+-----+
7855| In0 | In1 | Out |
7856+-----+-----+-----+
7857| 0 | 0 | 0 |
7858+-----+-----+-----+
7859| 0 | 1 | 1 |
7860+-----+-----+-----+
7861| 1 | 0 | 1 |
7862+-----+-----+-----+
7863| 1 | 1 | 0 |
7864+-----+-----+-----+
7865
7866Example:
7867""""""""
7868
Renato Golin88ea57f2016-07-20 12:16:38 +00007869.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007870
Tim Northover6eaf8402014-06-13 14:24:23 +00007871 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
7872 <result> = xor i32 15, 40 ; yields i32:result = 39
7873 <result> = xor i32 4, 8 ; yields i32:result = 12
7874 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvaf722b002012-12-07 10:36:55 +00007875
7876Vector Operations
7877-----------------
7878
7879LLVM supports several instructions to represent vector operations in a
7880target-independent manner. These instructions cover the element-access
7881and vector-specific operations needed to process vectors effectively.
7882While LLVM does directly support these vector operations, many
7883sophisticated algorithms will want to use target-specific intrinsics to
7884take full advantage of a specific target.
7885
7886.. _i_extractelement:
7887
7888'``extractelement``' Instruction
7889^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7890
7891Syntax:
7892"""""""
7893
7894::
7895
Michael J. Spencerd4b4f2d2014-05-01 22:12:39 +00007896 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvaf722b002012-12-07 10:36:55 +00007897
7898Overview:
7899"""""""""
7900
7901The '``extractelement``' instruction extracts a single scalar element
7902from a vector at a specified index.
7903
7904Arguments:
7905""""""""""
7906
7907The first operand of an '``extractelement``' instruction is a value of
7908:ref:`vector <t_vector>` type. The second operand is an index indicating
7909the position from which to extract the element. The index may be a
Michael J. Spencerd4b4f2d2014-05-01 22:12:39 +00007910variable of any integer type.
Sean Silvaf722b002012-12-07 10:36:55 +00007911
7912Semantics:
7913""""""""""
7914
7915The result is a scalar of the same type as the element type of ``val``.
7916Its value is the value at position ``idx`` of ``val``. If ``idx``
Eli Friedman0d3cb772018-06-08 21:23:09 +00007917exceeds the length of ``val``, the result is a
7918:ref:`poison value <poisonvalues>`.
Sean Silvaf722b002012-12-07 10:36:55 +00007919
7920Example:
7921""""""""
7922
Renato Golin88ea57f2016-07-20 12:16:38 +00007923.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007924
7925 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
7926
7927.. _i_insertelement:
7928
7929'``insertelement``' Instruction
7930^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7931
7932Syntax:
7933"""""""
7934
7935::
7936
Michael J. Spencerd4b4f2d2014-05-01 22:12:39 +00007937 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvaf722b002012-12-07 10:36:55 +00007938
7939Overview:
7940"""""""""
7941
7942The '``insertelement``' instruction inserts a scalar element into a
7943vector at a specified index.
7944
7945Arguments:
7946""""""""""
7947
7948The first operand of an '``insertelement``' instruction is a value of
7949:ref:`vector <t_vector>` type. The second operand is a scalar value whose
7950type must equal the element type of the first operand. The third operand
7951is an index indicating the position at which to insert the value. The
Michael J. Spencerd4b4f2d2014-05-01 22:12:39 +00007952index may be a variable of any integer type.
Sean Silvaf722b002012-12-07 10:36:55 +00007953
7954Semantics:
7955""""""""""
7956
7957The result is a vector of the same type as ``val``. Its element values
7958are those of ``val`` except at position ``idx``, where it gets the value
Eli Friedman0d3cb772018-06-08 21:23:09 +00007959``elt``. If ``idx`` exceeds the length of ``val``, the result
7960is a :ref:`poison value <poisonvalues>`.
Sean Silvaf722b002012-12-07 10:36:55 +00007961
7962Example:
7963""""""""
7964
Renato Golin88ea57f2016-07-20 12:16:38 +00007965.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00007966
7967 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
7968
7969.. _i_shufflevector:
7970
7971'``shufflevector``' Instruction
7972^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7973
7974Syntax:
7975"""""""
7976
7977::
7978
7979 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
7980
7981Overview:
7982"""""""""
7983
7984The '``shufflevector``' instruction constructs a permutation of elements
7985from two input vectors, returning a vector with the same element type as
7986the input and length that is the same as the shuffle mask.
7987
7988Arguments:
7989""""""""""
7990
7991The first two operands of a '``shufflevector``' instruction are vectors
7992with the same type. The third argument is a shuffle mask whose element
7993type is always 'i32'. The result of the instruction is a vector whose
7994length is the same as the shuffle mask and whose element type is the
7995same as the element type of the first two operands.
7996
7997The shuffle mask operand is required to be a constant vector with either
7998constant integer or undef values.
7999
8000Semantics:
8001""""""""""
8002
8003The elements of the two input vectors are numbered from left to right
8004across both of the vectors. The shuffle mask operand specifies, for each
8005element of the result vector, which element of the two input vectors the
Sanjay Patel2c5adb12017-04-12 18:39:53 +00008006result element gets. If the shuffle mask is undef, the result vector is
8007undef. If any element of the mask operand is undef, that element of the
8008result is undef. If the shuffle mask selects an undef element from one
8009of the input vectors, the resulting element is undef.
Sean Silvaf722b002012-12-07 10:36:55 +00008010
8011Example:
8012""""""""
8013
Renato Golin88ea57f2016-07-20 12:16:38 +00008014.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00008015
8016 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
8017 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
8018 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
8019 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
8020 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
8021 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
8022 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
8023 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
8024
8025Aggregate Operations
8026--------------------
8027
8028LLVM supports several instructions for working with
8029:ref:`aggregate <t_aggregate>` values.
8030
8031.. _i_extractvalue:
8032
8033'``extractvalue``' Instruction
8034^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8035
8036Syntax:
8037"""""""
8038
8039::
8040
8041 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
8042
8043Overview:
8044"""""""""
8045
8046The '``extractvalue``' instruction extracts the value of a member field
8047from an :ref:`aggregate <t_aggregate>` value.
8048
8049Arguments:
8050""""""""""
8051
8052The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robison2c269282015-10-14 19:10:45 +00008053:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvaf722b002012-12-07 10:36:55 +00008054constant indices to specify which value to extract in a similar manner
8055as indices in a '``getelementptr``' instruction.
8056
8057The major differences to ``getelementptr`` indexing are:
8058
8059- Since the value being indexed is not a pointer, the first index is
8060 omitted and assumed to be zero.
8061- At least one index must be specified.
8062- Not only struct indices but also array indices must be in bounds.
8063
8064Semantics:
8065""""""""""
8066
8067The result is the value at the position in the aggregate specified by
8068the index operands.
8069
8070Example:
8071""""""""
8072
Renato Golin88ea57f2016-07-20 12:16:38 +00008073.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00008074
8075 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
8076
8077.. _i_insertvalue:
8078
8079'``insertvalue``' Instruction
8080^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8081
8082Syntax:
8083"""""""
8084
8085::
8086
8087 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
8088
8089Overview:
8090"""""""""
8091
8092The '``insertvalue``' instruction inserts a value into a member field in
8093an :ref:`aggregate <t_aggregate>` value.
8094
8095Arguments:
8096""""""""""
8097
8098The first operand of an '``insertvalue``' instruction is a value of
8099:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
8100a first-class value to insert. The following operands are constant
8101indices indicating the position at which to insert the value in a
8102similar manner as indices in a '``extractvalue``' instruction. The value
8103to insert must have the same type as the value identified by the
8104indices.
8105
8106Semantics:
8107""""""""""
8108
8109The result is an aggregate of the same type as ``val``. Its value is
8110that of ``val`` except that the value at the position specified by the
8111indices is that of ``elt``.
8112
8113Example:
8114""""""""
8115
8116.. code-block:: llvm
8117
8118 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
8119 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewc5bdff02014-09-08 21:19:46 +00008120 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvaf722b002012-12-07 10:36:55 +00008121
8122.. _memoryops:
8123
8124Memory Access and Addressing Operations
8125---------------------------------------
8126
8127A key design point of an SSA-based representation is how it represents
8128memory. In LLVM, no memory locations are in SSA form, which makes things
8129very simple. This section describes how to read, write, and allocate
8130memory in LLVM.
8131
8132.. _i_alloca:
8133
8134'``alloca``' Instruction
8135^^^^^^^^^^^^^^^^^^^^^^^^
8136
8137Syntax:
8138"""""""
8139
8140::
8141
Matt Arsenaulte0b3c332017-04-10 22:27:50 +00008142 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)] ; yields type addrspace(num)*:result
Sean Silvaf722b002012-12-07 10:36:55 +00008143
8144Overview:
8145"""""""""
8146
8147The '``alloca``' instruction allocates memory on the stack frame of the
8148currently executing function, to be automatically released when this
8149function returns to its caller. The object is always allocated in the
Matt Arsenaulte0b3c332017-04-10 22:27:50 +00008150address space for allocas indicated in the datalayout.
Sean Silvaf722b002012-12-07 10:36:55 +00008151
8152Arguments:
8153""""""""""
8154
8155The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
8156bytes of memory on the runtime stack, returning a pointer of the
8157appropriate type to the program. If "NumElements" is specified, it is
8158the number of elements allocated, otherwise "NumElements" is defaulted
8159to be one. If a constant alignment is specified, the value result of the
Reid Klecknercbebdef2014-07-15 01:16:09 +00008160allocation is guaranteed to be aligned to at least that boundary. The
8161alignment may not be greater than ``1 << 29``. If not specified, or if
8162zero, the target can choose to align the allocation on any convenient
8163boundary compatible with the type.
Sean Silvaf722b002012-12-07 10:36:55 +00008164
8165'``type``' may be any sized type.
8166
8167Semantics:
8168""""""""""
8169
8170Memory is allocated; a pointer is returned. The operation is undefined
8171if there is insufficient stack space for the allocation. '``alloca``'d
8172memory is automatically released when the function returns. The
8173'``alloca``' instruction is commonly used to represent automatic
8174variables that must have an address available. When the function returns
8175(either with the ``ret`` or ``resume`` instructions), the memory is
Eli Friedmanca521172018-07-11 00:02:01 +00008176reclaimed. Allocating zero bytes is legal, but the returned pointer may not
8177be unique. The order in which memory is allocated (ie., which way the stack
8178grows) is not specified.
Sean Silvaf722b002012-12-07 10:36:55 +00008179
8180Example:
8181""""""""
8182
8183.. code-block:: llvm
8184
Tim Northover6eaf8402014-06-13 14:24:23 +00008185 %ptr = alloca i32 ; yields i32*:ptr
8186 %ptr = alloca i32, i32 4 ; yields i32*:ptr
8187 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
8188 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvaf722b002012-12-07 10:36:55 +00008189
8190.. _i_load:
8191
8192'``load``' Instruction
8193^^^^^^^^^^^^^^^^^^^^^^
8194
8195Syntax:
8196"""""""
8197
8198::
8199
Artur Pilipenkobe2b2c32015-09-28 17:41:08 +00008200 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Konstantin Zhuravlyov8f856852017-07-11 22:23:00 +00008201 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvaf722b002012-12-07 10:36:55 +00008202 !<index> = !{ i32 1 }
Artur Pilipenkoe022bf62015-09-18 12:07:10 +00008203 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkobe2b2c32015-09-28 17:41:08 +00008204 !<align_node> = !{ i64 <value_alignment> }
Sean Silvaf722b002012-12-07 10:36:55 +00008205
8206Overview:
8207"""""""""
8208
8209The '``load``' instruction is used to read from memory.
8210
8211Arguments:
8212""""""""""
8213
Sanjoy Dasda6ed232016-06-01 16:13:10 +00008214The argument to the ``load`` instruction specifies the memory address from which
8215to load. The type specified must be a :ref:`first class <t_firstclass>` type of
8216known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
8217the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
8218modify the number or order of execution of this ``load`` with other
8219:ref:`volatile operations <volatile>`.
Sean Silvaf722b002012-12-07 10:36:55 +00008220
JF Bastien7e54c382015-12-17 22:09:19 +00008221If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyov8f856852017-07-11 22:23:00 +00008222<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8223``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
8224Atomic loads produce :ref:`defined <memmodel>` results when they may see
8225multiple atomic stores. The type of the pointee must be an integer, pointer, or
8226floating-point type whose bit width is a power of two greater than or equal to
8227eight and less than or equal to a target-specific size limit. ``align`` must be
8228explicitly specified on atomic loads, and the load has undefined behavior if the
8229alignment is not set to a value which is at least the size in bytes of the
JF Bastien7e54c382015-12-17 22:09:19 +00008230pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvaf722b002012-12-07 10:36:55 +00008231
8232The optional constant ``align`` argument specifies the alignment of the
8233operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00008234or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00008235alignment for the target. It is the responsibility of the code emitter
8236to ensure that the alignment information is correct. Overestimating the
8237alignment results in undefined behavior. Underestimating the alignment
Reid Klecknercbebdef2014-07-15 01:16:09 +00008238may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenaultce9eebb2016-06-16 16:33:41 +00008239maximum possible alignment is ``1 << 29``. An alignment value higher
8240than the size of the loaded type implies memory up to the alignment
8241value bytes can be safely loaded without trapping in the default
8242address space. Access of the high bytes can interfere with debugging
8243tools, so should not be accessed if the function has the
8244``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvaf722b002012-12-07 10:36:55 +00008245
8246The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00008247metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00008248``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00008249metadata on the instruction tells the optimizer and code generator
Sean Silvaf722b002012-12-07 10:36:55 +00008250that this load is not expected to be reused in the cache. The code
8251generator may select special instructions to save cache bandwidth, such
8252as the ``MOVNT`` instruction on x86.
8253
8254The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00008255metadata name ``<index>`` corresponding to a metadata node with no
Geoff Berryeb8a4ab2016-08-31 17:39:21 +00008256entries. If a load instruction tagged with the ``!invariant.load``
8257metadata is executed, the optimizer may assume the memory location
8258referenced by the load contains the same value at all points in the
Eli Friedman48ef58e2018-07-17 20:38:11 +00008259program where the memory location is known to be dereferenceable;
8260otherwise, the behavior is undefined.
Sean Silvaf722b002012-12-07 10:36:55 +00008261
Piotr Padlewskif3abce42015-09-15 18:32:14 +00008262The optional ``!invariant.group`` metadata must reference a single metadata name
Piotr Padlewski6ebd0542018-05-18 23:53:46 +00008263 ``<index>`` corresponding to a metadata node with no entries.
8264 See ``invariant.group`` metadata.
Piotr Padlewskif3abce42015-09-15 18:32:14 +00008265
Philip Reames90f3f152014-10-20 22:40:55 +00008266The optional ``!nonnull`` metadata must reference a single
8267metadata name ``<index>`` corresponding to a metadata node with no
8268entries. The existence of the ``!nonnull`` metadata on the
8269instruction tells the optimizer that the value loaded is known to
Eli Friedman48ef58e2018-07-17 20:38:11 +00008270never be null. If the value is null at runtime, the behavior is undefined.
8271This is analogous to the ``nonnull`` attribute on parameters and return
8272values. This metadata can only be applied to loads of a pointer type.
Philip Reames90f3f152014-10-20 22:40:55 +00008273
Artur Pilipenkoe022bf62015-09-18 12:07:10 +00008274The optional ``!dereferenceable`` metadata must reference a single metadata
8275name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva1709c2b2015-08-06 22:56:24 +00008276entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Das4d88c3e2015-05-19 20:10:19 +00008277tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva1709c2b2015-08-06 22:56:24 +00008278The number of bytes known to be dereferenceable is specified by the integer
8279value in the metadata node. This is analogous to the ''dereferenceable''
8280attribute on parameters and return values. This metadata can only be applied
Sanjoy Das4d88c3e2015-05-19 20:10:19 +00008281to loads of a pointer type.
8282
8283The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenkoe022bf62015-09-18 12:07:10 +00008284metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
8285``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Das4d88c3e2015-05-19 20:10:19 +00008286instruction tells the optimizer that the value loaded is known to be either
8287dereferenceable or null.
Sean Silva1709c2b2015-08-06 22:56:24 +00008288The number of bytes known to be dereferenceable is specified by the integer
8289value in the metadata node. This is analogous to the ''dereferenceable_or_null''
8290attribute on parameters and return values. This metadata can only be applied
Sanjoy Das4d88c3e2015-05-19 20:10:19 +00008291to loads of a pointer type.
8292
Artur Pilipenkobe2b2c32015-09-28 17:41:08 +00008293The optional ``!align`` metadata must reference a single metadata name
8294``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
8295The existence of the ``!align`` metadata on the instruction tells the
8296optimizer that the value loaded is known to be aligned to a boundary specified
8297by the integer value in the metadata node. The alignment must be a power of 2.
8298This is analogous to the ''align'' attribute on parameters and return values.
Eli Friedman48ef58e2018-07-17 20:38:11 +00008299This metadata can only be applied to loads of a pointer type. If the returned
8300value is not appropriately aligned at runtime, the behavior is undefined.
Artur Pilipenkobe2b2c32015-09-28 17:41:08 +00008301
Sean Silvaf722b002012-12-07 10:36:55 +00008302Semantics:
8303""""""""""
8304
8305The location of memory pointed to is loaded. If the value being loaded
8306is of scalar type then the number of bytes read does not exceed the
8307minimum number of bytes needed to hold all bits of the type. For
8308example, loading an ``i24`` reads at most three bytes. When loading a
8309value of a type like ``i20`` with a size that is not an integral number
8310of bytes, the result is undefined if the value was not originally
8311written using a store of the same type.
8312
8313Examples:
8314"""""""""
8315
8316.. code-block:: llvm
8317
Tim Northover6eaf8402014-06-13 14:24:23 +00008318 %ptr = alloca i32 ; yields i32*:ptr
8319 store i32 3, i32* %ptr ; yields void
David Blaikie0effae82015-03-04 22:06:14 +00008320 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvaf722b002012-12-07 10:36:55 +00008321
8322.. _i_store:
8323
8324'``store``' Instruction
8325^^^^^^^^^^^^^^^^^^^^^^^
8326
8327Syntax:
8328"""""""
8329
8330::
8331
Piotr Padlewskif3abce42015-09-15 18:32:14 +00008332 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
Konstantin Zhuravlyov8f856852017-07-11 22:23:00 +00008333 store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvaf722b002012-12-07 10:36:55 +00008334
8335Overview:
8336"""""""""
8337
8338The '``store``' instruction is used to write to memory.
8339
8340Arguments:
8341""""""""""
8342
Sanjoy Dasda6ed232016-06-01 16:13:10 +00008343There are two arguments to the ``store`` instruction: a value to store and an
8344address at which to store it. The type of the ``<pointer>`` operand must be a
8345pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
8346operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
8347allowed to modify the number or order of execution of this ``store`` with other
8348:ref:`volatile operations <volatile>`. Only values of :ref:`first class
8349<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
8350structural type <t_opaque>`) can be stored.
Sean Silvaf722b002012-12-07 10:36:55 +00008351
JF Bastien7e54c382015-12-17 22:09:19 +00008352If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
Konstantin Zhuravlyov8f856852017-07-11 22:23:00 +00008353<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
8354``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
8355Atomic loads produce :ref:`defined <memmodel>` results when they may see
8356multiple atomic stores. The type of the pointee must be an integer, pointer, or
8357floating-point type whose bit width is a power of two greater than or equal to
8358eight and less than or equal to a target-specific size limit. ``align`` must be
8359explicitly specified on atomic stores, and the store has undefined behavior if
8360the alignment is not set to a value which is at least the size in bytes of the
JF Bastien7e54c382015-12-17 22:09:19 +00008361pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvaf722b002012-12-07 10:36:55 +00008362
Eli Bendersky8952d902013-04-17 17:17:20 +00008363The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00008364operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00008365or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00008366alignment for the target. It is the responsibility of the code emitter
8367to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00008368alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00008369alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenaultce9eebb2016-06-16 16:33:41 +00008370safe. The maximum possible alignment is ``1 << 29``. An alignment
8371value higher than the size of the stored type implies memory up to the
8372alignment value bytes can be stored to without trapping in the default
8373address space. Storing to the higher bytes however may result in data
8374races if another thread can access the same address. Introducing a
8375data race is not allowed. Storing to the extra bytes is not allowed
8376even in situations where a data race is known to not exist if the
8377function has the ``sanitize_address`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +00008378
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00008379The optional ``!nontemporal`` metadata must reference a single metadata
Eli Bendersky8952d902013-04-17 17:17:20 +00008380name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00008381value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00008382tells the optimizer and code generator that this load is not expected to
8383be reused in the cache. The code generator may select special
JF Bastien8d4101c2016-01-13 04:52:26 +00008384instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvaf722b002012-12-07 10:36:55 +00008385x86.
8386
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00008387The optional ``!invariant.group`` metadata must reference a
Piotr Padlewskif3abce42015-09-15 18:32:14 +00008388single metadata name ``<index>``. See ``invariant.group`` metadata.
8389
Sean Silvaf722b002012-12-07 10:36:55 +00008390Semantics:
8391""""""""""
8392
Eli Bendersky8952d902013-04-17 17:17:20 +00008393The contents of memory are updated to contain ``<value>`` at the
8394location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00008395of scalar type then the number of bytes written does not exceed the
8396minimum number of bytes needed to hold all bits of the type. For
8397example, storing an ``i24`` writes at most three bytes. When writing a
8398value of a type like ``i20`` with a size that is not an integral number
8399of bytes, it is unspecified what happens to the extra bits that do not
8400belong to the type, but they will typically be overwritten.
8401
8402Example:
8403""""""""
8404
8405.. code-block:: llvm
8406
Tim Northover6eaf8402014-06-13 14:24:23 +00008407 %ptr = alloca i32 ; yields i32*:ptr
8408 store i32 3, i32* %ptr ; yields void
Nick Lewyckyad12f712015-08-11 01:05:16 +00008409 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvaf722b002012-12-07 10:36:55 +00008410
8411.. _i_fence:
8412
8413'``fence``' Instruction
8414^^^^^^^^^^^^^^^^^^^^^^^
8415
8416Syntax:
8417"""""""
8418
8419::
8420
Konstantin Zhuravlyov8f856852017-07-11 22:23:00 +00008421 fence [syncscope("<target-scope>")] <ordering> ; yields void
Sean Silvaf722b002012-12-07 10:36:55 +00008422
8423Overview:
8424"""""""""
8425
8426The '``fence``' instruction is used to introduce happens-before edges
8427between operations.
8428
8429Arguments:
8430""""""""""
8431
8432'``fence``' instructions take an :ref:`ordering <ordering>` argument which
8433defines what *synchronizes-with* edges they add. They can only be given
8434``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
8435
8436Semantics:
8437""""""""""
8438
8439A fence A which has (at least) ``release`` ordering semantics
8440*synchronizes with* a fence B with (at least) ``acquire`` ordering
8441semantics if and only if there exist atomic operations X and Y, both
8442operating on some atomic object M, such that A is sequenced before X, X
8443modifies M (either directly or through some side effect of a sequence
8444headed by X), Y is sequenced before B, and Y observes M. This provides a
8445*happens-before* dependency between A and B. Rather than an explicit
8446``fence``, one (but not both) of the atomic operations X or Y might
8447provide a ``release`` or ``acquire`` (resp.) ordering constraint and
8448still *synchronize-with* the explicit ``fence`` and establish the
8449*happens-before* edge.
8450
8451A ``fence`` which has ``seq_cst`` ordering, in addition to having both
8452``acquire`` and ``release`` semantics specified above, participates in
8453the global program order of other ``seq_cst`` operations and/or fences.
8454
Konstantin Zhuravlyov8f856852017-07-11 22:23:00 +00008455A ``fence`` instruction can also take an optional
8456":ref:`syncscope <syncscope>`" argument.
Sean Silvaf722b002012-12-07 10:36:55 +00008457
8458Example:
8459""""""""
8460
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00008461.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00008462
Konstantin Zhuravlyov8f856852017-07-11 22:23:00 +00008463 fence acquire ; yields void
8464 fence syncscope("singlethread") seq_cst ; yields void
8465 fence syncscope("agent") seq_cst ; yields void
Sean Silvaf722b002012-12-07 10:36:55 +00008466
8467.. _i_cmpxchg:
8468
8469'``cmpxchg``' Instruction
8470^^^^^^^^^^^^^^^^^^^^^^^^^
8471
8472Syntax:
8473"""""""
8474
8475::
8476
Konstantin Zhuravlyov8f856852017-07-11 22:23:00 +00008477 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvaf722b002012-12-07 10:36:55 +00008478
8479Overview:
8480"""""""""
8481
8482The '``cmpxchg``' instruction is used to atomically modify memory. It
8483loads a value in memory and compares it to a given value. If they are
Tim Northover8f2a85e2014-06-13 14:24:07 +00008484equal, it tries to store a new value into the memory.
Sean Silvaf722b002012-12-07 10:36:55 +00008485
8486Arguments:
8487""""""""""
8488
8489There are three arguments to the '``cmpxchg``' instruction: an address
8490to operate on, a value to compare to the value currently be at that
8491address, and a new value to place at that address if the compared values
Philip Reames3dbdebc2016-02-19 00:06:41 +00008492are equal. The type of '<cmp>' must be an integer or pointer type whose
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00008493bit width is a power of two greater than or equal to eight and less
Philip Reames3dbdebc2016-02-19 00:06:41 +00008494than or equal to a target-specific size limit. '<cmp>' and '<new>' must
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00008495have the same type, and the type of '<pointer>' must be a pointer to
8496that type. If the ``cmpxchg`` is marked as ``volatile``, then the
Philip Reames3dbdebc2016-02-19 00:06:41 +00008497optimizer is not allowed to modify the number or order of execution of
8498this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvaf722b002012-12-07 10:36:55 +00008499
Tim Northoverca396e32014-03-11 10:48:52 +00008500The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northoverab47c152014-06-13 14:24:16 +00008501``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
8502must be at least ``monotonic``, the ordering constraint on failure must be no
8503stronger than that on success, and the failure ordering cannot be either
8504``release`` or ``acq_rel``.
Sean Silvaf722b002012-12-07 10:36:55 +00008505
Konstantin Zhuravlyov8f856852017-07-11 22:23:00 +00008506A ``cmpxchg`` instruction can also take an optional
8507":ref:`syncscope <syncscope>`" argument.
Sean Silvaf722b002012-12-07 10:36:55 +00008508
8509The pointer passed into cmpxchg must have alignment greater than or
8510equal to the size in memory of the operand.
8511
8512Semantics:
8513""""""""""
8514
Tim Northover8f2a85e2014-06-13 14:24:07 +00008515The contents of memory at the location specified by the '``<pointer>``' operand
Matthias Braun21784bb2017-08-09 22:22:04 +00008516is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
8517written to the location. The original value at the location is returned,
8518together with a flag indicating success (true) or failure (false).
Tim Northover8f2a85e2014-06-13 14:24:07 +00008519
8520If the cmpxchg operation is marked as ``weak`` then a spurious failure is
8521permitted: the operation may not write ``<new>`` even if the comparison
8522matched.
8523
8524If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
8525if the value loaded equals ``cmp``.
Sean Silvaf722b002012-12-07 10:36:55 +00008526
Tim Northoverca396e32014-03-11 10:48:52 +00008527A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
8528identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
8529load with an ordering parameter determined the second ordering parameter.
Sean Silvaf722b002012-12-07 10:36:55 +00008530
8531Example:
8532""""""""
8533
8534.. code-block:: llvm
8535
8536 entry:
Duncan P. N. Exon Smithe7a916a2016-02-07 05:06:35 +00008537 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvaf722b002012-12-07 10:36:55 +00008538 br label %loop
8539
8540 loop:
Duncan P. N. Exon Smithe7a916a2016-02-07 05:06:35 +00008541 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvaf722b002012-12-07 10:36:55 +00008542 %squared = mul i32 %cmp, %cmp
Tim Northover6eaf8402014-06-13 14:24:23 +00008543 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover8f2a85e2014-06-13 14:24:07 +00008544 %value_loaded = extractvalue { i32, i1 } %val_success, 0
8545 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvaf722b002012-12-07 10:36:55 +00008546 br i1 %success, label %done, label %loop
8547
8548 done:
8549 ...
8550
8551.. _i_atomicrmw:
8552
8553'``atomicrmw``' Instruction
8554^^^^^^^^^^^^^^^^^^^^^^^^^^^
8555
8556Syntax:
8557"""""""
8558
8559::
8560
Konstantin Zhuravlyov8f856852017-07-11 22:23:00 +00008561 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering> ; yields ty
Sean Silvaf722b002012-12-07 10:36:55 +00008562
8563Overview:
8564"""""""""
8565
8566The '``atomicrmw``' instruction is used to atomically modify memory.
8567
8568Arguments:
8569""""""""""
8570
8571There are three arguments to the '``atomicrmw``' instruction: an
8572operation to apply, an address whose value to modify, an argument to the
8573operation. The operation must be one of the following keywords:
8574
8575- xchg
8576- add
8577- sub
8578- and
8579- nand
8580- or
8581- xor
8582- max
8583- min
8584- umax
8585- umin
8586
8587The type of '<value>' must be an integer type whose bit width is a power
8588of two greater than or equal to eight and less than or equal to a
8589target-specific size limit. The type of the '``<pointer>``' operand must
8590be a pointer to that type. If the ``atomicrmw`` is marked as
8591``volatile``, then the optimizer is not allowed to modify the number or
8592order of execution of this ``atomicrmw`` with other :ref:`volatile
8593operations <volatile>`.
8594
Konstantin Zhuravlyov8f856852017-07-11 22:23:00 +00008595A ``atomicrmw`` instruction can also take an optional
8596":ref:`syncscope <syncscope>`" argument.
8597
Sean Silvaf722b002012-12-07 10:36:55 +00008598Semantics:
8599""""""""""
8600
8601The contents of memory at the location specified by the '``<pointer>``'
8602operand are atomically read, modified, and written back. The original
8603value at the location is returned. The modification is specified by the
8604operation argument:
8605
8606- xchg: ``*ptr = val``
8607- add: ``*ptr = *ptr + val``
8608- sub: ``*ptr = *ptr - val``
8609- and: ``*ptr = *ptr & val``
8610- nand: ``*ptr = ~(*ptr & val)``
8611- or: ``*ptr = *ptr | val``
8612- xor: ``*ptr = *ptr ^ val``
8613- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
8614- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
8615- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
8616 comparison)
8617- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
8618 comparison)
8619
8620Example:
8621""""""""
8622
8623.. code-block:: llvm
8624
Tim Northover6eaf8402014-06-13 14:24:23 +00008625 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvaf722b002012-12-07 10:36:55 +00008626
8627.. _i_getelementptr:
8628
8629'``getelementptr``' Instruction
8630^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8631
8632Syntax:
8633"""""""
8634
8635::
8636
Peter Collingbourneca668e12016-11-10 22:34:55 +00008637 <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8638 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
8639 <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
Sean Silvaf722b002012-12-07 10:36:55 +00008640
8641Overview:
8642"""""""""
8643
8644The '``getelementptr``' instruction is used to get the address of a
8645subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky43afab32015-07-09 07:42:48 +00008646address calculation only and does not access memory. The instruction can also
8647be used to calculate a vector of such addresses.
Sean Silvaf722b002012-12-07 10:36:55 +00008648
8649Arguments:
8650""""""""""
8651
David Blaikieaf9251f2015-03-04 22:02:58 +00008652The first argument is always a type used as the basis for the calculations.
8653The second argument is always a pointer or a vector of pointers, and is the
8654base address to start from. The remaining arguments are indices
Sean Silvaf722b002012-12-07 10:36:55 +00008655that indicate which of the elements of the aggregate object are indexed.
8656The interpretation of each index is dependent on the type being indexed
8657into. The first index always indexes the pointer value given as the
David Blaikie40391812017-06-19 05:34:21 +00008658second argument, the second index indexes a value of the type pointed to
Sean Silvaf722b002012-12-07 10:36:55 +00008659(not necessarily the value directly pointed to, since the first index
8660can be non-zero), etc. The first type indexed into must be a pointer
8661value, subsequent types can be arrays, vectors, and structs. Note that
8662subsequent types being indexed into can never be pointers, since that
8663would require loading the pointer before continuing calculation.
8664
8665The type of each index argument depends on the type it is indexing into.
8666When indexing into a (optionally packed) structure, only ``i32`` integer
8667**constants** are allowed (when using a vector of indices they must all
8668be the **same** ``i32`` integer constant). When indexing into an array,
8669pointer or vector, integers of any width are allowed, and they are not
8670required to be constant. These integers are treated as signed values
8671where relevant.
8672
8673For example, let's consider a C code fragment and how it gets compiled
8674to LLVM:
8675
8676.. code-block:: c
8677
8678 struct RT {
8679 char A;
8680 int B[10][20];
8681 char C;
8682 };
8683 struct ST {
8684 int X;
8685 double Y;
8686 struct RT Z;
8687 };
8688
8689 int *foo(struct ST *s) {
8690 return &s[1].Z.B[5][13];
8691 }
8692
8693The LLVM code generated by Clang is:
8694
8695.. code-block:: llvm
8696
8697 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
8698 %struct.ST = type { i32, double, %struct.RT }
8699
8700 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
8701 entry:
David Blaikieaf9251f2015-03-04 22:02:58 +00008702 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvaf722b002012-12-07 10:36:55 +00008703 ret i32* %arrayidx
8704 }
8705
8706Semantics:
8707""""""""""
8708
8709In the example above, the first index is indexing into the
8710'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
8711= '``{ i32, double, %struct.RT }``' type, a structure. The second index
8712indexes into the third element of the structure, yielding a
8713'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
8714structure. The third index indexes into the second element of the
8715structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
8716dimensions of the array are subscripted into, yielding an '``i32``'
8717type. The '``getelementptr``' instruction returns a pointer to this
8718element, thus computing a value of '``i32*``' type.
8719
8720Note that it is perfectly legal to index partially through a structure,
8721returning a pointer to an inner element. Because of this, the LLVM code
8722for the given testcase is equivalent to:
8723
8724.. code-block:: llvm
8725
8726 define i32* @foo(%struct.ST* %s) {
David Blaikieaf9251f2015-03-04 22:02:58 +00008727 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
8728 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
8729 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
8730 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
8731 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvaf722b002012-12-07 10:36:55 +00008732 ret i32* %t5
8733 }
8734
8735If the ``inbounds`` keyword is present, the result value of the
8736``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
8737pointer is not an *in bounds* address of an allocated object, or if any
8738of the addresses that would be formed by successive addition of the
8739offsets implied by the indices to the base address with infinitely
8740precise signed arithmetic are not an *in bounds* address of that
8741allocated object. The *in bounds* addresses for an allocated object are
8742all the addresses that point into the object, plus the address one byte
Eli Friedmane597c2c2017-02-23 00:48:18 +00008743past the end. The only *in bounds* address for a null pointer in the
8744default address-space is the null pointer itself. In cases where the
8745base is a vector of pointers the ``inbounds`` keyword applies to each
8746of the computations element-wise.
Sean Silvaf722b002012-12-07 10:36:55 +00008747
8748If the ``inbounds`` keyword is not present, the offsets are added to the
8749base address with silently-wrapping two's complement arithmetic. If the
8750offsets have a different width from the pointer, they are sign-extended
8751or truncated to the width of the pointer. The result value of the
8752``getelementptr`` may be outside the object pointed to by the base
8753pointer. The result value may not necessarily be used to access memory
8754though, even if it happens to point into allocated storage. See the
8755:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
8756information.
8757
Peter Collingbourneca668e12016-11-10 22:34:55 +00008758If the ``inrange`` keyword is present before any index, loading from or
8759storing to any pointer derived from the ``getelementptr`` has undefined
8760behavior if the load or store would access memory outside of the bounds of
8761the element selected by the index marked as ``inrange``. The result of a
8762pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
8763involving memory) involving a pointer derived from a ``getelementptr`` with
8764the ``inrange`` keyword is undefined, with the exception of comparisons
8765in the case where both operands are in the range of the element selected
8766by the ``inrange`` keyword, inclusive of the address one past the end of
8767that element. Note that the ``inrange`` keyword is currently only allowed
8768in constant ``getelementptr`` expressions.
8769
Sean Silvaf722b002012-12-07 10:36:55 +00008770The getelementptr instruction is often confusing. For some more insight
8771into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
8772
8773Example:
8774""""""""
8775
8776.. code-block:: llvm
8777
8778 ; yields [12 x i8]*:aptr
David Blaikieaf9251f2015-03-04 22:02:58 +00008779 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvaf722b002012-12-07 10:36:55 +00008780 ; yields i8*:vptr
David Blaikieaf9251f2015-03-04 22:02:58 +00008781 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvaf722b002012-12-07 10:36:55 +00008782 ; yields i8*:eptr
David Blaikieaf9251f2015-03-04 22:02:58 +00008783 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvaf722b002012-12-07 10:36:55 +00008784 ; yields i32*:iptr
David Blaikieaf9251f2015-03-04 22:02:58 +00008785 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvaf722b002012-12-07 10:36:55 +00008786
Elena Demikhovsky43afab32015-07-09 07:42:48 +00008787Vector of pointers:
8788"""""""""""""""""""
8789
8790The ``getelementptr`` returns a vector of pointers, instead of a single address,
8791when one or more of its arguments is a vector. In such cases, all vector
8792arguments should have the same number of elements, and every scalar argument
8793will be effectively broadcast into a vector during address calculation.
Sean Silvaf722b002012-12-07 10:36:55 +00008794
8795.. code-block:: llvm
8796
Elena Demikhovsky43afab32015-07-09 07:42:48 +00008797 ; All arguments are vectors:
8798 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
8799 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva1709c2b2015-08-06 22:56:24 +00008800
Elena Demikhovsky43afab32015-07-09 07:42:48 +00008801 ; Add the same scalar offset to each pointer of a vector:
8802 ; A[i] = ptrs[i] + offset*sizeof(i8)
8803 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva1709c2b2015-08-06 22:56:24 +00008804
Elena Demikhovsky43afab32015-07-09 07:42:48 +00008805 ; Add distinct offsets to the same pointer:
8806 ; A[i] = ptr + offsets[i]*sizeof(i8)
8807 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva1709c2b2015-08-06 22:56:24 +00008808
Elena Demikhovsky43afab32015-07-09 07:42:48 +00008809 ; In all cases described above the type of the result is <4 x i8*>
8810
8811The two following instructions are equivalent:
8812
8813.. code-block:: llvm
8814
8815 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8816 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
8817 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
8818 <4 x i32> %ind4,
8819 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva1709c2b2015-08-06 22:56:24 +00008820
Elena Demikhovsky43afab32015-07-09 07:42:48 +00008821 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
8822 i32 2, i32 1, <4 x i32> %ind4, i64 13
8823
8824Let's look at the C code, where the vector version of ``getelementptr``
8825makes sense:
8826
8827.. code-block:: c
8828
8829 // Let's assume that we vectorize the following loop:
Alexey Bader7726f882017-01-30 07:38:58 +00008830 double *A, *B; int *C;
Elena Demikhovsky43afab32015-07-09 07:42:48 +00008831 for (int i = 0; i < size; ++i) {
8832 A[i] = B[C[i]];
8833 }
8834
8835.. code-block:: llvm
8836
8837 ; get pointers for 8 elements from array B
8838 %ptrs = getelementptr double, double* %B, <8 x i32> %C
8839 ; load 8 elements from array B into A
Elad Cohenea59a242017-05-03 12:28:54 +00008840 %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
Elena Demikhovsky43afab32015-07-09 07:42:48 +00008841 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvaf722b002012-12-07 10:36:55 +00008842
8843Conversion Operations
8844---------------------
8845
8846The instructions in this category are the conversion instructions
8847(casting) which all take a single operand and a type. They perform
8848various bit conversions on the operand.
8849
Bjorn Pettersson7b97ca12017-10-24 11:59:20 +00008850.. _i_trunc:
8851
Sean Silvaf722b002012-12-07 10:36:55 +00008852'``trunc .. to``' Instruction
8853^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8854
8855Syntax:
8856"""""""
8857
8858::
8859
8860 <result> = trunc <ty> <value> to <ty2> ; yields ty2
8861
8862Overview:
8863"""""""""
8864
8865The '``trunc``' instruction truncates its operand to the type ``ty2``.
8866
8867Arguments:
8868""""""""""
8869
8870The '``trunc``' instruction takes a value to trunc, and a type to trunc
8871it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
8872of the same number of integers. The bit size of the ``value`` must be
8873larger than the bit size of the destination type, ``ty2``. Equal sized
8874types are not allowed.
8875
8876Semantics:
8877""""""""""
8878
8879The '``trunc``' instruction truncates the high order bits in ``value``
8880and converts the remaining bits to ``ty2``. Since the source size must
8881be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
8882It will always truncate bits.
8883
8884Example:
8885""""""""
8886
8887.. code-block:: llvm
8888
8889 %X = trunc i32 257 to i8 ; yields i8:1
8890 %Y = trunc i32 123 to i1 ; yields i1:true
8891 %Z = trunc i32 122 to i1 ; yields i1:false
8892 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
8893
Bjorn Pettersson7b97ca12017-10-24 11:59:20 +00008894.. _i_zext:
8895
Sean Silvaf722b002012-12-07 10:36:55 +00008896'``zext .. to``' Instruction
8897^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8898
8899Syntax:
8900"""""""
8901
8902::
8903
8904 <result> = zext <ty> <value> to <ty2> ; yields ty2
8905
8906Overview:
8907"""""""""
8908
8909The '``zext``' instruction zero extends its operand to type ``ty2``.
8910
8911Arguments:
8912""""""""""
8913
8914The '``zext``' instruction takes a value to cast, and a type to cast it
8915to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8916the same number of integers. The bit size of the ``value`` must be
8917smaller than the bit size of the destination type, ``ty2``.
8918
8919Semantics:
8920""""""""""
8921
8922The ``zext`` fills the high order bits of the ``value`` with zero bits
8923until it reaches the size of the destination type, ``ty2``.
8924
8925When zero extending from i1, the result will always be either 0 or 1.
8926
8927Example:
8928""""""""
8929
8930.. code-block:: llvm
8931
8932 %X = zext i32 257 to i64 ; yields i64:257
8933 %Y = zext i1 true to i32 ; yields i32:1
8934 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8935
Bjorn Pettersson7b97ca12017-10-24 11:59:20 +00008936.. _i_sext:
8937
Sean Silvaf722b002012-12-07 10:36:55 +00008938'``sext .. to``' Instruction
8939^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8940
8941Syntax:
8942"""""""
8943
8944::
8945
8946 <result> = sext <ty> <value> to <ty2> ; yields ty2
8947
8948Overview:
8949"""""""""
8950
8951The '``sext``' sign extends ``value`` to the type ``ty2``.
8952
8953Arguments:
8954""""""""""
8955
8956The '``sext``' instruction takes a value to cast, and a type to cast it
8957to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
8958the same number of integers. The bit size of the ``value`` must be
8959smaller than the bit size of the destination type, ``ty2``.
8960
8961Semantics:
8962""""""""""
8963
8964The '``sext``' instruction performs a sign extension by copying the sign
8965bit (highest order bit) of the ``value`` until it reaches the bit size
8966of the type ``ty2``.
8967
8968When sign extending from i1, the extension always results in -1 or 0.
8969
8970Example:
8971""""""""
8972
8973.. code-block:: llvm
8974
8975 %X = sext i8 -1 to i16 ; yields i16 :65535
8976 %Y = sext i1 true to i32 ; yields i32:-1
8977 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
8978
8979'``fptrunc .. to``' Instruction
8980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8981
8982Syntax:
8983"""""""
8984
8985::
8986
8987 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
8988
8989Overview:
8990"""""""""
8991
8992The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
8993
8994Arguments:
8995""""""""""
8996
Sanjay Patel16e9a292018-03-21 14:15:33 +00008997The '``fptrunc``' instruction takes a :ref:`floating-point <t_floating>`
8998value to cast and a :ref:`floating-point <t_floating>` type to cast it to.
Sean Silvaf722b002012-12-07 10:36:55 +00008999The size of ``value`` must be larger than the size of ``ty2``. This
9000implies that ``fptrunc`` cannot be used to make a *no-op cast*.
9001
9002Semantics:
9003""""""""""
9004
Dan Liew9308aba2015-09-03 18:43:56 +00009005The '``fptrunc``' instruction casts a ``value`` from a larger
Sanjay Patel16e9a292018-03-21 14:15:33 +00009006:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
Mandeep Singh Grang08238b72018-11-01 23:22:25 +00009007<t_floating>` type.
Sanjay Patel84dd0b32018-04-03 13:05:20 +00009008This instruction is assumed to execute in the default :ref:`floating-point
9009environment <floatenv>`.
Sean Silvaf722b002012-12-07 10:36:55 +00009010
9011Example:
9012""""""""
9013
9014.. code-block:: llvm
9015
Sanjay Patel84dd0b32018-04-03 13:05:20 +00009016 %X = fptrunc double 16777217.0 to float ; yields float:16777216.0
9017 %Y = fptrunc double 1.0E+300 to half ; yields half:+infinity
Sean Silvaf722b002012-12-07 10:36:55 +00009018
9019'``fpext .. to``' Instruction
9020^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9021
9022Syntax:
9023"""""""
9024
9025::
9026
9027 <result> = fpext <ty> <value> to <ty2> ; yields ty2
9028
9029Overview:
9030"""""""""
9031
Sanjay Patel16e9a292018-03-21 14:15:33 +00009032The '``fpext``' extends a floating-point ``value`` to a larger floating-point
9033value.
Sean Silvaf722b002012-12-07 10:36:55 +00009034
9035Arguments:
9036""""""""""
9037
Sanjay Patel16e9a292018-03-21 14:15:33 +00009038The '``fpext``' instruction takes a :ref:`floating-point <t_floating>`
9039``value`` to cast, and a :ref:`floating-point <t_floating>` type to cast it
Sean Silvaf722b002012-12-07 10:36:55 +00009040to. The source type must be smaller than the destination type.
9041
9042Semantics:
9043""""""""""
9044
9045The '``fpext``' instruction extends the ``value`` from a smaller
Sanjay Patel16e9a292018-03-21 14:15:33 +00009046:ref:`floating-point <t_floating>` type to a larger :ref:`floating-point
9047<t_floating>` type. The ``fpext`` cannot be used to make a
Sean Silvaf722b002012-12-07 10:36:55 +00009048*no-op cast* because it always changes bits. Use ``bitcast`` to make a
Sanjay Patel16e9a292018-03-21 14:15:33 +00009049*no-op cast* for a floating-point cast.
Sean Silvaf722b002012-12-07 10:36:55 +00009050
9051Example:
9052""""""""
9053
9054.. code-block:: llvm
9055
9056 %X = fpext float 3.125 to double ; yields double:3.125000e+00
9057 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
9058
9059'``fptoui .. to``' Instruction
9060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9061
9062Syntax:
9063"""""""
9064
9065::
9066
9067 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
9068
9069Overview:
9070"""""""""
9071
Sanjay Patel16e9a292018-03-21 14:15:33 +00009072The '``fptoui``' converts a floating-point ``value`` to its unsigned
Sean Silvaf722b002012-12-07 10:36:55 +00009073integer equivalent of type ``ty2``.
9074
9075Arguments:
9076""""""""""
9077
9078The '``fptoui``' instruction takes a value to cast, which must be a
Sanjay Patel16e9a292018-03-21 14:15:33 +00009079scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvaf722b002012-12-07 10:36:55 +00009080cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel16e9a292018-03-21 14:15:33 +00009081``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvaf722b002012-12-07 10:36:55 +00009082type with the same number of elements as ``ty``
9083
9084Semantics:
9085""""""""""
9086
Sanjay Patel16e9a292018-03-21 14:15:33 +00009087The '``fptoui``' instruction converts its :ref:`floating-point
9088<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc0358162018-06-08 21:33:33 +00009089unsigned integer value. If the value cannot fit in ``ty2``, the result
9090is a :ref:`poison value <poisonvalues>`.
Sean Silvaf722b002012-12-07 10:36:55 +00009091
9092Example:
9093""""""""
9094
9095.. code-block:: llvm
9096
9097 %X = fptoui double 123.0 to i32 ; yields i32:123
9098 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
9099 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
9100
9101'``fptosi .. to``' Instruction
9102^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9103
9104Syntax:
9105"""""""
9106
9107::
9108
9109 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
9110
9111Overview:
9112"""""""""
9113
Sanjay Patel16e9a292018-03-21 14:15:33 +00009114The '``fptosi``' instruction converts :ref:`floating-point <t_floating>`
Sean Silvaf722b002012-12-07 10:36:55 +00009115``value`` to type ``ty2``.
9116
9117Arguments:
9118""""""""""
9119
9120The '``fptosi``' instruction takes a value to cast, which must be a
Sanjay Patel16e9a292018-03-21 14:15:33 +00009121scalar or vector :ref:`floating-point <t_floating>` value, and a type to
Sean Silvaf722b002012-12-07 10:36:55 +00009122cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
Sanjay Patel16e9a292018-03-21 14:15:33 +00009123``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
Sean Silvaf722b002012-12-07 10:36:55 +00009124type with the same number of elements as ``ty``
9125
9126Semantics:
9127""""""""""
9128
Sanjay Patel16e9a292018-03-21 14:15:33 +00009129The '``fptosi``' instruction converts its :ref:`floating-point
9130<t_floating>` operand into the nearest (rounding towards zero)
Eli Friedmanc0358162018-06-08 21:33:33 +00009131signed integer value. If the value cannot fit in ``ty2``, the result
9132is a :ref:`poison value <poisonvalues>`.
Sean Silvaf722b002012-12-07 10:36:55 +00009133
9134Example:
9135""""""""
9136
9137.. code-block:: llvm
9138
9139 %X = fptosi double -123.0 to i32 ; yields i32:-123
9140 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
9141 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
9142
9143'``uitofp .. to``' Instruction
9144^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9145
9146Syntax:
9147"""""""
9148
9149::
9150
9151 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
9152
9153Overview:
9154"""""""""
9155
9156The '``uitofp``' instruction regards ``value`` as an unsigned integer
9157and converts that value to the ``ty2`` type.
9158
9159Arguments:
9160""""""""""
9161
9162The '``uitofp``' instruction takes a value to cast, which must be a
9163scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel16e9a292018-03-21 14:15:33 +00009164``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
9165``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvaf722b002012-12-07 10:36:55 +00009166type with the same number of elements as ``ty``
9167
9168Semantics:
9169""""""""""
9170
9171The '``uitofp``' instruction interprets its operand as an unsigned
Sanjay Patel16e9a292018-03-21 14:15:33 +00009172integer quantity and converts it to the corresponding floating-point
Eli Friedmancaa16ea2018-06-14 22:58:48 +00009173value. If the value cannot be exactly represented, it is rounded using
9174the default rounding mode.
9175
Sean Silvaf722b002012-12-07 10:36:55 +00009176
9177Example:
9178""""""""
9179
9180.. code-block:: llvm
9181
9182 %X = uitofp i32 257 to float ; yields float:257.0
9183 %Y = uitofp i8 -1 to double ; yields double:255.0
9184
9185'``sitofp .. to``' Instruction
9186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9187
9188Syntax:
9189"""""""
9190
9191::
9192
9193 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
9194
9195Overview:
9196"""""""""
9197
9198The '``sitofp``' instruction regards ``value`` as a signed integer and
9199converts that value to the ``ty2`` type.
9200
9201Arguments:
9202""""""""""
9203
9204The '``sitofp``' instruction takes a value to cast, which must be a
9205scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
Sanjay Patel16e9a292018-03-21 14:15:33 +00009206``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
9207``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
Sean Silvaf722b002012-12-07 10:36:55 +00009208type with the same number of elements as ``ty``
9209
9210Semantics:
9211""""""""""
9212
9213The '``sitofp``' instruction interprets its operand as a signed integer
Eli Friedmancaa16ea2018-06-14 22:58:48 +00009214quantity and converts it to the corresponding floating-point value. If the
9215value cannot be exactly represented, it is rounded using the default rounding
9216mode.
Sean Silvaf722b002012-12-07 10:36:55 +00009217
9218Example:
9219""""""""
9220
9221.. code-block:: llvm
9222
9223 %X = sitofp i32 257 to float ; yields float:257.0
9224 %Y = sitofp i8 -1 to double ; yields double:-1.0
9225
9226.. _i_ptrtoint:
9227
9228'``ptrtoint .. to``' Instruction
9229^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9230
9231Syntax:
9232"""""""
9233
9234::
9235
9236 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
9237
9238Overview:
9239"""""""""
9240
9241The '``ptrtoint``' instruction converts the pointer or a vector of
9242pointers ``value`` to the integer (or vector of integers) type ``ty2``.
9243
9244Arguments:
9245""""""""""
9246
9247The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Masteffc045a2015-04-14 20:52:58 +00009248a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvaf722b002012-12-07 10:36:55 +00009249type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
9250a vector of integers type.
9251
9252Semantics:
9253""""""""""
9254
9255The '``ptrtoint``' instruction converts ``value`` to integer type
9256``ty2`` by interpreting the pointer value as an integer and either
9257truncating or zero extending that value to the size of the integer type.
9258If ``value`` is smaller than ``ty2`` then a zero extension is done. If
9259``value`` is larger than ``ty2`` then a truncation is done. If they are
9260the same size, then nothing is done (*no-op cast*) other than a type
9261change.
9262
9263Example:
9264""""""""
9265
9266.. code-block:: llvm
9267
9268 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
9269 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
9270 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
9271
9272.. _i_inttoptr:
9273
9274'``inttoptr .. to``' Instruction
9275^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9276
9277Syntax:
9278"""""""
9279
9280::
9281
9282 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
9283
9284Overview:
9285"""""""""
9286
9287The '``inttoptr``' instruction converts an integer ``value`` to a
9288pointer type, ``ty2``.
9289
9290Arguments:
9291""""""""""
9292
9293The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
9294cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
9295type.
9296
9297Semantics:
9298""""""""""
9299
9300The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
9301applying either a zero extension or a truncation depending on the size
9302of the integer ``value``. If ``value`` is larger than the size of a
9303pointer then a truncation is done. If ``value`` is smaller than the size
9304of a pointer then a zero extension is done. If they are the same size,
9305nothing is done (*no-op cast*).
9306
9307Example:
9308""""""""
9309
9310.. code-block:: llvm
9311
9312 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
9313 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
9314 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
9315 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
9316
9317.. _i_bitcast:
9318
9319'``bitcast .. to``' Instruction
9320^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9321
9322Syntax:
9323"""""""
9324
9325::
9326
9327 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
9328
9329Overview:
9330"""""""""
9331
9332The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
9333changing any bits.
9334
9335Arguments:
9336""""""""""
9337
9338The '``bitcast``' instruction takes a value to cast, which must be a
9339non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault16e4ed52013-07-31 17:49:08 +00009340also be a non-aggregate :ref:`first class <t_firstclass>` type. The
9341bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silva7515d332015-08-06 22:56:48 +00009342identical. If the source type is a pointer, the destination type must
Matt Arsenault16e4ed52013-07-31 17:49:08 +00009343also be a pointer of the same size. This instruction supports bitwise
9344conversion of vectors to integers and to vectors of other types (as
9345long as they have the same size).
Sean Silvaf722b002012-12-07 10:36:55 +00009346
9347Semantics:
9348""""""""""
9349
Matt Arsenault16e4ed52013-07-31 17:49:08 +00009350The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
9351is always a *no-op cast* because no bits change with this
9352conversion. The conversion is done as if the ``value`` had been stored
9353to memory and read back as type ``ty2``. Pointer (or vector of
9354pointers) types may only be converted to other pointer (or vector of
Matt Arsenault59d3ae62013-11-15 01:34:59 +00009355pointers) types with the same address space through this instruction.
9356To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
9357or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvaf722b002012-12-07 10:36:55 +00009358
9359Example:
9360""""""""
9361
Renato Golin88ea57f2016-07-20 12:16:38 +00009362.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00009363
9364 %X = bitcast i8 255 to i8 ; yields i8 :-1
9365 %Y = bitcast i32* %x to sint* ; yields sint*:%x
9366 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
9367 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
9368
Matt Arsenault59d3ae62013-11-15 01:34:59 +00009369.. _i_addrspacecast:
9370
9371'``addrspacecast .. to``' Instruction
9372^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9373
9374Syntax:
9375"""""""
9376
9377::
9378
9379 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
9380
9381Overview:
9382"""""""""
9383
9384The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
9385address space ``n`` to type ``pty2`` in address space ``m``.
9386
9387Arguments:
9388""""""""""
9389
9390The '``addrspacecast``' instruction takes a pointer or vector of pointer value
9391to cast and a pointer type to cast it to, which must have a different
9392address space.
9393
9394Semantics:
9395""""""""""
9396
9397The '``addrspacecast``' instruction converts the pointer value
9398``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault01ad8c32013-11-15 05:44:56 +00009399value modification, depending on the target and the address space
9400pair. Pointer conversions within the same address space must be
9401performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenault59d3ae62013-11-15 01:34:59 +00009402conversion is legal then both result and operand refer to the same memory
9403location.
9404
9405Example:
9406""""""""
9407
9408.. code-block:: llvm
9409
Matt Arsenaultef1b87a2013-11-15 22:43:50 +00009410 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
9411 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
9412 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenault59d3ae62013-11-15 01:34:59 +00009413
Sean Silvaf722b002012-12-07 10:36:55 +00009414.. _otherops:
9415
9416Other Operations
9417----------------
9418
9419The instructions in this category are the "miscellaneous" instructions,
9420which defy better classification.
9421
9422.. _i_icmp:
9423
9424'``icmp``' Instruction
9425^^^^^^^^^^^^^^^^^^^^^^
9426
9427Syntax:
9428"""""""
9429
9430::
9431
Tim Northover6eaf8402014-06-13 14:24:23 +00009432 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvaf722b002012-12-07 10:36:55 +00009433
9434Overview:
9435"""""""""
9436
9437The '``icmp``' instruction returns a boolean value or a vector of
9438boolean values based on comparison of its two integer, integer vector,
9439pointer, or pointer vector operands.
9440
9441Arguments:
9442""""""""""
9443
9444The '``icmp``' instruction takes three operands. The first operand is
9445the condition code indicating the kind of comparison to perform. It is
Sanjay Patelc3260ca2016-03-30 21:38:20 +00009446not a value, just a keyword. The possible condition codes are:
Sean Silvaf722b002012-12-07 10:36:55 +00009447
9448#. ``eq``: equal
9449#. ``ne``: not equal
9450#. ``ugt``: unsigned greater than
9451#. ``uge``: unsigned greater or equal
9452#. ``ult``: unsigned less than
9453#. ``ule``: unsigned less or equal
9454#. ``sgt``: signed greater than
9455#. ``sge``: signed greater or equal
9456#. ``slt``: signed less than
9457#. ``sle``: signed less or equal
9458
9459The remaining two arguments must be :ref:`integer <t_integer>` or
9460:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
9461must also be identical types.
9462
9463Semantics:
9464""""""""""
9465
9466The '``icmp``' compares ``op1`` and ``op2`` according to the condition
9467code given as ``cond``. The comparison performed always yields either an
9468:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
9469
9470#. ``eq``: yields ``true`` if the operands are equal, ``false``
9471 otherwise. No sign interpretation is necessary or performed.
9472#. ``ne``: yields ``true`` if the operands are unequal, ``false``
9473 otherwise. No sign interpretation is necessary or performed.
9474#. ``ugt``: interprets the operands as unsigned values and yields
9475 ``true`` if ``op1`` is greater than ``op2``.
9476#. ``uge``: interprets the operands as unsigned values and yields
9477 ``true`` if ``op1`` is greater than or equal to ``op2``.
9478#. ``ult``: interprets the operands as unsigned values and yields
9479 ``true`` if ``op1`` is less than ``op2``.
9480#. ``ule``: interprets the operands as unsigned values and yields
9481 ``true`` if ``op1`` is less than or equal to ``op2``.
9482#. ``sgt``: interprets the operands as signed values and yields ``true``
9483 if ``op1`` is greater than ``op2``.
9484#. ``sge``: interprets the operands as signed values and yields ``true``
9485 if ``op1`` is greater than or equal to ``op2``.
9486#. ``slt``: interprets the operands as signed values and yields ``true``
9487 if ``op1`` is less than ``op2``.
9488#. ``sle``: interprets the operands as signed values and yields ``true``
9489 if ``op1`` is less than or equal to ``op2``.
9490
9491If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
9492are compared as if they were integers.
9493
9494If the operands are integer vectors, then they are compared element by
9495element. The result is an ``i1`` vector with the same number of elements
9496as the values being compared. Otherwise, the result is an ``i1``.
9497
9498Example:
9499""""""""
9500
Renato Golin88ea57f2016-07-20 12:16:38 +00009501.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00009502
9503 <result> = icmp eq i32 4, 5 ; yields: result=false
9504 <result> = icmp ne float* %X, %X ; yields: result=false
9505 <result> = icmp ult i16 4, 5 ; yields: result=true
9506 <result> = icmp sgt i16 4, 5 ; yields: result=false
9507 <result> = icmp ule i16 -4, 5 ; yields: result=false
9508 <result> = icmp sge i16 4, 5 ; yields: result=false
9509
Sean Silvaf722b002012-12-07 10:36:55 +00009510.. _i_fcmp:
9511
9512'``fcmp``' Instruction
9513^^^^^^^^^^^^^^^^^^^^^^
9514
9515Syntax:
9516"""""""
9517
9518::
9519
James Molloyee0d9922015-07-10 12:52:00 +00009520 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvaf722b002012-12-07 10:36:55 +00009521
9522Overview:
9523"""""""""
9524
9525The '``fcmp``' instruction returns a boolean value or vector of boolean
9526values based on comparison of its operands.
9527
Sanjay Patel16e9a292018-03-21 14:15:33 +00009528If the operands are floating-point scalars, then the result type is a
Sean Silvaf722b002012-12-07 10:36:55 +00009529boolean (:ref:`i1 <t_integer>`).
9530
Sanjay Patel16e9a292018-03-21 14:15:33 +00009531If the operands are floating-point vectors, then the result type is a
Sean Silvaf722b002012-12-07 10:36:55 +00009532vector of boolean with the same number of elements as the operands being
9533compared.
9534
9535Arguments:
9536""""""""""
9537
9538The '``fcmp``' instruction takes three operands. The first operand is
9539the condition code indicating the kind of comparison to perform. It is
Sanjay Patelc3260ca2016-03-30 21:38:20 +00009540not a value, just a keyword. The possible condition codes are:
Sean Silvaf722b002012-12-07 10:36:55 +00009541
9542#. ``false``: no comparison, always returns false
9543#. ``oeq``: ordered and equal
9544#. ``ogt``: ordered and greater than
9545#. ``oge``: ordered and greater than or equal
9546#. ``olt``: ordered and less than
9547#. ``ole``: ordered and less than or equal
9548#. ``one``: ordered and not equal
9549#. ``ord``: ordered (no nans)
9550#. ``ueq``: unordered or equal
9551#. ``ugt``: unordered or greater than
9552#. ``uge``: unordered or greater than or equal
9553#. ``ult``: unordered or less than
9554#. ``ule``: unordered or less than or equal
9555#. ``une``: unordered or not equal
9556#. ``uno``: unordered (either nans)
9557#. ``true``: no comparison, always returns true
9558
9559*Ordered* means that neither operand is a QNAN while *unordered* means
9560that either operand may be a QNAN.
9561
Sanjay Patel16e9a292018-03-21 14:15:33 +00009562Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating-point
9563<t_floating>` type or a :ref:`vector <t_vector>` of floating-point type.
9564They must have identical types.
Sean Silvaf722b002012-12-07 10:36:55 +00009565
9566Semantics:
9567""""""""""
9568
9569The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
9570condition code given as ``cond``. If the operands are vectors, then the
9571vectors are compared element by element. Each comparison performed
9572always yields an :ref:`i1 <t_integer>` result, as follows:
9573
9574#. ``false``: always yields ``false``, regardless of operands.
9575#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
9576 is equal to ``op2``.
9577#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
9578 is greater than ``op2``.
9579#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
9580 is greater than or equal to ``op2``.
9581#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
9582 is less than ``op2``.
9583#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
9584 is less than or equal to ``op2``.
9585#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
9586 is not equal to ``op2``.
9587#. ``ord``: yields ``true`` if both operands are not a QNAN.
9588#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
9589 equal to ``op2``.
9590#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
9591 greater than ``op2``.
9592#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
9593 greater than or equal to ``op2``.
9594#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
9595 less than ``op2``.
9596#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
9597 less than or equal to ``op2``.
9598#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
9599 not equal to ``op2``.
9600#. ``uno``: yields ``true`` if either operand is a QNAN.
9601#. ``true``: always yields ``true``, regardless of operands.
9602
James Molloyee0d9922015-07-10 12:52:00 +00009603The ``fcmp`` instruction can also optionally take any number of
9604:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
Sanjay Patel16e9a292018-03-21 14:15:33 +00009605otherwise unsafe floating-point optimizations.
James Molloyee0d9922015-07-10 12:52:00 +00009606
9607Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
9608only flags that have any effect on its semantics are those that allow
9609assumptions to be made about the values of input arguments; namely
Eli Friedman1ea502b2018-07-17 20:28:31 +00009610``nnan``, ``ninf``, and ``reassoc``. See :ref:`fastmath` for more information.
James Molloyee0d9922015-07-10 12:52:00 +00009611
Sean Silvaf722b002012-12-07 10:36:55 +00009612Example:
9613""""""""
9614
Renato Golin88ea57f2016-07-20 12:16:38 +00009615.. code-block:: text
Sean Silvaf722b002012-12-07 10:36:55 +00009616
9617 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
9618 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
9619 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
9620 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
9621
Sean Silvaf722b002012-12-07 10:36:55 +00009622.. _i_phi:
9623
9624'``phi``' Instruction
9625^^^^^^^^^^^^^^^^^^^^^
9626
9627Syntax:
9628"""""""
9629
9630::
9631
9632 <result> = phi <ty> [ <val0>, <label0>], ...
9633
9634Overview:
9635"""""""""
9636
9637The '``phi``' instruction is used to implement the φ node in the SSA
9638graph representing the function.
9639
9640Arguments:
9641""""""""""
9642
9643The type of the incoming values is specified with the first type field.
9644After this, the '``phi``' instruction takes a list of pairs as
9645arguments, with one pair for each predecessor basic block of the current
9646block. Only values of :ref:`first class <t_firstclass>` type may be used as
9647the value arguments to the PHI node. Only labels may be used as the
9648label arguments.
9649
9650There must be no non-phi instructions between the start of a basic block
9651and the PHI instructions: i.e. PHI instructions must be first in a basic
9652block.
9653
9654For the purposes of the SSA form, the use of each incoming value is
9655deemed to occur on the edge from the corresponding predecessor block to
9656the current block (but after any definition of an '``invoke``'
9657instruction's return value on the same edge).
9658
9659Semantics:
9660""""""""""
9661
9662At runtime, the '``phi``' instruction logically takes on the value
9663specified by the pair corresponding to the predecessor basic block that
9664executed just prior to the current block.
9665
9666Example:
9667""""""""
9668
9669.. code-block:: llvm
9670
9671 Loop: ; Infinite loop that counts from 0 on up...
9672 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
9673 %nextindvar = add i32 %indvar, 1
9674 br label %Loop
9675
9676.. _i_select:
9677
9678'``select``' Instruction
9679^^^^^^^^^^^^^^^^^^^^^^^^
9680
9681Syntax:
9682"""""""
9683
9684::
9685
9686 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
9687
9688 selty is either i1 or {<N x i1>}
9689
9690Overview:
9691"""""""""
9692
9693The '``select``' instruction is used to choose one value based on a
Joerg Sonnenbergerdd6d74f2014-03-26 15:30:21 +00009694condition, without IR-level branching.
Sean Silvaf722b002012-12-07 10:36:55 +00009695
9696Arguments:
9697""""""""""
9698
9699The '``select``' instruction requires an 'i1' value or a vector of 'i1'
9700values indicating the condition, and two values of the same :ref:`first
David Majnemer9ab92242015-03-03 22:45:47 +00009701class <t_firstclass>` type.
Sean Silvaf722b002012-12-07 10:36:55 +00009702
9703Semantics:
9704""""""""""
9705
9706If the condition is an i1 and it evaluates to 1, the instruction returns
9707the first value argument; otherwise, it returns the second value
9708argument.
9709
9710If the condition is a vector of i1, then the value arguments must be
9711vectors of the same size, and the selection is done element by element.
9712
David Majnemer9ab92242015-03-03 22:45:47 +00009713If the condition is an i1 and the value arguments are vectors of the
9714same size, then an entire vector is selected.
9715
Sean Silvaf722b002012-12-07 10:36:55 +00009716Example:
9717""""""""
9718
9719.. code-block:: llvm
9720
9721 %X = select i1 true, i8 17, i8 42 ; yields i8:17
9722
9723.. _i_call:
9724
9725'``call``' Instruction
9726^^^^^^^^^^^^^^^^^^^^^^
9727
9728Syntax:
9729"""""""
9730
9731::
9732
Alexander Richardson47ff67b2018-08-23 09:25:17 +00009733 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] [addrspace(<num>)]
9734 [<ty>|<fnty> <fnptrval>(<function args>) [fn attrs] [ operand bundles ]
Sean Silvaf722b002012-12-07 10:36:55 +00009735
9736Overview:
9737"""""""""
9738
9739The '``call``' instruction represents a simple function call.
9740
9741Arguments:
9742""""""""""
9743
9744This instruction requires several arguments:
9745
Reid Kleckner710c1a42014-04-24 20:14:34 +00009746#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silva7515d332015-08-06 22:56:48 +00009747 should perform tail call optimization. The ``tail`` marker is a hint that
9748 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner710c1a42014-04-24 20:14:34 +00009749 means that the call must be tail call optimized in order for the program to
Sean Silva7515d332015-08-06 22:56:48 +00009750 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner710c1a42014-04-24 20:14:34 +00009751
9752 #. The call will not cause unbounded stack growth if it is part of a
9753 recursive cycle in the call graph.
9754 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
9755 forwarded in place.
9756
Florian Hahnd3309402018-01-17 23:29:25 +00009757 Both markers imply that the callee does not access allocas from the caller.
9758 The ``tail`` marker additionally implies that the callee does not access
9759 varargs from the caller, while ``musttail`` implies that varargs from the
9760 caller are passed to the callee. Calls marked ``musttail`` must obey the
9761 following additional rules:
Reid Kleckner710c1a42014-04-24 20:14:34 +00009762
9763 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
9764 or a pointer bitcast followed by a ret instruction.
9765 - The ret instruction must return the (possibly bitcasted) value
9766 produced by the call or void.
Sean Silva7515d332015-08-06 22:56:48 +00009767 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner710c1a42014-04-24 20:14:34 +00009768 parameters or return types may differ in pointee type, but not
9769 in address space.
9770 - The calling conventions of the caller and callee must match.
9771 - All ABI-impacting function attributes, such as sret, byval, inreg,
9772 returned, and inalloca, must match.
Reid Kleckner44b3a0b2014-08-26 00:33:28 +00009773 - The callee must be varargs iff the caller is varargs. Bitcasting a
9774 non-varargs function to the appropriate varargs type is legal so
9775 long as the non-varargs prefixes obey the other rules.
Reid Kleckner710c1a42014-04-24 20:14:34 +00009776
9777 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
9778 the following conditions are met:
Sean Silvaf722b002012-12-07 10:36:55 +00009779
9780 - Caller and callee both have the calling convention ``fastcc``.
9781 - The call is in tail position (ret immediately follows call and ret
9782 uses value of call or is void).
9783 - Option ``-tailcallopt`` is enabled, or
9784 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokera0d04ac2014-06-30 18:57:16 +00009785 - `Platform-specific constraints are
Sean Silvaf722b002012-12-07 10:36:55 +00009786 met. <CodeGenerator.html#tailcallopt>`_
9787
Akira Hatanakac35973b2015-11-06 23:55:38 +00009788#. The optional ``notail`` marker indicates that the optimizers should not add
9789 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
9790 call optimization from being performed on the call.
9791
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +00009792#. The optional ``fast-math flags`` marker indicates that the call has one or more
Sanjay Patela3a48d92015-12-14 21:59:03 +00009793 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
9794 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
9795 for calls that return a floating-point scalar or vector type.
9796
Sean Silvaf722b002012-12-07 10:36:55 +00009797#. The optional "cconv" marker indicates which :ref:`calling
9798 convention <callingconv>` the call should use. If none is
9799 specified, the call defaults to using C calling conventions. The
9800 calling convention of the call must match the calling convention of
9801 the target function, or else the behavior is undefined.
9802#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
9803 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
9804 are valid here.
Craig Topper1b044af2019-01-16 00:21:59 +00009805#. The optional addrspace attribute can be used to indicate the address space
Alexander Richardson47ff67b2018-08-23 09:25:17 +00009806 of the called function. If it is not specified, the program address space
9807 from the :ref:`datalayout string<langref_datalayout>` will be used.
Sean Silvaf722b002012-12-07 10:36:55 +00009808#. '``ty``': the type of the call instruction itself which is also the
9809 type of the return value. Functions that return no value are marked
9810 ``void``.
David Blaikiec0ba7ba2016-07-13 17:21:34 +00009811#. '``fnty``': shall be the signature of the function being called. The
9812 argument types must match the types implied by this signature. This
9813 type can be omitted if the function is not varargs.
Sean Silvaf722b002012-12-07 10:36:55 +00009814#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikiec0ba7ba2016-07-13 17:21:34 +00009815 be called. In most cases, this is a direct function call, but
Sean Silvaf722b002012-12-07 10:36:55 +00009816 indirect ``call``'s are just as possible, calling an arbitrary pointer
9817 to function value.
9818#. '``function args``': argument list whose types match the function
9819 signature argument types and parameter attributes. All arguments must
9820 be of :ref:`first class <t_firstclass>` type. If the function signature
9821 indicates the function accepts a variable number of arguments, the
9822 extra arguments can be specified.
George Burgess IVc1231f82017-04-13 04:01:55 +00009823#. The optional :ref:`function attributes <fnattrs>` list.
Sanjoy Dasf70eb722015-09-24 23:34:52 +00009824#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvaf722b002012-12-07 10:36:55 +00009825
9826Semantics:
9827""""""""""
9828
9829The '``call``' instruction is used to cause control flow to transfer to
9830a specified function, with its incoming arguments bound to the specified
9831values. Upon a '``ret``' instruction in the called function, control
9832flow continues with the instruction after the function call, and the
9833return value of the function is bound to the result argument.
9834
9835Example:
9836""""""""
9837
9838.. code-block:: llvm
9839
9840 %retval = call i32 @test(i32 %argc)
9841 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
9842 %X = tail call i32 @foo() ; yields i32
9843 %Y = tail call fastcc i32 @foo() ; yields i32
9844 call void %foo(i8 97 signext)
9845
9846 %struct.A = type { i32, i8 }
Tim Northover6eaf8402014-06-13 14:24:23 +00009847 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvaf722b002012-12-07 10:36:55 +00009848 %gr = extractvalue %struct.A %r, 0 ; yields i32
9849 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
9850 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
9851 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
9852
9853llvm treats calls to some functions with names and arguments that match
9854the standard C99 library as being the C99 library functions, and may
9855perform optimizations or generate code for them under that assumption.
9856This is something we'd like to change in the future to provide better
9857support for freestanding environments and non-C-based languages.
9858
9859.. _i_va_arg:
9860
9861'``va_arg``' Instruction
9862^^^^^^^^^^^^^^^^^^^^^^^^
9863
9864Syntax:
9865"""""""
9866
9867::
9868
9869 <resultval> = va_arg <va_list*> <arglist>, <argty>
9870
9871Overview:
9872"""""""""
9873
9874The '``va_arg``' instruction is used to access arguments passed through
9875the "variable argument" area of a function call. It is used to implement
9876the ``va_arg`` macro in C.
9877
9878Arguments:
9879""""""""""
9880
9881This instruction takes a ``va_list*`` value and the type of the
9882argument. It returns a value of the specified argument type and
9883increments the ``va_list`` to point to the next argument. The actual
9884type of ``va_list`` is target specific.
9885
9886Semantics:
9887""""""""""
9888
9889The '``va_arg``' instruction loads an argument of the specified type
9890from the specified ``va_list`` and causes the ``va_list`` to point to
9891the next argument. For more information, see the variable argument
9892handling :ref:`Intrinsic Functions <int_varargs>`.
9893
9894It is legal for this instruction to be called in a function which does
9895not take a variable number of arguments, for example, the ``vfprintf``
9896function.
9897
9898``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
9899function <intrinsics>` because it takes a type as an argument.
9900
9901Example:
9902""""""""
9903
9904See the :ref:`variable argument processing <int_varargs>` section.
9905
9906Note that the code generator does not yet fully support va\_arg on many
9907targets. Also, it does not currently support va\_arg with aggregate
9908types on any target.
9909
9910.. _i_landingpad:
9911
9912'``landingpad``' Instruction
9913^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9914
9915Syntax:
9916"""""""
9917
9918::
9919
David Majnemercc714e22015-06-17 20:52:32 +00009920 <resultval> = landingpad <resultty> <clause>+
9921 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvaf722b002012-12-07 10:36:55 +00009922
9923 <clause> := catch <type> <value>
9924 <clause> := filter <array constant type> <array constant>
9925
9926Overview:
9927"""""""""
9928
9929The '``landingpad``' instruction is used by `LLVM's exception handling
9930system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00009931is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00009932code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemercc714e22015-06-17 20:52:32 +00009933defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvaf722b002012-12-07 10:36:55 +00009934re-entry to the function. The ``resultval`` has the type ``resultty``.
9935
9936Arguments:
9937""""""""""
9938
David Majnemercc714e22015-06-17 20:52:32 +00009939The optional
Sean Silvaf722b002012-12-07 10:36:55 +00009940``cleanup`` flag indicates that the landing pad block is a cleanup.
9941
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00009942A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00009943contains the global variable representing the "type" that may be caught
9944or filtered respectively. Unlike the ``catch`` clause, the ``filter``
9945clause takes an array constant as its argument. Use
9946"``[0 x i8**] undef``" for a filter which cannot throw. The
9947'``landingpad``' instruction must contain *at least* one ``clause`` or
9948the ``cleanup`` flag.
9949
9950Semantics:
9951""""""""""
9952
9953The '``landingpad``' instruction defines the values which are set by the
David Majnemercc714e22015-06-17 20:52:32 +00009954:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvaf722b002012-12-07 10:36:55 +00009955therefore the "result type" of the ``landingpad`` instruction. As with
9956calling conventions, how the personality function results are
9957represented in LLVM IR is target specific.
9958
9959The clauses are applied in order from top to bottom. If two
9960``landingpad`` instructions are merged together through inlining, the
9961clauses from the calling function are appended to the list of clauses.
9962When the call stack is being unwound due to an exception being thrown,
9963the exception is compared against each ``clause`` in turn. If it doesn't
9964match any of the clauses, and the ``cleanup`` flag is not set, then
9965unwinding continues further up the call stack.
9966
9967The ``landingpad`` instruction has several restrictions:
9968
9969- A landing pad block is a basic block which is the unwind destination
9970 of an '``invoke``' instruction.
9971- A landing pad block must have a '``landingpad``' instruction as its
9972 first non-PHI instruction.
9973- There can be only one '``landingpad``' instruction within the landing
9974 pad block.
9975- A basic block that is not a landing pad block may not include a
9976 '``landingpad``' instruction.
Sean Silvaf722b002012-12-07 10:36:55 +00009977
9978Example:
9979""""""""
9980
9981.. code-block:: llvm
9982
9983 ;; A landing pad which can catch an integer.
David Majnemercc714e22015-06-17 20:52:32 +00009984 %res = landingpad { i8*, i32 }
Sean Silvaf722b002012-12-07 10:36:55 +00009985 catch i8** @_ZTIi
9986 ;; A landing pad that is a cleanup.
David Majnemercc714e22015-06-17 20:52:32 +00009987 %res = landingpad { i8*, i32 }
Sean Silvaf722b002012-12-07 10:36:55 +00009988 cleanup
9989 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemercc714e22015-06-17 20:52:32 +00009990 %res = landingpad { i8*, i32 }
Sean Silvaf722b002012-12-07 10:36:55 +00009991 catch i8** @_ZTIi
9992 filter [1 x i8**] [@_ZTId]
9993
Joseph Tremouletf3f9d832016-01-10 04:46:10 +00009994.. _i_catchpad:
9995
9996'``catchpad``' Instruction
9997^^^^^^^^^^^^^^^^^^^^^^^^^^
9998
9999Syntax:
10000"""""""
10001
10002::
10003
10004 <resultval> = catchpad within <catchswitch> [<args>*]
10005
10006Overview:
10007"""""""""
10008
10009The '``catchpad``' instruction is used by `LLVM's exception handling
10010system <ExceptionHandling.html#overview>`_ to specify that a basic block
10011begins a catch handler --- one where a personality routine attempts to transfer
10012control to catch an exception.
10013
10014Arguments:
10015""""""""""
10016
10017The ``catchswitch`` operand must always be a token produced by a
10018:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
10019ensures that each ``catchpad`` has exactly one predecessor block, and it always
10020terminates in a ``catchswitch``.
10021
10022The ``args`` correspond to whatever information the personality routine
10023requires to know if this is an appropriate handler for the exception. Control
10024will transfer to the ``catchpad`` if this is the first appropriate handler for
10025the exception.
10026
10027The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
10028``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
10029pads.
10030
10031Semantics:
10032""""""""""
10033
10034When the call stack is being unwound due to an exception being thrown, the
10035exception is compared against the ``args``. If it doesn't match, control will
10036not reach the ``catchpad`` instruction. The representation of ``args`` is
10037entirely target and personality function-specific.
10038
10039Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
10040instruction must be the first non-phi of its parent basic block.
10041
10042The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
10043instructions is described in the
10044`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
10045
10046When a ``catchpad`` has been "entered" but not yet "exited" (as
10047described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
10048it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
10049that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
10050
10051Example:
10052""""""""
10053
Renato Golin88ea57f2016-07-20 12:16:38 +000010054.. code-block:: text
Joseph Tremouletf3f9d832016-01-10 04:46:10 +000010055
10056 dispatch:
10057 %cs = catchswitch within none [label %handler0] unwind to caller
10058 ;; A catch block which can catch an integer.
10059 handler0:
10060 %tok = catchpad within %cs [i8** @_ZTIi]
10061
David Majnemer4a45f082015-07-31 17:58:14 +000010062.. _i_cleanuppad:
10063
10064'``cleanuppad``' Instruction
10065^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10066
10067Syntax:
10068"""""""
10069
10070::
10071
David Majnemer8cec2f22015-12-12 05:38:55 +000010072 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer4a45f082015-07-31 17:58:14 +000010073
10074Overview:
10075"""""""""
10076
10077The '``cleanuppad``' instruction is used by `LLVM's exception handling
10078system <ExceptionHandling.html#overview>`_ to specify that a basic block
10079is a cleanup block --- one where a personality routine attempts to
10080transfer control to run cleanup actions.
10081The ``args`` correspond to whatever additional
10082information the :ref:`personality function <personalityfn>` requires to
10083execute the cleanup.
Joseph Tremouletd4a765f2015-08-23 00:26:33 +000010084The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8cec2f22015-12-12 05:38:55 +000010085match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
10086The ``parent`` argument is the token of the funclet that contains the
10087``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
10088this operand may be the token ``none``.
David Majnemer4a45f082015-07-31 17:58:14 +000010089
10090Arguments:
10091""""""""""
10092
10093The instruction takes a list of arbitrary values which are interpreted
10094by the :ref:`personality function <personalityfn>`.
10095
10096Semantics:
10097""""""""""
10098
David Majnemer4a45f082015-07-31 17:58:14 +000010099When the call stack is being unwound due to an exception being thrown,
10100the :ref:`personality function <personalityfn>` transfers control to the
10101``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet226889e2015-09-03 09:09:43 +000010102As with calling conventions, how the personality function results are
10103represented in LLVM IR is target specific.
David Majnemer4a45f082015-07-31 17:58:14 +000010104
10105The ``cleanuppad`` instruction has several restrictions:
10106
10107- A cleanup block is a basic block which is the unwind destination of
10108 an exceptional instruction.
10109- A cleanup block must have a '``cleanuppad``' instruction as its
10110 first non-PHI instruction.
10111- There can be only one '``cleanuppad``' instruction within the
10112 cleanup block.
10113- A basic block that is not a cleanup block may not include a
10114 '``cleanuppad``' instruction.
David Majnemer8cec2f22015-12-12 05:38:55 +000010115
Joseph Tremouletfe9953a2016-01-10 04:28:38 +000010116When a ``cleanuppad`` has been "entered" but not yet "exited" (as
10117described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
10118it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
10119that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8cec2f22015-12-12 05:38:55 +000010120
David Majnemer4a45f082015-07-31 17:58:14 +000010121Example:
10122""""""""
10123
Renato Golin88ea57f2016-07-20 12:16:38 +000010124.. code-block:: text
David Majnemer4a45f082015-07-31 17:58:14 +000010125
David Majnemer8cec2f22015-12-12 05:38:55 +000010126 %tok = cleanuppad within %cs []
David Majnemer4a45f082015-07-31 17:58:14 +000010127
Sean Silvaf722b002012-12-07 10:36:55 +000010128.. _intrinsics:
10129
10130Intrinsic Functions
10131===================
10132
10133LLVM supports the notion of an "intrinsic function". These functions
10134have well known names and semantics and are required to follow certain
10135restrictions. Overall, these intrinsics represent an extension mechanism
10136for the LLVM language that does not require changing all of the
10137transformations in LLVM when adding to the language (or the bitcode
10138reader/writer, the parser, etc...).
10139
10140Intrinsic function names must all start with an "``llvm.``" prefix. This
10141prefix is reserved in LLVM for intrinsic names; thus, function names may
10142not begin with this prefix. Intrinsic functions must always be external
10143functions: you cannot define the body of intrinsic functions. Intrinsic
10144functions may only be used in call or invoke instructions: it is illegal
10145to take the address of an intrinsic function. Additionally, because
10146intrinsic functions are part of the LLVM language, it is required if any
10147are added that they be documented here.
10148
10149Some intrinsic functions can be overloaded, i.e., the intrinsic
10150represents a family of functions that perform the same operation but on
10151different data types. Because LLVM can represent over 8 million
10152different integer types, overloading is used commonly to allow an
10153intrinsic function to operate on any integer type. One or more of the
10154argument types or the result type can be overloaded to accept any
10155integer type. Argument types may also be defined as exactly matching a
10156previous argument's type or the result type. This allows an intrinsic
10157function which accepts multiple arguments, but needs all of them to be
10158of the same type, to only be overloaded with respect to a single
10159argument or the result.
10160
10161Overloaded intrinsics will have the names of its overloaded argument
10162types encoded into its function name, each preceded by a period. Only
10163those types which are overloaded result in a name suffix. Arguments
10164whose type is matched against another type do not. For example, the
10165``llvm.ctpop`` function can take an integer of any width and returns an
10166integer of exactly the same integer width. This leads to a family of
10167functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
10168``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
10169overloaded, and only one type suffix is required. Because the argument's
10170type is matched against the return type, it does not require its own
10171name suffix.
10172
10173To learn how to add an intrinsic function, please see the `Extending
10174LLVM Guide <ExtendingLLVM.html>`_.
10175
10176.. _int_varargs:
10177
10178Variable Argument Handling Intrinsics
10179-------------------------------------
10180
10181Variable argument support is defined in LLVM with the
10182:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
10183functions. These functions are related to the similarly named macros
10184defined in the ``<stdarg.h>`` header file.
10185
10186All of these functions operate on arguments that use a target-specific
10187value type "``va_list``". The LLVM assembly language reference manual
10188does not define what this type is, so all transformations should be
10189prepared to handle these functions regardless of the type used.
10190
10191This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
10192variable argument handling intrinsic functions are used.
10193
10194.. code-block:: llvm
10195
Tim Northover79e72dd2014-11-02 01:21:51 +000010196 ; This struct is different for every platform. For most platforms,
10197 ; it is merely an i8*.
10198 %struct.va_list = type { i8* }
10199
10200 ; For Unix x86_64 platforms, va_list is the following struct:
10201 ; %struct.va_list = type { i32, i32, i8*, i8* }
10202
Sean Silvaf722b002012-12-07 10:36:55 +000010203 define i32 @test(i32 %X, ...) {
10204 ; Initialize variable argument processing
Tim Northover79e72dd2014-11-02 01:21:51 +000010205 %ap = alloca %struct.va_list
10206 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvaf722b002012-12-07 10:36:55 +000010207 call void @llvm.va_start(i8* %ap2)
10208
10209 ; Read a single integer argument
Tim Northover79e72dd2014-11-02 01:21:51 +000010210 %tmp = va_arg i8* %ap2, i32
Sean Silvaf722b002012-12-07 10:36:55 +000010211
10212 ; Demonstrate usage of llvm.va_copy and llvm.va_end
10213 %aq = alloca i8*
10214 %aq2 = bitcast i8** %aq to i8*
10215 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
10216 call void @llvm.va_end(i8* %aq2)
10217
10218 ; Stop processing of arguments.
10219 call void @llvm.va_end(i8* %ap2)
10220 ret i32 %tmp
10221 }
10222
10223 declare void @llvm.va_start(i8*)
10224 declare void @llvm.va_copy(i8*, i8*)
10225 declare void @llvm.va_end(i8*)
10226
10227.. _int_va_start:
10228
10229'``llvm.va_start``' Intrinsic
10230^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10231
10232Syntax:
10233"""""""
10234
10235::
10236
Nick Lewyckyf7e61562013-09-11 22:04:52 +000010237 declare void @llvm.va_start(i8* <arglist>)
Sean Silvaf722b002012-12-07 10:36:55 +000010238
10239Overview:
10240"""""""""
10241
10242The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
10243subsequent use by ``va_arg``.
10244
10245Arguments:
10246""""""""""
10247
10248The argument is a pointer to a ``va_list`` element to initialize.
10249
10250Semantics:
10251""""""""""
10252
10253The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
10254available in C. In a target-dependent way, it initializes the
10255``va_list`` element to which the argument points, so that the next call
10256to ``va_arg`` will produce the first variable argument passed to the
10257function. Unlike the C ``va_start`` macro, this intrinsic does not need
10258to know the last argument of the function as the compiler can figure
10259that out.
10260
10261'``llvm.va_end``' Intrinsic
10262^^^^^^^^^^^^^^^^^^^^^^^^^^^
10263
10264Syntax:
10265"""""""
10266
10267::
10268
10269 declare void @llvm.va_end(i8* <arglist>)
10270
10271Overview:
10272"""""""""
10273
10274The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
10275initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
10276
10277Arguments:
10278""""""""""
10279
10280The argument is a pointer to a ``va_list`` to destroy.
10281
10282Semantics:
10283""""""""""
10284
10285The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
10286available in C. In a target-dependent way, it destroys the ``va_list``
10287element to which the argument points. Calls to
10288:ref:`llvm.va_start <int_va_start>` and
10289:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
10290``llvm.va_end``.
10291
10292.. _int_va_copy:
10293
10294'``llvm.va_copy``' Intrinsic
10295^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10296
10297Syntax:
10298"""""""
10299
10300::
10301
10302 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
10303
10304Overview:
10305"""""""""
10306
10307The '``llvm.va_copy``' intrinsic copies the current argument position
10308from the source argument list to the destination argument list.
10309
10310Arguments:
10311""""""""""
10312
10313The first argument is a pointer to a ``va_list`` element to initialize.
10314The second argument is a pointer to a ``va_list`` element to copy from.
10315
10316Semantics:
10317""""""""""
10318
10319The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
10320available in C. In a target-dependent way, it copies the source
10321``va_list`` element into the destination ``va_list`` element. This
10322intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
10323arbitrarily complex and require, for example, memory allocation.
10324
10325Accurate Garbage Collection Intrinsics
10326--------------------------------------
10327
Philip Reames14f8f062015-02-25 23:52:06 +000010328LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini18233dc2015-03-14 22:04:06 +000010329(GC) requires the frontend to generate code containing appropriate intrinsic
10330calls and select an appropriate GC strategy which knows how to lower these
Philip Reames14f8f062015-02-25 23:52:06 +000010331intrinsics in a manner which is appropriate for the target collector.
10332
Sean Silvaf722b002012-12-07 10:36:55 +000010333These intrinsics allow identification of :ref:`GC roots on the
10334stack <int_gcroot>`, as well as garbage collector implementations that
10335require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reames14f8f062015-02-25 23:52:06 +000010336Frontends for type-safe garbage collected languages should generate
Sean Silvaf722b002012-12-07 10:36:55 +000010337these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reames64025c52015-02-25 23:45:20 +000010338details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvaf722b002012-12-07 10:36:55 +000010339
Philip Reames64025c52015-02-25 23:45:20 +000010340Experimental Statepoint Intrinsics
10341^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10342
10343LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silva7515d332015-08-06 22:56:48 +000010344collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini18233dc2015-03-14 22:04:06 +000010345to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silva7515d332015-08-06 22:56:48 +000010346:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini18233dc2015-03-14 22:04:06 +000010347differences in approach are covered in the `Garbage Collection with LLVM
Sean Silva7515d332015-08-06 22:56:48 +000010348<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reames64025c52015-02-25 23:45:20 +000010349described in :doc:`Statepoints`.
Sean Silvaf722b002012-12-07 10:36:55 +000010350
10351.. _int_gcroot:
10352
10353'``llvm.gcroot``' Intrinsic
10354^^^^^^^^^^^^^^^^^^^^^^^^^^^
10355
10356Syntax:
10357"""""""
10358
10359::
10360
10361 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
10362
10363Overview:
10364"""""""""
10365
10366The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
10367the code generator, and allows some metadata to be associated with it.
10368
10369Arguments:
10370""""""""""
10371
10372The first argument specifies the address of a stack object that contains
10373the root pointer. The second pointer (which must be either a constant or
10374a global value address) contains the meta-data to be associated with the
10375root.
10376
10377Semantics:
10378""""""""""
10379
10380At runtime, a call to this intrinsic stores a null pointer into the
10381"ptrloc" location. At compile-time, the code generator generates
10382information to allow the runtime to find the pointer at GC safe points.
10383The '``llvm.gcroot``' intrinsic may only be used in a function which
10384:ref:`specifies a GC algorithm <gc>`.
10385
10386.. _int_gcread:
10387
10388'``llvm.gcread``' Intrinsic
10389^^^^^^^^^^^^^^^^^^^^^^^^^^^
10390
10391Syntax:
10392"""""""
10393
10394::
10395
10396 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
10397
10398Overview:
10399"""""""""
10400
10401The '``llvm.gcread``' intrinsic identifies reads of references from heap
10402locations, allowing garbage collector implementations that require read
10403barriers.
10404
10405Arguments:
10406""""""""""
10407
10408The second argument is the address to read from, which should be an
10409address allocated from the garbage collector. The first object is a
10410pointer to the start of the referenced object, if needed by the language
10411runtime (otherwise null).
10412
10413Semantics:
10414""""""""""
10415
10416The '``llvm.gcread``' intrinsic has the same semantics as a load
10417instruction, but may be replaced with substantially more complex code by
10418the garbage collector runtime, as needed. The '``llvm.gcread``'
10419intrinsic may only be used in a function which :ref:`specifies a GC
10420algorithm <gc>`.
10421
10422.. _int_gcwrite:
10423
10424'``llvm.gcwrite``' Intrinsic
10425^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10426
10427Syntax:
10428"""""""
10429
10430::
10431
10432 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
10433
10434Overview:
10435"""""""""
10436
10437The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
10438locations, allowing garbage collector implementations that require write
10439barriers (such as generational or reference counting collectors).
10440
10441Arguments:
10442""""""""""
10443
10444The first argument is the reference to store, the second is the start of
10445the object to store it to, and the third is the address of the field of
10446Obj to store to. If the runtime does not require a pointer to the
10447object, Obj may be null.
10448
10449Semantics:
10450""""""""""
10451
10452The '``llvm.gcwrite``' intrinsic has the same semantics as a store
10453instruction, but may be replaced with substantially more complex code by
10454the garbage collector runtime, as needed. The '``llvm.gcwrite``'
10455intrinsic may only be used in a function which :ref:`specifies a GC
10456algorithm <gc>`.
10457
10458Code Generator Intrinsics
10459-------------------------
10460
10461These intrinsics are provided by LLVM to expose special features that
10462may only be implemented with code generator support.
10463
10464'``llvm.returnaddress``' Intrinsic
10465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10466
10467Syntax:
10468"""""""
10469
10470::
10471
George Burgess IVfb8d01e2017-05-20 04:52:29 +000010472 declare i8* @llvm.returnaddress(i32 <level>)
Sean Silvaf722b002012-12-07 10:36:55 +000010473
10474Overview:
10475"""""""""
10476
10477The '``llvm.returnaddress``' intrinsic attempts to compute a
10478target-specific value indicating the return address of the current
10479function or one of its callers.
10480
10481Arguments:
10482""""""""""
10483
10484The argument to this intrinsic indicates which function to return the
10485address for. Zero indicates the calling function, one indicates its
10486caller, etc. The argument is **required** to be a constant integer
10487value.
10488
10489Semantics:
10490""""""""""
10491
10492The '``llvm.returnaddress``' intrinsic either returns a pointer
10493indicating the return address of the specified call frame, or zero if it
10494cannot be identified. The value returned by this intrinsic is likely to
10495be incorrect or 0 for arguments other than zero, so it should only be
10496used for debugging purposes.
10497
10498Note that calling this intrinsic does not prevent function inlining or
10499other aggressive transformations, so the value returned may not be that
10500of the obvious source-language caller.
10501
Albert Gutowski16bf2082016-10-12 22:13:19 +000010502'``llvm.addressofreturnaddress``' Intrinsic
Albert Gutowskifc61cb52016-10-12 23:10:02 +000010503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Albert Gutowski16bf2082016-10-12 22:13:19 +000010504
10505Syntax:
10506"""""""
10507
10508::
10509
George Burgess IVfb8d01e2017-05-20 04:52:29 +000010510 declare i8* @llvm.addressofreturnaddress()
Albert Gutowski16bf2082016-10-12 22:13:19 +000010511
10512Overview:
10513"""""""""
10514
10515The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
10516pointer to the place in the stack frame where the return address of the
10517current function is stored.
10518
10519Semantics:
10520""""""""""
10521
10522Note that calling this intrinsic does not prevent function inlining or
10523other aggressive transformations, so the value returned may not be that
10524of the obvious source-language caller.
10525
Mandeep Singh Grang3516feb2018-11-01 21:23:47 +000010526This intrinsic is only implemented for x86 and aarch64.
Albert Gutowski16bf2082016-10-12 22:13:19 +000010527
Mandeep Singh Grang08238b72018-11-01 23:22:25 +000010528'``llvm.sponentry``' Intrinsic
10529^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10530
10531Syntax:
10532"""""""
10533
10534::
10535
10536 declare i8* @llvm.sponentry()
10537
10538Overview:
10539"""""""""
10540
10541The '``llvm.sponentry``' intrinsic returns the stack pointer value at
10542the entry of the current function calling this intrinsic.
10543
10544Semantics:
10545""""""""""
10546
10547Note this intrinsic is only verified on AArch64.
10548
Sean Silvaf722b002012-12-07 10:36:55 +000010549'``llvm.frameaddress``' Intrinsic
10550^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10551
10552Syntax:
10553"""""""
10554
10555::
10556
10557 declare i8* @llvm.frameaddress(i32 <level>)
10558
10559Overview:
10560"""""""""
10561
10562The '``llvm.frameaddress``' intrinsic attempts to return the
10563target-specific frame pointer value for the specified stack frame.
10564
10565Arguments:
10566""""""""""
10567
10568The argument to this intrinsic indicates which function to return the
10569frame pointer for. Zero indicates the calling function, one indicates
10570its caller, etc. The argument is **required** to be a constant integer
10571value.
10572
10573Semantics:
10574""""""""""
10575
10576The '``llvm.frameaddress``' intrinsic either returns a pointer
10577indicating the frame address of the specified call frame, or zero if it
10578cannot be identified. The value returned by this intrinsic is likely to
10579be incorrect or 0 for arguments other than zero, so it should only be
10580used for debugging purposes.
10581
10582Note that calling this intrinsic does not prevent function inlining or
10583other aggressive transformations, so the value returned may not be that
10584of the obvious source-language caller.
10585
Reid Kleckner8f32e5f2015-07-07 22:25:32 +000010586'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Kleckner221a7072015-01-13 00:48:10 +000010587^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10588
10589Syntax:
10590"""""""
10591
10592::
10593
Reid Kleckner8f32e5f2015-07-07 22:25:32 +000010594 declare void @llvm.localescape(...)
10595 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Kleckner221a7072015-01-13 00:48:10 +000010596
10597Overview:
10598"""""""""
10599
Reid Kleckner8f32e5f2015-07-07 22:25:32 +000010600The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
10601allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Kleckner9f7c8612015-03-05 18:26:34 +000010602live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner8f32e5f2015-07-07 22:25:32 +000010603computed during frame layout of the caller of ``llvm.localescape``.
Reid Kleckner221a7072015-01-13 00:48:10 +000010604
10605Arguments:
10606""""""""""
10607
Reid Kleckner8f32e5f2015-07-07 22:25:32 +000010608All arguments to '``llvm.localescape``' must be pointers to static allocas or
10609casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Kleckner9f7c8612015-03-05 18:26:34 +000010610once, and it can only do so from the entry block.
Reid Kleckner221a7072015-01-13 00:48:10 +000010611
Reid Kleckner8f32e5f2015-07-07 22:25:32 +000010612The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Kleckner221a7072015-01-13 00:48:10 +000010613bitcasted pointer to a function defined in the current module. The code
10614generator cannot determine the frame allocation offset of functions defined in
10615other modules.
10616
Reid Kleckner4fe74ca2015-07-07 23:23:03 +000010617The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
10618call frame that is currently live. The return value of '``llvm.localaddress``'
10619is one way to produce such a value, but various runtimes also expose a suitable
10620pointer in platform-specific ways.
Reid Kleckner221a7072015-01-13 00:48:10 +000010621
Reid Kleckner8f32e5f2015-07-07 22:25:32 +000010622The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
10623'``llvm.localescape``' to recover. It is zero-indexed.
Reid Kleckner9f7c8612015-03-05 18:26:34 +000010624
Reid Kleckner221a7072015-01-13 00:48:10 +000010625Semantics:
10626""""""""""
10627
Reid Kleckner8f32e5f2015-07-07 22:25:32 +000010628These intrinsics allow a group of functions to share access to a set of local
10629stack allocations of a one parent function. The parent function may call the
10630'``llvm.localescape``' intrinsic once from the function entry block, and the
10631child functions can use '``llvm.localrecover``' to access the escaped allocas.
10632The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
10633the escaped allocas are allocated, which would break attempts to use
10634'``llvm.localrecover``'.
Reid Kleckner221a7072015-01-13 00:48:10 +000010635
Renato Golin22f779d2014-05-06 16:51:25 +000010636.. _int_read_register:
10637.. _int_write_register:
10638
10639'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
10640^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10641
10642Syntax:
10643"""""""
10644
10645::
10646
10647 declare i32 @llvm.read_register.i32(metadata)
10648 declare i64 @llvm.read_register.i64(metadata)
10649 declare void @llvm.write_register.i32(metadata, i32 @value)
10650 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smith1ef70ff2014-12-15 19:07:53 +000010651 !0 = !{!"sp\00"}
Renato Golin22f779d2014-05-06 16:51:25 +000010652
10653Overview:
10654"""""""""
10655
10656The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
10657provides access to the named register. The register must be valid on
10658the architecture being compiled to. The type needs to be compatible
10659with the register being read.
10660
10661Semantics:
10662""""""""""
10663
10664The '``llvm.read_register``' intrinsic returns the current value of the
10665register, where possible. The '``llvm.write_register``' intrinsic sets
10666the current value of the register, where possible.
10667
10668This is useful to implement named register global variables that need
10669to always be mapped to a specific register, as is common practice on
10670bare-metal programs including OS kernels.
10671
10672The compiler doesn't check for register availability or use of the used
10673register in surrounding code, including inline assembly. Because of that,
10674allocatable registers are not supported.
10675
10676Warning: So far it only works with the stack pointer on selected
Tim Northover29f94c72014-05-24 12:50:23 +000010677architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golin22f779d2014-05-06 16:51:25 +000010678work is needed to support other registers and even more so, allocatable
10679registers.
10680
Sean Silvaf722b002012-12-07 10:36:55 +000010681.. _int_stacksave:
10682
10683'``llvm.stacksave``' Intrinsic
10684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10685
10686Syntax:
10687"""""""
10688
10689::
10690
10691 declare i8* @llvm.stacksave()
10692
10693Overview:
10694"""""""""
10695
10696The '``llvm.stacksave``' intrinsic is used to remember the current state
10697of the function stack, for use with
10698:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
10699implementing language features like scoped automatic variable sized
10700arrays in C99.
10701
10702Semantics:
10703""""""""""
10704
10705This intrinsic returns a opaque pointer value that can be passed to
10706:ref:`llvm.stackrestore <int_stackrestore>`. When an
10707``llvm.stackrestore`` intrinsic is executed with a value saved from
10708``llvm.stacksave``, it effectively restores the state of the stack to
10709the state it was in when the ``llvm.stacksave`` intrinsic executed. In
10710practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
10711were allocated after the ``llvm.stacksave`` was executed.
10712
10713.. _int_stackrestore:
10714
10715'``llvm.stackrestore``' Intrinsic
10716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10717
10718Syntax:
10719"""""""
10720
10721::
10722
10723 declare void @llvm.stackrestore(i8* %ptr)
10724
10725Overview:
10726"""""""""
10727
10728The '``llvm.stackrestore``' intrinsic is used to restore the state of
10729the function stack to the state it was in when the corresponding
10730:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
10731useful for implementing language features like scoped automatic variable
10732sized arrays in C99.
10733
10734Semantics:
10735""""""""""
10736
10737See the description for :ref:`llvm.stacksave <int_stacksave>`.
10738
Yury Gribov2fdb3b82015-12-01 11:40:55 +000010739.. _int_get_dynamic_area_offset:
10740
10741'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribovf0052c52015-12-01 13:24:48 +000010742^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribov2fdb3b82015-12-01 11:40:55 +000010743
10744Syntax:
10745"""""""
10746
10747::
10748
10749 declare i32 @llvm.get.dynamic.area.offset.i32()
10750 declare i64 @llvm.get.dynamic.area.offset.i64()
10751
Lang Hamesf267cd72016-10-08 00:20:42 +000010752Overview:
10753"""""""""
Yury Gribov2fdb3b82015-12-01 11:40:55 +000010754
10755 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
10756 get the offset from native stack pointer to the address of the most
10757 recent dynamic alloca on the caller's stack. These intrinsics are
10758 intendend for use in combination with
10759 :ref:`llvm.stacksave <int_stacksave>` to get a
10760 pointer to the most recent dynamic alloca. This is useful, for example,
10761 for AddressSanitizer's stack unpoisoning routines.
10762
10763Semantics:
10764""""""""""
10765
10766 These intrinsics return a non-negative integer value that can be used to
10767 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
10768 on the caller's stack. In particular, for targets where stack grows downwards,
10769 adding this offset to the native stack pointer would get the address of the most
10770 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0bab80e2016-07-28 09:28:58 +000010771 complicated, because subtracting this value from stack pointer would get the address
Yury Gribov2fdb3b82015-12-01 11:40:55 +000010772 one past the end of the most recent dynamic alloca.
10773
10774 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
10775 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
10776 compile-time-known constant value.
10777
10778 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
Matt Arsenault9065c482017-03-30 23:36:47 +000010779 must match the target's default address space's (address space 0) pointer type.
Yury Gribov2fdb3b82015-12-01 11:40:55 +000010780
Sean Silvaf722b002012-12-07 10:36:55 +000010781'``llvm.prefetch``' Intrinsic
10782^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10783
10784Syntax:
10785"""""""
10786
10787::
10788
10789 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
10790
10791Overview:
10792"""""""""
10793
10794The '``llvm.prefetch``' intrinsic is a hint to the code generator to
10795insert a prefetch instruction if supported; otherwise, it is a noop.
10796Prefetches have no effect on the behavior of the program but can change
10797its performance characteristics.
10798
10799Arguments:
10800""""""""""
10801
10802``address`` is the address to be prefetched, ``rw`` is the specifier
10803determining if the fetch should be for a read (0) or write (1), and
10804``locality`` is a temporal locality specifier ranging from (0) - no
10805locality, to (3) - extremely local keep in cache. The ``cache type``
10806specifies whether the prefetch is performed on the data (1) or
10807instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
10808arguments must be constant integers.
10809
10810Semantics:
10811""""""""""
10812
10813This intrinsic does not modify the behavior of the program. In
10814particular, prefetches cannot trap and do not produce a value. On
10815targets that support this intrinsic, the prefetch can provide hints to
10816the processor cache for better performance.
10817
10818'``llvm.pcmarker``' Intrinsic
10819^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10820
10821Syntax:
10822"""""""
10823
10824::
10825
10826 declare void @llvm.pcmarker(i32 <id>)
10827
10828Overview:
10829"""""""""
10830
10831The '``llvm.pcmarker``' intrinsic is a method to export a Program
10832Counter (PC) in a region of code to simulators and other tools. The
10833method is target specific, but it is expected that the marker will use
10834exported symbols to transmit the PC of the marker. The marker makes no
10835guarantees that it will remain with any specific instruction after
10836optimizations. It is possible that the presence of a marker will inhibit
10837optimizations. The intended use is to be inserted after optimizations to
10838allow correlations of simulation runs.
10839
10840Arguments:
10841""""""""""
10842
10843``id`` is a numerical id identifying the marker.
10844
10845Semantics:
10846""""""""""
10847
10848This intrinsic does not modify the behavior of the program. Backends
10849that do not support this intrinsic may ignore it.
10850
10851'``llvm.readcyclecounter``' Intrinsic
10852^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10853
10854Syntax:
10855"""""""
10856
10857::
10858
10859 declare i64 @llvm.readcyclecounter()
10860
10861Overview:
10862"""""""""
10863
10864The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
10865counter register (or similar low latency, high accuracy clocks) on those
10866targets that support it. On X86, it should map to RDTSC. On Alpha, it
10867should map to RPCC. As the backing counters overflow quickly (on the
10868order of 9 seconds on alpha), this should only be used for small
10869timings.
10870
10871Semantics:
10872""""""""""
10873
10874When directly supported, reading the cycle counter should not modify any
10875memory. Implementations are allowed to either return a application
10876specific value or a system wide value. On backends without support, this
10877is lowered to a constant 0.
10878
Tim Northover5a02fc42013-05-23 19:11:20 +000010879Note that runtime support may be conditional on the privilege-level code is
10880running at and the host platform.
10881
Renato Golinc4b058f2014-03-26 12:52:28 +000010882'``llvm.clear_cache``' Intrinsic
10883^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10884
10885Syntax:
10886"""""""
10887
10888::
10889
10890 declare void @llvm.clear_cache(i8*, i8*)
10891
10892Overview:
10893"""""""""
10894
Joerg Sonnenberger25d0cfe2014-03-26 14:35:21 +000010895The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
10896in the specified range to the execution unit of the processor. On
10897targets with non-unified instruction and data cache, the implementation
10898flushes the instruction cache.
Renato Golinc4b058f2014-03-26 12:52:28 +000010899
10900Semantics:
10901""""""""""
10902
Joerg Sonnenberger25d0cfe2014-03-26 14:35:21 +000010903On platforms with coherent instruction and data caches (e.g. x86), this
10904intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker46d36be2014-04-09 14:47:27 +000010905cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger25d0cfe2014-03-26 14:35:21 +000010906instructions or a system call, if cache flushing requires special
10907privileges.
Renato Golinc4b058f2014-03-26 12:52:28 +000010908
Sean Silva71e245c2014-04-07 22:29:53 +000010909The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger25d0cfe2014-03-26 14:35:21 +000010910time library.
Renato Golin58839f42014-03-26 14:01:32 +000010911
Joerg Sonnenberger25d0cfe2014-03-26 14:35:21 +000010912This instrinsic does *not* empty the instruction pipeline. Modifications
10913of the current function are outside the scope of the intrinsic.
Renato Golinc4b058f2014-03-26 12:52:28 +000010914
Vedant Kumar1b24b742018-01-26 23:54:25 +000010915'``llvm.instrprof.increment``' Intrinsic
Justin Bogner70b07512014-12-08 18:02:35 +000010916^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10917
10918Syntax:
10919"""""""
10920
10921::
10922
Vedant Kumar1b24b742018-01-26 23:54:25 +000010923 declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
Justin Bogner70b07512014-12-08 18:02:35 +000010924 i32 <num-counters>, i32 <index>)
10925
10926Overview:
10927"""""""""
10928
Vedant Kumar1b24b742018-01-26 23:54:25 +000010929The '``llvm.instrprof.increment``' intrinsic can be emitted by a
Justin Bogner70b07512014-12-08 18:02:35 +000010930frontend for use with instrumentation based profiling. These will be
10931lowered by the ``-instrprof`` pass to generate execution counts of a
10932program at runtime.
10933
10934Arguments:
10935""""""""""
10936
10937The first argument is a pointer to a global variable containing the
10938name of the entity being instrumented. This should generally be the
10939(mangled) function name for a set of counters.
10940
10941The second argument is a hash value that can be used by the consumer
10942of the profile data to detect changes to the instrumented source, and
10943the third is the number of counters associated with ``name``. It is an
10944error if ``hash`` or ``num-counters`` differ between two instances of
Vedant Kumar1b24b742018-01-26 23:54:25 +000010945``instrprof.increment`` that refer to the same name.
Justin Bogner70b07512014-12-08 18:02:35 +000010946
10947The last argument refers to which of the counters for ``name`` should
10948be incremented. It should be a value between 0 and ``num-counters``.
10949
10950Semantics:
10951""""""""""
10952
10953This intrinsic represents an increment of a profiling counter. It will
10954cause the ``-instrprof`` pass to generate the appropriate data
10955structures and the code to increment the appropriate value, in a
10956format that can be written out by a compiler runtime and consumed via
10957the ``llvm-profdata`` tool.
10958
Vedant Kumar1b24b742018-01-26 23:54:25 +000010959'``llvm.instrprof.increment.step``' Intrinsic
Xinliang David Li178b58d2016-09-18 22:10:19 +000010960^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Xinliang David Liab430222016-09-18 18:34:07 +000010961
10962Syntax:
10963"""""""
10964
10965::
10966
Vedant Kumar1b24b742018-01-26 23:54:25 +000010967 declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
Xinliang David Liab430222016-09-18 18:34:07 +000010968 i32 <num-counters>,
10969 i32 <index>, i64 <step>)
10970
10971Overview:
10972"""""""""
10973
Vedant Kumar1b24b742018-01-26 23:54:25 +000010974The '``llvm.instrprof.increment.step``' intrinsic is an extension to
10975the '``llvm.instrprof.increment``' intrinsic with an additional fifth
Xinliang David Liab430222016-09-18 18:34:07 +000010976argument to specify the step of the increment.
10977
10978Arguments:
10979""""""""""
Vedant Kumar1b24b742018-01-26 23:54:25 +000010980The first four arguments are the same as '``llvm.instrprof.increment``'
Pete Couperus333b7c62017-08-23 20:58:22 +000010981intrinsic.
Xinliang David Liab430222016-09-18 18:34:07 +000010982
10983The last argument specifies the value of the increment of the counter variable.
10984
10985Semantics:
10986""""""""""
Vedant Kumar1b24b742018-01-26 23:54:25 +000010987See description of '``llvm.instrprof.increment``' instrinsic.
Xinliang David Liab430222016-09-18 18:34:07 +000010988
10989
Vedant Kumar1b24b742018-01-26 23:54:25 +000010990'``llvm.instrprof.value.profile``' Intrinsic
Betul Buyukkurta5be9e32015-11-18 18:14:55 +000010991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10992
10993Syntax:
10994"""""""
10995
10996::
10997
Vedant Kumar1b24b742018-01-26 23:54:25 +000010998 declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
Betul Buyukkurta5be9e32015-11-18 18:14:55 +000010999 i64 <value>, i32 <value_kind>,
11000 i32 <index>)
11001
11002Overview:
11003"""""""""
11004
Vedant Kumar1b24b742018-01-26 23:54:25 +000011005The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
Betul Buyukkurta5be9e32015-11-18 18:14:55 +000011006frontend for use with instrumentation based profiling. This will be
11007lowered by the ``-instrprof`` pass to find out the target values,
11008instrumented expressions take in a program at runtime.
11009
11010Arguments:
11011""""""""""
11012
11013The first argument is a pointer to a global variable containing the
11014name of the entity being instrumented. ``name`` should generally be the
11015(mangled) function name for a set of counters.
11016
11017The second argument is a hash value that can be used by the consumer
11018of the profile data to detect changes to the instrumented source. It
11019is an error if ``hash`` differs between two instances of
Vedant Kumar1b24b742018-01-26 23:54:25 +000011020``llvm.instrprof.*`` that refer to the same name.
Betul Buyukkurta5be9e32015-11-18 18:14:55 +000011021
11022The third argument is the value of the expression being profiled. The profiled
11023expression's value should be representable as an unsigned 64-bit value. The
11024fourth argument represents the kind of value profiling that is being done. The
11025supported value profiling kinds are enumerated through the
11026``InstrProfValueKind`` type declared in the
11027``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
11028index of the instrumented expression within ``name``. It should be >= 0.
11029
11030Semantics:
11031""""""""""
11032
11033This intrinsic represents the point where a call to a runtime routine
11034should be inserted for value profiling of target expressions. ``-instrprof``
11035pass will generate the appropriate data structures and replace the
Vedant Kumar1b24b742018-01-26 23:54:25 +000011036``llvm.instrprof.value.profile`` intrinsic with the call to the profile
Betul Buyukkurta5be9e32015-11-18 18:14:55 +000011037runtime library with proper arguments.
11038
Marcin Koscielnicki9ebfa4d2016-04-19 20:51:05 +000011039'``llvm.thread.pointer``' Intrinsic
11040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11041
11042Syntax:
11043"""""""
11044
11045::
11046
11047 declare i8* @llvm.thread.pointer()
11048
11049Overview:
11050"""""""""
11051
11052The '``llvm.thread.pointer``' intrinsic returns the value of the thread
11053pointer.
11054
11055Semantics:
11056""""""""""
11057
11058The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
11059for the current thread. The exact semantics of this value are target
11060specific: it may point to the start of TLS area, to the end, or somewhere
11061in the middle. Depending on the target, this intrinsic may read a register,
11062call a helper function, read from an alternate memory space, or perform
11063other operations necessary to locate the TLS area. Not all targets support
11064this intrinsic.
11065
Sean Silvaf722b002012-12-07 10:36:55 +000011066Standard C Library Intrinsics
11067-----------------------------
11068
11069LLVM provides intrinsics for a few important standard C library
11070functions. These intrinsics allow source-language front-ends to pass
11071information about the alignment of the pointer arguments to the code
11072generator, providing opportunity for more efficient code generation.
11073
11074.. _int_memcpy:
11075
11076'``llvm.memcpy``' Intrinsic
11077^^^^^^^^^^^^^^^^^^^^^^^^^^^
11078
11079Syntax:
11080"""""""
11081
11082This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
11083integer bit width and for different address spaces. Not all targets
11084support all bit widths however.
11085
11086::
11087
11088 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilsonafa2e7e2018-01-19 17:13:12 +000011089 i32 <len>, i1 <isvolatile>)
Sean Silvaf722b002012-12-07 10:36:55 +000011090 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilsonafa2e7e2018-01-19 17:13:12 +000011091 i64 <len>, i1 <isvolatile>)
Sean Silvaf722b002012-12-07 10:36:55 +000011092
11093Overview:
11094"""""""""
11095
11096The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
11097source location to the destination location.
11098
11099Note that, unlike the standard libc function, the ``llvm.memcpy.*``
Daniel Neilsonafa2e7e2018-01-19 17:13:12 +000011100intrinsics do not return a value, takes extra isvolatile
Sean Silvaf722b002012-12-07 10:36:55 +000011101arguments and the pointers can be in specified address spaces.
11102
11103Arguments:
11104""""""""""
11105
11106The first argument is a pointer to the destination, the second is a
11107pointer to the source. The third argument is an integer argument
Daniel Neilsonafa2e7e2018-01-19 17:13:12 +000011108specifying the number of bytes to copy, and the fourth is a
Sean Silvaf722b002012-12-07 10:36:55 +000011109boolean indicating a volatile access.
11110
Daniel Neilsonf445ab02018-01-19 17:24:21 +000011111The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilsonafa2e7e2018-01-19 17:13:12 +000011112for the first and second arguments.
Sean Silvaf722b002012-12-07 10:36:55 +000011113
11114If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
11115a :ref:`volatile operation <volatile>`. The detailed access behavior is not
11116very cleanly specified and it is unwise to depend on it.
11117
11118Semantics:
11119""""""""""
11120
11121The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
11122source location to the destination location, which are not allowed to
11123overlap. It copies "len" bytes of memory over. If the argument is known
11124to be aligned to some boundary, this can be specified as the fourth
Bill Wendlingf47ffe02013-10-18 23:26:55 +000011125argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvaf722b002012-12-07 10:36:55 +000011126
Daniel Neilsonc96acc52017-07-12 15:25:26 +000011127.. _int_memmove:
11128
Sean Silvaf722b002012-12-07 10:36:55 +000011129'``llvm.memmove``' Intrinsic
11130^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11131
11132Syntax:
11133"""""""
11134
11135This is an overloaded intrinsic. You can use llvm.memmove on any integer
11136bit width and for different address space. Not all targets support all
11137bit widths however.
11138
11139::
11140
11141 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
Daniel Neilsonafa2e7e2018-01-19 17:13:12 +000011142 i32 <len>, i1 <isvolatile>)
Sean Silvaf722b002012-12-07 10:36:55 +000011143 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
Daniel Neilsonafa2e7e2018-01-19 17:13:12 +000011144 i64 <len>, i1 <isvolatile>)
Sean Silvaf722b002012-12-07 10:36:55 +000011145
11146Overview:
11147"""""""""
11148
11149The '``llvm.memmove.*``' intrinsics move a block of memory from the
11150source location to the destination location. It is similar to the
11151'``llvm.memcpy``' intrinsic but allows the two memory locations to
11152overlap.
11153
11154Note that, unlike the standard libc function, the ``llvm.memmove.*``
Daniel Neilsonafa2e7e2018-01-19 17:13:12 +000011155intrinsics do not return a value, takes an extra isvolatile
11156argument and the pointers can be in specified address spaces.
Sean Silvaf722b002012-12-07 10:36:55 +000011157
11158Arguments:
11159""""""""""
11160
11161The first argument is a pointer to the destination, the second is a
11162pointer to the source. The third argument is an integer argument
Daniel Neilsonafa2e7e2018-01-19 17:13:12 +000011163specifying the number of bytes to copy, and the fourth is a
Sean Silvaf722b002012-12-07 10:36:55 +000011164boolean indicating a volatile access.
11165
Daniel Neilson4f824362018-01-19 17:32:33 +000011166The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilsonafa2e7e2018-01-19 17:13:12 +000011167for the first and second arguments.
Sean Silvaf722b002012-12-07 10:36:55 +000011168
11169If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
11170is a :ref:`volatile operation <volatile>`. The detailed access behavior is
11171not very cleanly specified and it is unwise to depend on it.
11172
11173Semantics:
11174""""""""""
11175
11176The '``llvm.memmove.*``' intrinsics copy a block of memory from the
11177source location to the destination location, which may overlap. It
11178copies "len" bytes of memory over. If the argument is known to be
11179aligned to some boundary, this can be specified as the fourth argument,
Bill Wendlingf47ffe02013-10-18 23:26:55 +000011180otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvaf722b002012-12-07 10:36:55 +000011181
Daniel Neilsona06b0912017-07-12 21:57:23 +000011182.. _int_memset:
11183
Sean Silvaf722b002012-12-07 10:36:55 +000011184'``llvm.memset.*``' Intrinsics
11185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11186
11187Syntax:
11188"""""""
11189
11190This is an overloaded intrinsic. You can use llvm.memset on any integer
11191bit width and for different address spaces. However, not all targets
11192support all bit widths.
11193
11194::
11195
11196 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
Daniel Neilsonafa2e7e2018-01-19 17:13:12 +000011197 i32 <len>, i1 <isvolatile>)
Sean Silvaf722b002012-12-07 10:36:55 +000011198 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
Daniel Neilsonafa2e7e2018-01-19 17:13:12 +000011199 i64 <len>, i1 <isvolatile>)
Sean Silvaf722b002012-12-07 10:36:55 +000011200
11201Overview:
11202"""""""""
11203
11204The '``llvm.memset.*``' intrinsics fill a block of memory with a
11205particular byte value.
11206
11207Note that, unlike the standard libc function, the ``llvm.memset``
Daniel Neilsonafa2e7e2018-01-19 17:13:12 +000011208intrinsic does not return a value and takes an extra volatile
11209argument. Also, the destination can be in an arbitrary address space.
Sean Silvaf722b002012-12-07 10:36:55 +000011210
11211Arguments:
11212""""""""""
11213
11214The first argument is a pointer to the destination to fill, the second
11215is the byte value with which to fill it, the third argument is an
11216integer argument specifying the number of bytes to fill, and the fourth
Daniel Neilsonafa2e7e2018-01-19 17:13:12 +000011217is a boolean indicating a volatile access.
Sean Silvaf722b002012-12-07 10:36:55 +000011218
Daniel Neilson4f824362018-01-19 17:32:33 +000011219The :ref:`align <attr_align>` parameter attribute can be provided
Daniel Neilsonafa2e7e2018-01-19 17:13:12 +000011220for the first arguments.
Sean Silvaf722b002012-12-07 10:36:55 +000011221
11222If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
11223a :ref:`volatile operation <volatile>`. The detailed access behavior is not
11224very cleanly specified and it is unwise to depend on it.
11225
11226Semantics:
11227""""""""""
11228
11229The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +000011230at the destination location.
Sean Silvaf722b002012-12-07 10:36:55 +000011231
11232'``llvm.sqrt.*``' Intrinsic
11233^^^^^^^^^^^^^^^^^^^^^^^^^^^
11234
11235Syntax:
11236"""""""
11237
11238This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
Sanjay Patel00e900a2017-11-06 16:27:15 +000011239floating-point or vector of floating-point type. Not all targets support
Sean Silvaf722b002012-12-07 10:36:55 +000011240all types however.
11241
11242::
11243
11244 declare float @llvm.sqrt.f32(float %Val)
11245 declare double @llvm.sqrt.f64(double %Val)
11246 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
11247 declare fp128 @llvm.sqrt.f128(fp128 %Val)
11248 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
11249
11250Overview:
11251"""""""""
11252
Sanjay Patel00e900a2017-11-06 16:27:15 +000011253The '``llvm.sqrt``' intrinsics return the square root of the specified value.
Sean Silvaf722b002012-12-07 10:36:55 +000011254
11255Arguments:
11256""""""""""
11257
Sanjay Patel00e900a2017-11-06 16:27:15 +000011258The argument and return value are floating-point numbers of the same type.
Sean Silvaf722b002012-12-07 10:36:55 +000011259
11260Semantics:
11261""""""""""
11262
Sanjay Patel00e900a2017-11-06 16:27:15 +000011263Return the same value as a corresponding libm '``sqrt``' function but without
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +000011264trapping or setting ``errno``. For types specified by IEEE-754, the result
Sanjay Patel00e900a2017-11-06 16:27:15 +000011265matches a conforming libm implementation.
11266
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +000011267When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel00e900a2017-11-06 16:27:15 +000011268using a less accurate calculation.
Sean Silvaf722b002012-12-07 10:36:55 +000011269
11270'``llvm.powi.*``' Intrinsic
11271^^^^^^^^^^^^^^^^^^^^^^^^^^^
11272
11273Syntax:
11274"""""""
11275
11276This is an overloaded intrinsic. You can use ``llvm.powi`` on any
Sanjay Patel16e9a292018-03-21 14:15:33 +000011277floating-point or vector of floating-point type. Not all targets support
Sean Silvaf722b002012-12-07 10:36:55 +000011278all types however.
11279
11280::
11281
11282 declare float @llvm.powi.f32(float %Val, i32 %power)
11283 declare double @llvm.powi.f64(double %Val, i32 %power)
11284 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
11285 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
11286 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
11287
11288Overview:
11289"""""""""
11290
11291The '``llvm.powi.*``' intrinsics return the first operand raised to the
11292specified (positive or negative) power. The order of evaluation of
Sanjay Patel16e9a292018-03-21 14:15:33 +000011293multiplications is not defined. When a vector of floating-point type is
Sean Silvaf722b002012-12-07 10:36:55 +000011294used, the second argument remains a scalar integer value.
11295
11296Arguments:
11297""""""""""
11298
11299The second argument is an integer power, and the first is a value to
11300raise to that power.
11301
11302Semantics:
11303""""""""""
11304
11305This function returns the first value raised to the second power with an
11306unspecified sequence of rounding operations.
11307
11308'``llvm.sin.*``' Intrinsic
11309^^^^^^^^^^^^^^^^^^^^^^^^^^
11310
11311Syntax:
11312"""""""
11313
11314This is an overloaded intrinsic. You can use ``llvm.sin`` on any
Sanjay Patel00e900a2017-11-06 16:27:15 +000011315floating-point or vector of floating-point type. Not all targets support
Sean Silvaf722b002012-12-07 10:36:55 +000011316all types however.
11317
11318::
11319
11320 declare float @llvm.sin.f32(float %Val)
11321 declare double @llvm.sin.f64(double %Val)
11322 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
11323 declare fp128 @llvm.sin.f128(fp128 %Val)
11324 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
11325
11326Overview:
11327"""""""""
11328
11329The '``llvm.sin.*``' intrinsics return the sine of the operand.
11330
11331Arguments:
11332""""""""""
11333
Sanjay Patel00e900a2017-11-06 16:27:15 +000011334The argument and return value are floating-point numbers of the same type.
Sean Silvaf722b002012-12-07 10:36:55 +000011335
11336Semantics:
11337""""""""""
11338
Sanjay Patel00e900a2017-11-06 16:27:15 +000011339Return the same value as a corresponding libm '``sin``' function but without
11340trapping or setting ``errno``.
11341
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +000011342When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel00e900a2017-11-06 16:27:15 +000011343using a less accurate calculation.
Sean Silvaf722b002012-12-07 10:36:55 +000011344
11345'``llvm.cos.*``' Intrinsic
11346^^^^^^^^^^^^^^^^^^^^^^^^^^
11347
11348Syntax:
11349"""""""
11350
11351This is an overloaded intrinsic. You can use ``llvm.cos`` on any
Sanjay Patel00e900a2017-11-06 16:27:15 +000011352floating-point or vector of floating-point type. Not all targets support
Sean Silvaf722b002012-12-07 10:36:55 +000011353all types however.
11354
11355::
11356
11357 declare float @llvm.cos.f32(float %Val)
11358 declare double @llvm.cos.f64(double %Val)
11359 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
11360 declare fp128 @llvm.cos.f128(fp128 %Val)
11361 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
11362
11363Overview:
11364"""""""""
11365
11366The '``llvm.cos.*``' intrinsics return the cosine of the operand.
11367
11368Arguments:
11369""""""""""
11370
Sanjay Patel00e900a2017-11-06 16:27:15 +000011371The argument and return value are floating-point numbers of the same type.
Sean Silvaf722b002012-12-07 10:36:55 +000011372
11373Semantics:
11374""""""""""
11375
Sanjay Patel00e900a2017-11-06 16:27:15 +000011376Return the same value as a corresponding libm '``cos``' function but without
11377trapping or setting ``errno``.
11378
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +000011379When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel00e900a2017-11-06 16:27:15 +000011380using a less accurate calculation.
Sean Silvaf722b002012-12-07 10:36:55 +000011381
11382'``llvm.pow.*``' Intrinsic
11383^^^^^^^^^^^^^^^^^^^^^^^^^^
11384
11385Syntax:
11386"""""""
11387
11388This is an overloaded intrinsic. You can use ``llvm.pow`` on any
Sanjay Patel00e900a2017-11-06 16:27:15 +000011389floating-point or vector of floating-point type. Not all targets support
Sean Silvaf722b002012-12-07 10:36:55 +000011390all types however.
11391
11392::
11393
11394 declare float @llvm.pow.f32(float %Val, float %Power)
11395 declare double @llvm.pow.f64(double %Val, double %Power)
11396 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
11397 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
11398 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
11399
11400Overview:
11401"""""""""
11402
11403The '``llvm.pow.*``' intrinsics return the first operand raised to the
11404specified (positive or negative) power.
11405
11406Arguments:
11407""""""""""
11408
Sanjay Patel00e900a2017-11-06 16:27:15 +000011409The arguments and return value are floating-point numbers of the same type.
Sean Silvaf722b002012-12-07 10:36:55 +000011410
11411Semantics:
11412""""""""""
11413
Sanjay Patel00e900a2017-11-06 16:27:15 +000011414Return the same value as a corresponding libm '``pow``' function but without
11415trapping or setting ``errno``.
11416
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +000011417When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel00e900a2017-11-06 16:27:15 +000011418using a less accurate calculation.
Sean Silvaf722b002012-12-07 10:36:55 +000011419
11420'``llvm.exp.*``' Intrinsic
11421^^^^^^^^^^^^^^^^^^^^^^^^^^
11422
11423Syntax:
11424"""""""
11425
11426This is an overloaded intrinsic. You can use ``llvm.exp`` on any
Sanjay Patel00e900a2017-11-06 16:27:15 +000011427floating-point or vector of floating-point type. Not all targets support
Sean Silvaf722b002012-12-07 10:36:55 +000011428all types however.
11429
11430::
11431
11432 declare float @llvm.exp.f32(float %Val)
11433 declare double @llvm.exp.f64(double %Val)
11434 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
11435 declare fp128 @llvm.exp.f128(fp128 %Val)
11436 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
11437
11438Overview:
11439"""""""""
11440
Andrew Kaylorb66309b2017-04-11 21:52:40 +000011441The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
11442value.
Sean Silvaf722b002012-12-07 10:36:55 +000011443
11444Arguments:
11445""""""""""
11446
Sanjay Patel00e900a2017-11-06 16:27:15 +000011447The argument and return value are floating-point numbers of the same type.
Sean Silvaf722b002012-12-07 10:36:55 +000011448
11449Semantics:
11450""""""""""
11451
Sanjay Patel00e900a2017-11-06 16:27:15 +000011452Return the same value as a corresponding libm '``exp``' function but without
11453trapping or setting ``errno``.
11454
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +000011455When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel00e900a2017-11-06 16:27:15 +000011456using a less accurate calculation.
Sean Silvaf722b002012-12-07 10:36:55 +000011457
11458'``llvm.exp2.*``' Intrinsic
11459^^^^^^^^^^^^^^^^^^^^^^^^^^^
11460
11461Syntax:
11462"""""""
11463
11464This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
Sanjay Patel00e900a2017-11-06 16:27:15 +000011465floating-point or vector of floating-point type. Not all targets support
Sean Silvaf722b002012-12-07 10:36:55 +000011466all types however.
11467
11468::
11469
11470 declare float @llvm.exp2.f32(float %Val)
11471 declare double @llvm.exp2.f64(double %Val)
11472 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
11473 declare fp128 @llvm.exp2.f128(fp128 %Val)
11474 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
11475
11476Overview:
11477"""""""""
11478
Andrew Kaylorb66309b2017-04-11 21:52:40 +000011479The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
11480specified value.
Sean Silvaf722b002012-12-07 10:36:55 +000011481
11482Arguments:
11483""""""""""
11484
Sanjay Patel00e900a2017-11-06 16:27:15 +000011485The argument and return value are floating-point numbers of the same type.
Sean Silvaf722b002012-12-07 10:36:55 +000011486
11487Semantics:
11488""""""""""
11489
Sanjay Patel00e900a2017-11-06 16:27:15 +000011490Return the same value as a corresponding libm '``exp2``' function but without
11491trapping or setting ``errno``.
11492
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +000011493When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel00e900a2017-11-06 16:27:15 +000011494using a less accurate calculation.
Sean Silvaf722b002012-12-07 10:36:55 +000011495
11496'``llvm.log.*``' Intrinsic
11497^^^^^^^^^^^^^^^^^^^^^^^^^^
11498
11499Syntax:
11500"""""""
11501
11502This is an overloaded intrinsic. You can use ``llvm.log`` on any
Sanjay Patel00e900a2017-11-06 16:27:15 +000011503floating-point or vector of floating-point type. Not all targets support
Sean Silvaf722b002012-12-07 10:36:55 +000011504all types however.
11505
11506::
11507
11508 declare float @llvm.log.f32(float %Val)
11509 declare double @llvm.log.f64(double %Val)
11510 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
11511 declare fp128 @llvm.log.f128(fp128 %Val)
11512 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
11513
11514Overview:
11515"""""""""
11516
Andrew Kaylorb66309b2017-04-11 21:52:40 +000011517The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
11518value.
Sean Silvaf722b002012-12-07 10:36:55 +000011519
11520Arguments:
11521""""""""""
11522
Sanjay Patel00e900a2017-11-06 16:27:15 +000011523The argument and return value are floating-point numbers of the same type.
Sean Silvaf722b002012-12-07 10:36:55 +000011524
11525Semantics:
11526""""""""""
11527
Sanjay Patel00e900a2017-11-06 16:27:15 +000011528Return the same value as a corresponding libm '``log``' function but without
11529trapping or setting ``errno``.
11530
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +000011531When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel00e900a2017-11-06 16:27:15 +000011532using a less accurate calculation.
Sean Silvaf722b002012-12-07 10:36:55 +000011533
11534'``llvm.log10.*``' Intrinsic
11535^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11536
11537Syntax:
11538"""""""
11539
11540This is an overloaded intrinsic. You can use ``llvm.log10`` on any
Sanjay Patel00e900a2017-11-06 16:27:15 +000011541floating-point or vector of floating-point type. Not all targets support
Sean Silvaf722b002012-12-07 10:36:55 +000011542all types however.
11543
11544::
11545
11546 declare float @llvm.log10.f32(float %Val)
11547 declare double @llvm.log10.f64(double %Val)
11548 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
11549 declare fp128 @llvm.log10.f128(fp128 %Val)
11550 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
11551
11552Overview:
11553"""""""""
11554
Andrew Kaylorb66309b2017-04-11 21:52:40 +000011555The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
11556specified value.
Sean Silvaf722b002012-12-07 10:36:55 +000011557
11558Arguments:
11559""""""""""
11560
Sanjay Patel00e900a2017-11-06 16:27:15 +000011561The argument and return value are floating-point numbers of the same type.
Sean Silvaf722b002012-12-07 10:36:55 +000011562
11563Semantics:
11564""""""""""
11565
Sanjay Patel00e900a2017-11-06 16:27:15 +000011566Return the same value as a corresponding libm '``log10``' function but without
11567trapping or setting ``errno``.
11568
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +000011569When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel00e900a2017-11-06 16:27:15 +000011570using a less accurate calculation.
Sean Silvaf722b002012-12-07 10:36:55 +000011571
11572'``llvm.log2.*``' Intrinsic
11573^^^^^^^^^^^^^^^^^^^^^^^^^^^
11574
11575Syntax:
11576"""""""
11577
11578This is an overloaded intrinsic. You can use ``llvm.log2`` on any
Sanjay Patel00e900a2017-11-06 16:27:15 +000011579floating-point or vector of floating-point type. Not all targets support
Sean Silvaf722b002012-12-07 10:36:55 +000011580all types however.
11581
11582::
11583
11584 declare float @llvm.log2.f32(float %Val)
11585 declare double @llvm.log2.f64(double %Val)
11586 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
11587 declare fp128 @llvm.log2.f128(fp128 %Val)
11588 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
11589
11590Overview:
11591"""""""""
11592
Andrew Kaylorb66309b2017-04-11 21:52:40 +000011593The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
11594value.
Sean Silvaf722b002012-12-07 10:36:55 +000011595
11596Arguments:
11597""""""""""
11598
Sanjay Patel00e900a2017-11-06 16:27:15 +000011599The argument and return value are floating-point numbers of the same type.
Sean Silvaf722b002012-12-07 10:36:55 +000011600
11601Semantics:
11602""""""""""
11603
Sanjay Patel00e900a2017-11-06 16:27:15 +000011604Return the same value as a corresponding libm '``log2``' function but without
11605trapping or setting ``errno``.
11606
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +000011607When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel00e900a2017-11-06 16:27:15 +000011608using a less accurate calculation.
Sean Silvaf722b002012-12-07 10:36:55 +000011609
11610'``llvm.fma.*``' Intrinsic
11611^^^^^^^^^^^^^^^^^^^^^^^^^^
11612
11613Syntax:
11614"""""""
11615
11616This is an overloaded intrinsic. You can use ``llvm.fma`` on any
Sanjay Patel00e900a2017-11-06 16:27:15 +000011617floating-point or vector of floating-point type. Not all targets support
Sean Silvaf722b002012-12-07 10:36:55 +000011618all types however.
11619
11620::
11621
11622 declare float @llvm.fma.f32(float %a, float %b, float %c)
11623 declare double @llvm.fma.f64(double %a, double %b, double %c)
11624 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
11625 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
11626 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
11627
11628Overview:
11629"""""""""
11630
Sanjay Patel00e900a2017-11-06 16:27:15 +000011631The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
Sean Silvaf722b002012-12-07 10:36:55 +000011632
11633Arguments:
11634""""""""""
11635
Sanjay Patel00e900a2017-11-06 16:27:15 +000011636The arguments and return value are floating-point numbers of the same type.
Sean Silvaf722b002012-12-07 10:36:55 +000011637
11638Semantics:
11639""""""""""
11640
Sanjay Patel00e900a2017-11-06 16:27:15 +000011641Return the same value as a corresponding libm '``fma``' function but without
11642trapping or setting ``errno``.
11643
Elena Demikhovsky8e229ec2018-02-14 06:58:08 +000011644When specified with the fast-math-flag 'afn', the result may be approximated
Sanjay Patel00e900a2017-11-06 16:27:15 +000011645using a less accurate calculation.
Sean Silvaf722b002012-12-07 10:36:55 +000011646
11647'``llvm.fabs.*``' Intrinsic
11648^^^^^^^^^^^^^^^^^^^^^^^^^^^
11649
11650Syntax:
11651"""""""
11652
11653This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
Sanjay Patel16e9a292018-03-21 14:15:33 +000011654floating-point or vector of floating-point type. Not all targets support
Sean Silvaf722b002012-12-07 10:36:55 +000011655all types however.
11656
11657::
11658
11659 declare float @llvm.fabs.f32(float %Val)
11660 declare double @llvm.fabs.f64(double %Val)
Matt Arsenault25213462014-10-21 23:00:20 +000011661 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvaf722b002012-12-07 10:36:55 +000011662 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenault25213462014-10-21 23:00:20 +000011663 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvaf722b002012-12-07 10:36:55 +000011664
11665Overview:
11666"""""""""
11667
11668The '``llvm.fabs.*``' intrinsics return the absolute value of the
11669operand.
11670
11671Arguments:
11672""""""""""
11673
Sanjay Patel16e9a292018-03-21 14:15:33 +000011674The argument and return value are floating-point numbers of the same
Sean Silvaf722b002012-12-07 10:36:55 +000011675type.
11676
11677Semantics:
11678""""""""""
11679
11680This function returns the same values as the libm ``fabs`` functions
11681would, and handles error conditions in the same way.
11682
Matt Arsenault25213462014-10-21 23:00:20 +000011683'``llvm.minnum.*``' Intrinsic
Matt Arsenault469094d2014-10-22 00:15:53 +000011684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenault25213462014-10-21 23:00:20 +000011685
11686Syntax:
11687"""""""
11688
11689This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
Sanjay Patel16e9a292018-03-21 14:15:33 +000011690floating-point or vector of floating-point type. Not all targets support
Matt Arsenault25213462014-10-21 23:00:20 +000011691all types however.
11692
11693::
11694
Matt Arsenaulte54627b2014-10-22 18:25:02 +000011695 declare float @llvm.minnum.f32(float %Val0, float %Val1)
11696 declare double @llvm.minnum.f64(double %Val0, double %Val1)
11697 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11698 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
11699 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenault25213462014-10-21 23:00:20 +000011700
11701Overview:
11702"""""""""
11703
11704The '``llvm.minnum.*``' intrinsics return the minimum of the two
11705arguments.
11706
11707
11708Arguments:
11709""""""""""
11710
Sanjay Patel16e9a292018-03-21 14:15:33 +000011711The arguments and return value are floating-point numbers of the same
Matt Arsenault25213462014-10-21 23:00:20 +000011712type.
11713
11714Semantics:
11715""""""""""
11716
Matt Arsenaulte07ed9e2018-08-27 17:40:07 +000011717Follows the IEEE-754 semantics for minNum, except for handling of
11718signaling NaNs. This match's the behavior of libm's fmin.
Matt Arsenault25213462014-10-21 23:00:20 +000011719
11720If either operand is a NaN, returns the other non-NaN operand. Returns
Matt Arsenaulte07ed9e2018-08-27 17:40:07 +000011721NaN only if both operands are NaN. The returned NaN is always
11722quiet. If the operands compare equal, returns a value that compares
11723equal to both operands. This means that fmin(+/-0.0, +/-0.0) could
11724return either -0.0 or 0.0.
11725
11726Unlike the IEEE-754 2008 behavior, this does not distinguish between
11727signaling and quiet NaN inputs. If a target's implementation follows
11728the standard and returns a quiet NaN if either input is a signaling
11729NaN, the intrinsic lowering is responsible for quieting the inputs to
11730correctly return the non-NaN input (e.g. by using the equivalent of
11731``llvm.canonicalize``).
11732
Matt Arsenault25213462014-10-21 23:00:20 +000011733
11734'``llvm.maxnum.*``' Intrinsic
Matt Arsenault469094d2014-10-22 00:15:53 +000011735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenault25213462014-10-21 23:00:20 +000011736
11737Syntax:
11738"""""""
11739
11740This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
Sanjay Patel16e9a292018-03-21 14:15:33 +000011741floating-point or vector of floating-point type. Not all targets support
Matt Arsenault25213462014-10-21 23:00:20 +000011742all types however.
11743
11744::
11745
Matt Arsenaulte54627b2014-10-22 18:25:02 +000011746 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
11747 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
11748 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11749 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
11750 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenault25213462014-10-21 23:00:20 +000011751
11752Overview:
11753"""""""""
11754
11755The '``llvm.maxnum.*``' intrinsics return the maximum of the two
11756arguments.
11757
11758
11759Arguments:
11760""""""""""
11761
Sanjay Patel16e9a292018-03-21 14:15:33 +000011762The arguments and return value are floating-point numbers of the same
Matt Arsenault25213462014-10-21 23:00:20 +000011763type.
11764
11765Semantics:
11766""""""""""
Matt Arsenaulte07ed9e2018-08-27 17:40:07 +000011767Follows the IEEE-754 semantics for maxNum except for the handling of
11768signaling NaNs. This matches the behavior of libm's fmax.
Matt Arsenault25213462014-10-21 23:00:20 +000011769
11770If either operand is a NaN, returns the other non-NaN operand. Returns
Matt Arsenaulte07ed9e2018-08-27 17:40:07 +000011771NaN only if both operands are NaN. The returned NaN is always
11772quiet. If the operands compare equal, returns a value that compares
11773equal to both operands. This means that fmax(+/-0.0, +/-0.0) could
11774return either -0.0 or 0.0.
11775
11776Unlike the IEEE-754 2008 behavior, this does not distinguish between
11777signaling and quiet NaN inputs. If a target's implementation follows
11778the standard and returns a quiet NaN if either input is a signaling
11779NaN, the intrinsic lowering is responsible for quieting the inputs to
11780correctly return the non-NaN input (e.g. by using the equivalent of
11781``llvm.canonicalize``).
Matt Arsenault25213462014-10-21 23:00:20 +000011782
Thomas Lively6e3463c2018-10-13 07:21:44 +000011783'``llvm.minimum.*``' Intrinsic
11784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11785
11786Syntax:
11787"""""""
11788
11789This is an overloaded intrinsic. You can use ``llvm.minimum`` on any
11790floating-point or vector of floating-point type. Not all targets support
11791all types however.
11792
11793::
11794
11795 declare float @llvm.minimum.f32(float %Val0, float %Val1)
11796 declare double @llvm.minimum.f64(double %Val0, double %Val1)
11797 declare x86_fp80 @llvm.minimum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11798 declare fp128 @llvm.minimum.f128(fp128 %Val0, fp128 %Val1)
11799 declare ppc_fp128 @llvm.minimum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
11800
11801Overview:
11802"""""""""
11803
11804The '``llvm.minimum.*``' intrinsics return the minimum of the two
11805arguments, propagating NaNs and treating -0.0 as less than +0.0.
11806
11807
11808Arguments:
11809""""""""""
11810
11811The arguments and return value are floating-point numbers of the same
11812type.
11813
11814Semantics:
11815""""""""""
11816If either operand is a NaN, returns NaN. Otherwise returns the lesser
11817of the two arguments. -0.0 is considered to be less than +0.0 for this
11818intrinsic. Note that these are the semantics specified in the draft of
11819IEEE 754-2018.
11820
11821'``llvm.maximum.*``' Intrinsic
11822^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11823
11824Syntax:
11825"""""""
11826
11827This is an overloaded intrinsic. You can use ``llvm.maximum`` on any
11828floating-point or vector of floating-point type. Not all targets support
11829all types however.
11830
11831::
11832
11833 declare float @llvm.maximum.f32(float %Val0, float %Val1)
11834 declare double @llvm.maximum.f64(double %Val0, double %Val1)
11835 declare x86_fp80 @llvm.maximum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
11836 declare fp128 @llvm.maximum.f128(fp128 %Val0, fp128 %Val1)
11837 declare ppc_fp128 @llvm.maximum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
11838
11839Overview:
11840"""""""""
11841
11842The '``llvm.maximum.*``' intrinsics return the maximum of the two
11843arguments, propagating NaNs and treating -0.0 as less than +0.0.
11844
11845
11846Arguments:
11847""""""""""
11848
11849The arguments and return value are floating-point numbers of the same
11850type.
11851
11852Semantics:
11853""""""""""
11854If either operand is a NaN, returns NaN. Otherwise returns the greater
11855of the two arguments. -0.0 is considered to be less than +0.0 for this
11856intrinsic. Note that these are the semantics specified in the draft of
11857IEEE 754-2018.
11858
Hal Finkel66d1fa62013-08-19 23:35:46 +000011859'``llvm.copysign.*``' Intrinsic
11860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11861
11862Syntax:
11863"""""""
11864
11865This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
Sanjay Patel16e9a292018-03-21 14:15:33 +000011866floating-point or vector of floating-point type. Not all targets support
Hal Finkel66d1fa62013-08-19 23:35:46 +000011867all types however.
11868
11869::
11870
11871 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
11872 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
11873 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
11874 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
11875 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
11876
11877Overview:
11878"""""""""
11879
11880The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
11881first operand and the sign of the second operand.
11882
11883Arguments:
11884""""""""""
11885
Sanjay Patel16e9a292018-03-21 14:15:33 +000011886The arguments and return value are floating-point numbers of the same
Hal Finkel66d1fa62013-08-19 23:35:46 +000011887type.
11888
11889Semantics:
11890""""""""""
11891
11892This function returns the same values as the libm ``copysign``
11893functions would, and handles error conditions in the same way.
11894
Sean Silvaf722b002012-12-07 10:36:55 +000011895'``llvm.floor.*``' Intrinsic
11896^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11897
11898Syntax:
11899"""""""
11900
11901This is an overloaded intrinsic. You can use ``llvm.floor`` on any
Sanjay Patel16e9a292018-03-21 14:15:33 +000011902floating-point or vector of floating-point type. Not all targets support
Sean Silvaf722b002012-12-07 10:36:55 +000011903all types however.
11904
11905::
11906
11907 declare float @llvm.floor.f32(float %Val)
11908 declare double @llvm.floor.f64(double %Val)
11909 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
11910 declare fp128 @llvm.floor.f128(fp128 %Val)
11911 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
11912
11913Overview:
11914"""""""""
11915
11916The '``llvm.floor.*``' intrinsics return the floor of the operand.
11917
11918Arguments:
11919""""""""""
11920
Sanjay Patel16e9a292018-03-21 14:15:33 +000011921The argument and return value are floating-point numbers of the same
Sean Silvaf722b002012-12-07 10:36:55 +000011922type.
11923
11924Semantics:
11925""""""""""
11926
11927This function returns the same values as the libm ``floor`` functions
11928would, and handles error conditions in the same way.
11929
11930'``llvm.ceil.*``' Intrinsic
11931^^^^^^^^^^^^^^^^^^^^^^^^^^^
11932
11933Syntax:
11934"""""""
11935
11936This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
Sanjay Patel16e9a292018-03-21 14:15:33 +000011937floating-point or vector of floating-point type. Not all targets support
Sean Silvaf722b002012-12-07 10:36:55 +000011938all types however.
11939
11940::
11941
11942 declare float @llvm.ceil.f32(float %Val)
11943 declare double @llvm.ceil.f64(double %Val)
11944 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
11945 declare fp128 @llvm.ceil.f128(fp128 %Val)
11946 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
11947
11948Overview:
11949"""""""""
11950
11951The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
11952
11953Arguments:
11954""""""""""
11955
Sanjay Patel16e9a292018-03-21 14:15:33 +000011956The argument and return value are floating-point numbers of the same
Sean Silvaf722b002012-12-07 10:36:55 +000011957type.
11958
11959Semantics:
11960""""""""""
11961
11962This function returns the same values as the libm ``ceil`` functions
11963would, and handles error conditions in the same way.
11964
11965'``llvm.trunc.*``' Intrinsic
11966^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11967
11968Syntax:
11969"""""""
11970
11971This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
Sanjay Patel16e9a292018-03-21 14:15:33 +000011972floating-point or vector of floating-point type. Not all targets support
Sean Silvaf722b002012-12-07 10:36:55 +000011973all types however.
11974
11975::
11976
11977 declare float @llvm.trunc.f32(float %Val)
11978 declare double @llvm.trunc.f64(double %Val)
11979 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
11980 declare fp128 @llvm.trunc.f128(fp128 %Val)
11981 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
11982
11983Overview:
11984"""""""""
11985
11986The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
11987nearest integer not larger in magnitude than the operand.
11988
11989Arguments:
11990""""""""""
11991
Sanjay Patel16e9a292018-03-21 14:15:33 +000011992The argument and return value are floating-point numbers of the same
Sean Silvaf722b002012-12-07 10:36:55 +000011993type.
11994
11995Semantics:
11996""""""""""
11997
11998This function returns the same values as the libm ``trunc`` functions
11999would, and handles error conditions in the same way.
12000
12001'``llvm.rint.*``' Intrinsic
12002^^^^^^^^^^^^^^^^^^^^^^^^^^^
12003
12004Syntax:
12005"""""""
12006
12007This is an overloaded intrinsic. You can use ``llvm.rint`` on any
Sanjay Patel16e9a292018-03-21 14:15:33 +000012008floating-point or vector of floating-point type. Not all targets support
Sean Silvaf722b002012-12-07 10:36:55 +000012009all types however.
12010
12011::
12012
12013 declare float @llvm.rint.f32(float %Val)
12014 declare double @llvm.rint.f64(double %Val)
12015 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
12016 declare fp128 @llvm.rint.f128(fp128 %Val)
12017 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
12018
12019Overview:
12020"""""""""
12021
12022The '``llvm.rint.*``' intrinsics returns the operand rounded to the
12023nearest integer. It may raise an inexact floating-point exception if the
12024operand isn't an integer.
12025
12026Arguments:
12027""""""""""
12028
Sanjay Patel16e9a292018-03-21 14:15:33 +000012029The argument and return value are floating-point numbers of the same
Sean Silvaf722b002012-12-07 10:36:55 +000012030type.
12031
12032Semantics:
12033""""""""""
12034
12035This function returns the same values as the libm ``rint`` functions
12036would, and handles error conditions in the same way.
12037
12038'``llvm.nearbyint.*``' Intrinsic
12039^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12040
12041Syntax:
12042"""""""
12043
12044This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
Sanjay Patel16e9a292018-03-21 14:15:33 +000012045floating-point or vector of floating-point type. Not all targets support
Sean Silvaf722b002012-12-07 10:36:55 +000012046all types however.
12047
12048::
12049
12050 declare float @llvm.nearbyint.f32(float %Val)
12051 declare double @llvm.nearbyint.f64(double %Val)
12052 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
12053 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
12054 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
12055
12056Overview:
12057"""""""""
12058
12059The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
12060nearest integer.
12061
12062Arguments:
12063""""""""""
12064
Sanjay Patel16e9a292018-03-21 14:15:33 +000012065The argument and return value are floating-point numbers of the same
Sean Silvaf722b002012-12-07 10:36:55 +000012066type.
12067
12068Semantics:
12069""""""""""
12070
12071This function returns the same values as the libm ``nearbyint``
12072functions would, and handles error conditions in the same way.
12073
Hal Finkel41418d12013-08-07 22:49:12 +000012074'``llvm.round.*``' Intrinsic
12075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12076
12077Syntax:
12078"""""""
12079
12080This is an overloaded intrinsic. You can use ``llvm.round`` on any
Sanjay Patel16e9a292018-03-21 14:15:33 +000012081floating-point or vector of floating-point type. Not all targets support
Hal Finkel41418d12013-08-07 22:49:12 +000012082all types however.
12083
12084::
12085
12086 declare float @llvm.round.f32(float %Val)
12087 declare double @llvm.round.f64(double %Val)
12088 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
12089 declare fp128 @llvm.round.f128(fp128 %Val)
12090 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
12091
12092Overview:
12093"""""""""
12094
12095The '``llvm.round.*``' intrinsics returns the operand rounded to the
12096nearest integer.
12097
12098Arguments:
12099""""""""""
12100
Sanjay Patel16e9a292018-03-21 14:15:33 +000012101The argument and return value are floating-point numbers of the same
Hal Finkel41418d12013-08-07 22:49:12 +000012102type.
12103
12104Semantics:
12105""""""""""
12106
12107This function returns the same values as the libm ``round``
12108functions would, and handles error conditions in the same way.
12109
Sean Silvaf722b002012-12-07 10:36:55 +000012110Bit Manipulation Intrinsics
12111---------------------------
12112
12113LLVM provides intrinsics for a few important bit manipulation
12114operations. These allow efficient code generation for some algorithms.
12115
James Molloyfdd6e1b2015-11-12 12:29:09 +000012116'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka6dc74be2015-11-13 21:09:57 +000012117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloyfdd6e1b2015-11-12 12:29:09 +000012118
12119Syntax:
12120"""""""
12121
12122This is an overloaded intrinsic function. You can use bitreverse on any
12123integer type.
12124
12125::
12126
12127 declare i16 @llvm.bitreverse.i16(i16 <id>)
12128 declare i32 @llvm.bitreverse.i32(i32 <id>)
12129 declare i64 @llvm.bitreverse.i64(i64 <id>)
12130
12131Overview:
12132"""""""""
12133
12134The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultd92b7ee2016-03-07 21:54:52 +000012135bitpattern of an integer value; for example ``0b10110110`` becomes
12136``0b01101101``.
James Molloyfdd6e1b2015-11-12 12:29:09 +000012137
12138Semantics:
12139""""""""""
12140
Yichao Yu3806d812016-11-23 16:25:31 +000012141The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
James Molloyfdd6e1b2015-11-12 12:29:09 +000012142``M`` in the input moved to bit ``N-M`` in the output.
12143
Sean Silvaf722b002012-12-07 10:36:55 +000012144'``llvm.bswap.*``' Intrinsics
12145^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12146
12147Syntax:
12148"""""""
12149
12150This is an overloaded intrinsic function. You can use bswap on any
12151integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
12152
12153::
12154
12155 declare i16 @llvm.bswap.i16(i16 <id>)
12156 declare i32 @llvm.bswap.i32(i32 <id>)
12157 declare i64 @llvm.bswap.i64(i64 <id>)
12158
12159Overview:
12160"""""""""
12161
12162The '``llvm.bswap``' family of intrinsics is used to byte swap integer
12163values with an even number of bytes (positive multiple of 16 bits).
12164These are useful for performing operations on data that is not in the
12165target's native byte order.
12166
12167Semantics:
12168""""""""""
12169
12170The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
12171and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
12172intrinsic returns an i32 value that has the four bytes of the input i32
12173swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
12174returned i32 will have its bytes in 3, 2, 1, 0 order. The
12175``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
12176concept to additional even-byte lengths (6 bytes, 8 bytes and more,
12177respectively).
12178
12179'``llvm.ctpop.*``' Intrinsic
12180^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12181
12182Syntax:
12183"""""""
12184
12185This is an overloaded intrinsic. You can use llvm.ctpop on any integer
12186bit width, or on any vector with integer elements. Not all targets
12187support all bit widths or vector types, however.
12188
12189::
12190
12191 declare i8 @llvm.ctpop.i8(i8 <src>)
12192 declare i16 @llvm.ctpop.i16(i16 <src>)
12193 declare i32 @llvm.ctpop.i32(i32 <src>)
12194 declare i64 @llvm.ctpop.i64(i64 <src>)
12195 declare i256 @llvm.ctpop.i256(i256 <src>)
12196 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
12197
12198Overview:
12199"""""""""
12200
12201The '``llvm.ctpop``' family of intrinsics counts the number of bits set
12202in a value.
12203
12204Arguments:
12205""""""""""
12206
12207The only argument is the value to be counted. The argument may be of any
12208integer type, or a vector with integer elements. The return type must
12209match the argument type.
12210
12211Semantics:
12212""""""""""
12213
12214The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
12215each element of a vector.
12216
12217'``llvm.ctlz.*``' Intrinsic
12218^^^^^^^^^^^^^^^^^^^^^^^^^^^
12219
12220Syntax:
12221"""""""
12222
12223This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
12224integer bit width, or any vector whose elements are integers. Not all
12225targets support all bit widths or vector types, however.
12226
12227::
12228
12229 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
12230 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
12231 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
12232 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
12233 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovb0697bb2016-03-17 23:08:01 +000012234 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvaf722b002012-12-07 10:36:55 +000012235
12236Overview:
12237"""""""""
12238
12239The '``llvm.ctlz``' family of intrinsic functions counts the number of
12240leading zeros in a variable.
12241
12242Arguments:
12243""""""""""
12244
12245The first argument is the value to be counted. This argument may be of
Hal Finkeledef0842015-01-05 04:05:21 +000012246any integer type, or a vector with integer element type. The return
Sean Silvaf722b002012-12-07 10:36:55 +000012247type must match the first argument type.
12248
12249The second argument must be a constant and is a flag to indicate whether
12250the intrinsic should ensure that a zero as the first argument produces a
12251defined result. Historically some architectures did not provide a
12252defined result for zero values as efficiently, and many algorithms are
12253now predicated on avoiding zero-value inputs.
12254
12255Semantics:
12256""""""""""
12257
12258The '``llvm.ctlz``' intrinsic counts the leading (most significant)
12259zeros in a variable, or within each element of the vector. If
12260``src == 0`` then the result is the size in bits of the type of ``src``
12261if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
12262``llvm.ctlz(i32 2) = 30``.
12263
12264'``llvm.cttz.*``' Intrinsic
12265^^^^^^^^^^^^^^^^^^^^^^^^^^^
12266
12267Syntax:
12268"""""""
12269
12270This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
12271integer bit width, or any vector of integer elements. Not all targets
12272support all bit widths or vector types, however.
12273
12274::
12275
12276 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
12277 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
12278 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
12279 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
12280 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovb0697bb2016-03-17 23:08:01 +000012281 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvaf722b002012-12-07 10:36:55 +000012282
12283Overview:
12284"""""""""
12285
12286The '``llvm.cttz``' family of intrinsic functions counts the number of
12287trailing zeros.
12288
12289Arguments:
12290""""""""""
12291
12292The first argument is the value to be counted. This argument may be of
Hal Finkeledef0842015-01-05 04:05:21 +000012293any integer type, or a vector with integer element type. The return
Sean Silvaf722b002012-12-07 10:36:55 +000012294type must match the first argument type.
12295
12296The second argument must be a constant and is a flag to indicate whether
12297the intrinsic should ensure that a zero as the first argument produces a
12298defined result. Historically some architectures did not provide a
12299defined result for zero values as efficiently, and many algorithms are
12300now predicated on avoiding zero-value inputs.
12301
12302Semantics:
12303""""""""""
12304
12305The '``llvm.cttz``' intrinsic counts the trailing (least significant)
12306zeros in a variable, or within each element of a vector. If ``src == 0``
12307then the result is the size in bits of the type of ``src`` if
12308``is_zero_undef == 0`` and ``undef`` otherwise. For example,
12309``llvm.cttz(2) = 1``.
12310
Philip Reames599a7dc2015-03-05 05:55:55 +000012311.. _int_overflow:
12312
Sanjay Patelbb12f482018-07-16 22:59:31 +000012313'``llvm.fshl.*``' Intrinsic
12314^^^^^^^^^^^^^^^^^^^^^^^^^^^
12315
12316Syntax:
12317"""""""
12318
12319This is an overloaded intrinsic. You can use ``llvm.fshl`` on any
12320integer bit width or any vector of integer elements. Not all targets
12321support all bit widths or vector types, however.
12322
12323::
12324
12325 declare i8 @llvm.fshl.i8 (i8 %a, i8 %b, i8 %c)
12326 declare i67 @llvm.fshl.i67(i67 %a, i67 %b, i67 %c)
12327 declare <2 x i32> @llvm.fshl.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
12328
12329Overview:
12330"""""""""
12331
12332The '``llvm.fshl``' family of intrinsic functions performs a funnel shift left:
12333the first two values are concatenated as { %a : %b } (%a is the most significant
Mandeep Singh Grang08238b72018-11-01 23:22:25 +000012334bits of the wide value), the combined value is shifted left, and the most
12335significant bits are extracted to produce a result that is the same size as the
12336original arguments. If the first 2 arguments are identical, this is equivalent
12337to a rotate left operation. For vector types, the operation occurs for each
12338element of the vector. The shift argument is treated as an unsigned amount
Sanjay Patelbb12f482018-07-16 22:59:31 +000012339modulo the element size of the arguments.
12340
12341Arguments:
12342""""""""""
12343
12344The first two arguments are the values to be concatenated. The third
12345argument is the shift amount. The arguments may be any integer type or a
12346vector with integer element type. All arguments and the return value must
12347have the same type.
12348
12349Example:
12350""""""""
12351
12352.. code-block:: text
12353
12354 %r = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: msb_extract((concat(x, y) << (z % 8)), 8)
12355 %r = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 15) ; %r = i8: 128 (0b10000000)
12356 %r = call i8 @llvm.fshl.i8(i8 15, i8 15, i8 11) ; %r = i8: 120 (0b01111000)
12357 %r = call i8 @llvm.fshl.i8(i8 0, i8 255, i8 8) ; %r = i8: 0 (0b00000000)
12358
12359'``llvm.fshr.*``' Intrinsic
12360^^^^^^^^^^^^^^^^^^^^^^^^^^^
12361
12362Syntax:
12363"""""""
12364
12365This is an overloaded intrinsic. You can use ``llvm.fshr`` on any
12366integer bit width or any vector of integer elements. Not all targets
12367support all bit widths or vector types, however.
12368
12369::
12370
12371 declare i8 @llvm.fshr.i8 (i8 %a, i8 %b, i8 %c)
12372 declare i67 @llvm.fshr.i67(i67 %a, i67 %b, i67 %c)
12373 declare <2 x i32> @llvm.fshr.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
12374
12375Overview:
12376"""""""""
12377
12378The '``llvm.fshr``' family of intrinsic functions performs a funnel shift right:
12379the first two values are concatenated as { %a : %b } (%a is the most significant
Mandeep Singh Grang08238b72018-11-01 23:22:25 +000012380bits of the wide value), the combined value is shifted right, and the least
12381significant bits are extracted to produce a result that is the same size as the
12382original arguments. If the first 2 arguments are identical, this is equivalent
12383to a rotate right operation. For vector types, the operation occurs for each
12384element of the vector. The shift argument is treated as an unsigned amount
Sanjay Patelbb12f482018-07-16 22:59:31 +000012385modulo the element size of the arguments.
12386
12387Arguments:
12388""""""""""
12389
12390The first two arguments are the values to be concatenated. The third
12391argument is the shift amount. The arguments may be any integer type or a
12392vector with integer element type. All arguments and the return value must
12393have the same type.
12394
12395Example:
12396""""""""
12397
12398.. code-block:: text
12399
12400 %r = call i8 @llvm.fshr.i8(i8 %x, i8 %y, i8 %z) ; %r = i8: lsb_extract((concat(x, y) >> (z % 8)), 8)
12401 %r = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 15) ; %r = i8: 254 (0b11111110)
12402 %r = call i8 @llvm.fshr.i8(i8 15, i8 15, i8 11) ; %r = i8: 225 (0b11100001)
12403 %r = call i8 @llvm.fshr.i8(i8 0, i8 255, i8 8) ; %r = i8: 255 (0b11111111)
12404
Sean Silvaf722b002012-12-07 10:36:55 +000012405Arithmetic with Overflow Intrinsics
12406-----------------------------------
12407
John Regehr39fa5072016-05-12 20:55:09 +000012408LLVM provides intrinsics for fast arithmetic overflow checking.
12409
12410Each of these intrinsics returns a two-element struct. The first
12411element of this struct contains the result of the corresponding
12412arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
12413the result. Therefore, for example, the first element of the struct
12414returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
12415result of a 32-bit ``add`` instruction with the same operands, where
12416the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
12417
12418The second element of the result is an ``i1`` that is 1 if the
12419arithmetic operation overflowed and 0 otherwise. An operation
12420overflows if, for any values of its operands ``A`` and ``B`` and for
12421any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
12422not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
12423``sext`` for signed overflow and ``zext`` for unsigned overflow, and
12424``op`` is the underlying arithmetic operation.
12425
12426The behavior of these intrinsics is well-defined for all argument
12427values.
Sean Silvaf722b002012-12-07 10:36:55 +000012428
12429'``llvm.sadd.with.overflow.*``' Intrinsics
12430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12431
12432Syntax:
12433"""""""
12434
12435This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
12436on any integer bit width.
12437
12438::
12439
12440 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
12441 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12442 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
12443
12444Overview:
12445"""""""""
12446
12447The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
12448a signed addition of the two arguments, and indicate whether an overflow
12449occurred during the signed summation.
12450
12451Arguments:
12452""""""""""
12453
12454The arguments (%a and %b) and the first element of the result structure
12455may be of integer types of any bit width, but they must have the same
12456bit width. The second element of the result structure must be of type
12457``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12458addition.
12459
12460Semantics:
12461""""""""""
12462
12463The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +000012464a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +000012465first element of which is the signed summation, and the second element
12466of which is a bit specifying if the signed summation resulted in an
12467overflow.
12468
12469Examples:
12470"""""""""
12471
12472.. code-block:: llvm
12473
12474 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
12475 %sum = extractvalue {i32, i1} %res, 0
12476 %obit = extractvalue {i32, i1} %res, 1
12477 br i1 %obit, label %overflow, label %normal
12478
12479'``llvm.uadd.with.overflow.*``' Intrinsics
12480^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12481
12482Syntax:
12483"""""""
12484
12485This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
12486on any integer bit width.
12487
12488::
12489
12490 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
12491 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12492 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
12493
12494Overview:
12495"""""""""
12496
12497The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
12498an unsigned addition of the two arguments, and indicate whether a carry
12499occurred during the unsigned summation.
12500
12501Arguments:
12502""""""""""
12503
12504The arguments (%a and %b) and the first element of the result structure
12505may be of integer types of any bit width, but they must have the same
12506bit width. The second element of the result structure must be of type
12507``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12508addition.
12509
12510Semantics:
12511""""""""""
12512
12513The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +000012514an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +000012515first element of which is the sum, and the second element of which is a
12516bit specifying if the unsigned summation resulted in a carry.
12517
12518Examples:
12519"""""""""
12520
12521.. code-block:: llvm
12522
12523 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
12524 %sum = extractvalue {i32, i1} %res, 0
12525 %obit = extractvalue {i32, i1} %res, 1
12526 br i1 %obit, label %carry, label %normal
12527
12528'``llvm.ssub.with.overflow.*``' Intrinsics
12529^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12530
12531Syntax:
12532"""""""
12533
12534This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
12535on any integer bit width.
12536
12537::
12538
12539 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
12540 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12541 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
12542
12543Overview:
12544"""""""""
12545
12546The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
12547a signed subtraction of the two arguments, and indicate whether an
12548overflow occurred during the signed subtraction.
12549
12550Arguments:
12551""""""""""
12552
12553The arguments (%a and %b) and the first element of the result structure
12554may be of integer types of any bit width, but they must have the same
12555bit width. The second element of the result structure must be of type
12556``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12557subtraction.
12558
12559Semantics:
12560""""""""""
12561
12562The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +000012563a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +000012564first element of which is the subtraction, and the second element of
12565which is a bit specifying if the signed subtraction resulted in an
12566overflow.
12567
12568Examples:
12569"""""""""
12570
12571.. code-block:: llvm
12572
12573 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
12574 %sum = extractvalue {i32, i1} %res, 0
12575 %obit = extractvalue {i32, i1} %res, 1
12576 br i1 %obit, label %overflow, label %normal
12577
12578'``llvm.usub.with.overflow.*``' Intrinsics
12579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12580
12581Syntax:
12582"""""""
12583
12584This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
12585on any integer bit width.
12586
12587::
12588
12589 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
12590 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12591 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
12592
12593Overview:
12594"""""""""
12595
12596The '``llvm.usub.with.overflow``' family of intrinsic functions perform
12597an unsigned subtraction of the two arguments, and indicate whether an
12598overflow occurred during the unsigned subtraction.
12599
12600Arguments:
12601""""""""""
12602
12603The arguments (%a and %b) and the first element of the result structure
12604may be of integer types of any bit width, but they must have the same
12605bit width. The second element of the result structure must be of type
12606``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12607subtraction.
12608
12609Semantics:
12610""""""""""
12611
12612The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +000012613an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +000012614the first element of which is the subtraction, and the second element of
12615which is a bit specifying if the unsigned subtraction resulted in an
12616overflow.
12617
12618Examples:
12619"""""""""
12620
12621.. code-block:: llvm
12622
12623 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
12624 %sum = extractvalue {i32, i1} %res, 0
12625 %obit = extractvalue {i32, i1} %res, 1
12626 br i1 %obit, label %overflow, label %normal
12627
12628'``llvm.smul.with.overflow.*``' Intrinsics
12629^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12630
12631Syntax:
12632"""""""
12633
12634This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
12635on any integer bit width.
12636
12637::
12638
12639 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
12640 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12641 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
12642
12643Overview:
12644"""""""""
12645
12646The '``llvm.smul.with.overflow``' family of intrinsic functions perform
12647a signed multiplication of the two arguments, and indicate whether an
12648overflow occurred during the signed multiplication.
12649
12650Arguments:
12651""""""""""
12652
12653The arguments (%a and %b) and the first element of the result structure
12654may be of integer types of any bit width, but they must have the same
12655bit width. The second element of the result structure must be of type
12656``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
12657multiplication.
12658
12659Semantics:
12660""""""""""
12661
12662The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +000012663a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +000012664the first element of which is the multiplication, and the second element
12665of which is a bit specifying if the signed multiplication resulted in an
12666overflow.
12667
12668Examples:
12669"""""""""
12670
12671.. code-block:: llvm
12672
12673 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
12674 %sum = extractvalue {i32, i1} %res, 0
12675 %obit = extractvalue {i32, i1} %res, 1
12676 br i1 %obit, label %overflow, label %normal
12677
12678'``llvm.umul.with.overflow.*``' Intrinsics
12679^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12680
12681Syntax:
12682"""""""
12683
12684This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
12685on any integer bit width.
12686
12687::
12688
12689 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
12690 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12691 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
12692
12693Overview:
12694"""""""""
12695
12696The '``llvm.umul.with.overflow``' family of intrinsic functions perform
12697a unsigned multiplication of the two arguments, and indicate whether an
12698overflow occurred during the unsigned multiplication.
12699
12700Arguments:
12701""""""""""
12702
12703The arguments (%a and %b) and the first element of the result structure
12704may be of integer types of any bit width, but they must have the same
12705bit width. The second element of the result structure must be of type
12706``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
12707multiplication.
12708
12709Semantics:
12710""""""""""
12711
12712The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +000012713an unsigned multiplication of the two arguments. They return a structure ---
12714the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +000012715element of which is a bit specifying if the unsigned multiplication
12716resulted in an overflow.
12717
12718Examples:
12719"""""""""
12720
12721.. code-block:: llvm
12722
12723 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
12724 %sum = extractvalue {i32, i1} %res, 0
12725 %obit = extractvalue {i32, i1} %res, 1
12726 br i1 %obit, label %overflow, label %normal
12727
Leonard Chan28b443d2018-11-20 18:01:24 +000012728Saturation Arithmetic Intrinsics
12729---------------------------------
12730
12731Saturation arithmetic is a version of arithmetic in which operations are
12732limited to a fixed range between a minimum and maximum value. If the result of
12733an operation is greater than the maximum value, the result is set (or
12734"clamped") to this maximum. If it is below the minimum, it is clamped to this
12735minimum.
12736
12737
12738'``llvm.sadd.sat.*``' Intrinsics
12739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12740
12741Syntax
12742"""""""
12743
12744This is an overloaded intrinsic. You can use ``llvm.sadd.sat``
12745on any integer bit width or vectors of integers.
12746
12747::
12748
12749 declare i16 @llvm.sadd.sat.i16(i16 %a, i16 %b)
12750 declare i32 @llvm.sadd.sat.i32(i32 %a, i32 %b)
12751 declare i64 @llvm.sadd.sat.i64(i64 %a, i64 %b)
12752 declare <4 x i32> @llvm.sadd.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
12753
12754Overview
12755"""""""""
12756
12757The '``llvm.sadd.sat``' family of intrinsic functions perform signed
12758saturation addition on the 2 arguments.
12759
12760Arguments
12761""""""""""
12762
12763The arguments (%a and %b) and the result may be of integer types of any bit
12764width, but they must have the same bit width. ``%a`` and ``%b`` are the two
12765values that will undergo signed addition.
12766
12767Semantics:
12768""""""""""
12769
12770The maximum value this operation can clamp to is the largest signed value
12771representable by the bit width of the arguments. The minimum value is the
12772smallest signed value representable by this bit width.
12773
12774
12775Examples
12776"""""""""
12777
12778.. code-block:: llvm
12779
12780 %res = call i4 @llvm.sadd.sat.i4(i4 1, i4 2) ; %res = 3
12781 %res = call i4 @llvm.sadd.sat.i4(i4 5, i4 6) ; %res = 7
12782 %res = call i4 @llvm.sadd.sat.i4(i4 -4, i4 2) ; %res = -2
12783 %res = call i4 @llvm.sadd.sat.i4(i4 -4, i4 -5) ; %res = -8
12784
12785
12786'``llvm.uadd.sat.*``' Intrinsics
12787^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12788
12789Syntax
12790"""""""
12791
12792This is an overloaded intrinsic. You can use ``llvm.uadd.sat``
12793on any integer bit width or vectors of integers.
12794
12795::
12796
12797 declare i16 @llvm.uadd.sat.i16(i16 %a, i16 %b)
12798 declare i32 @llvm.uadd.sat.i32(i32 %a, i32 %b)
12799 declare i64 @llvm.uadd.sat.i64(i64 %a, i64 %b)
12800 declare <4 x i32> @llvm.uadd.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
12801
12802Overview
12803"""""""""
12804
12805The '``llvm.uadd.sat``' family of intrinsic functions perform unsigned
12806saturation addition on the 2 arguments.
12807
12808Arguments
12809""""""""""
12810
12811The arguments (%a and %b) and the result may be of integer types of any bit
12812width, but they must have the same bit width. ``%a`` and ``%b`` are the two
12813values that will undergo unsigned addition.
12814
12815Semantics:
12816""""""""""
12817
12818The maximum value this operation can clamp to is the largest unsigned value
12819representable by the bit width of the arguments. Because this is an unsigned
12820operation, the result will never saturate towards zero.
12821
12822
12823Examples
12824"""""""""
12825
12826.. code-block:: llvm
12827
12828 %res = call i4 @llvm.uadd.sat.i4(i4 1, i4 2) ; %res = 3
12829 %res = call i4 @llvm.uadd.sat.i4(i4 5, i4 6) ; %res = 11
12830 %res = call i4 @llvm.uadd.sat.i4(i4 8, i4 8) ; %res = 15
12831
12832
12833'``llvm.ssub.sat.*``' Intrinsics
12834^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12835
12836Syntax
12837"""""""
12838
12839This is an overloaded intrinsic. You can use ``llvm.ssub.sat``
12840on any integer bit width or vectors of integers.
12841
12842::
12843
12844 declare i16 @llvm.ssub.sat.i16(i16 %a, i16 %b)
12845 declare i32 @llvm.ssub.sat.i32(i32 %a, i32 %b)
12846 declare i64 @llvm.ssub.sat.i64(i64 %a, i64 %b)
12847 declare <4 x i32> @llvm.ssub.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
12848
12849Overview
12850"""""""""
12851
12852The '``llvm.ssub.sat``' family of intrinsic functions perform signed
12853saturation subtraction on the 2 arguments.
12854
12855Arguments
12856""""""""""
12857
12858The arguments (%a and %b) and the result may be of integer types of any bit
12859width, but they must have the same bit width. ``%a`` and ``%b`` are the two
12860values that will undergo signed subtraction.
12861
12862Semantics:
12863""""""""""
12864
12865The maximum value this operation can clamp to is the largest signed value
12866representable by the bit width of the arguments. The minimum value is the
12867smallest signed value representable by this bit width.
12868
12869
12870Examples
12871"""""""""
12872
12873.. code-block:: llvm
12874
12875 %res = call i4 @llvm.ssub.sat.i4(i4 2, i4 1) ; %res = 1
12876 %res = call i4 @llvm.ssub.sat.i4(i4 2, i4 6) ; %res = -4
12877 %res = call i4 @llvm.ssub.sat.i4(i4 -4, i4 5) ; %res = -8
12878 %res = call i4 @llvm.ssub.sat.i4(i4 4, i4 -5) ; %res = 7
12879
12880
12881'``llvm.usub.sat.*``' Intrinsics
12882^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12883
12884Syntax
12885"""""""
12886
12887This is an overloaded intrinsic. You can use ``llvm.usub.sat``
12888on any integer bit width or vectors of integers.
12889
12890::
12891
12892 declare i16 @llvm.usub.sat.i16(i16 %a, i16 %b)
12893 declare i32 @llvm.usub.sat.i32(i32 %a, i32 %b)
12894 declare i64 @llvm.usub.sat.i64(i64 %a, i64 %b)
12895 declare <4 x i32> @llvm.usub.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
12896
12897Overview
12898"""""""""
12899
12900The '``llvm.usub.sat``' family of intrinsic functions perform unsigned
12901saturation subtraction on the 2 arguments.
12902
12903Arguments
12904""""""""""
12905
12906The arguments (%a and %b) and the result may be of integer types of any bit
12907width, but they must have the same bit width. ``%a`` and ``%b`` are the two
12908values that will undergo unsigned subtraction.
12909
12910Semantics:
12911""""""""""
12912
12913The minimum value this operation can clamp to is 0, which is the smallest
12914unsigned value representable by the bit width of the unsigned arguments.
12915Because this is an unsigned operation, the result will never saturate towards
12916the largest possible value representable by this bit width.
12917
12918
12919Examples
12920"""""""""
12921
12922.. code-block:: llvm
12923
12924 %res = call i4 @llvm.usub.sat.i4(i4 2, i4 1) ; %res = 1
12925 %res = call i4 @llvm.usub.sat.i4(i4 2, i4 6) ; %res = 0
12926
12927
Leonard Chan8e3fdeb2018-12-12 06:29:14 +000012928Fixed Point Arithmetic Intrinsics
12929---------------------------------
12930
12931A fixed point number represents a real data type for a number that has a fixed
12932number of digits after a radix point (equivalent to the decimal point '.').
12933The number of digits after the radix point is referred as the ``scale``. These
12934are useful for representing fractional values to a specific precision. The
12935following intrinsics perform fixed point arithmetic operations on 2 operands
12936of the same scale, specified as the third argument.
12937
12938
12939'``llvm.smul.fix.*``' Intrinsics
12940^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12941
12942Syntax
12943"""""""
12944
12945This is an overloaded intrinsic. You can use ``llvm.smul.fix``
12946on any integer bit width or vectors of integers.
12947
12948::
12949
12950 declare i16 @llvm.smul.fix.i16(i16 %a, i16 %b, i32 %scale)
12951 declare i32 @llvm.smul.fix.i32(i32 %a, i32 %b, i32 %scale)
12952 declare i64 @llvm.smul.fix.i64(i64 %a, i64 %b, i32 %scale)
12953 declare <4 x i32> @llvm.smul.fix.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
12954
12955Overview
12956"""""""""
12957
12958The '``llvm.smul.fix``' family of intrinsic functions perform signed
12959fixed point multiplication on 2 arguments of the same scale.
12960
12961Arguments
12962""""""""""
12963
12964The arguments (%a and %b) and the result may be of integer types of any bit
12965width, but they must have the same bit width. ``%a`` and ``%b`` are the two
12966values that will undergo signed fixed point multiplication. The argument
12967``%scale`` represents the scale of both operands, and must be a constant
12968integer.
12969
12970Semantics:
12971""""""""""
12972
12973This operation performs fixed point multiplication on the 2 arguments of a
12974specified scale. The result will also be returned in the same scale specified
12975in the third argument.
12976
12977If the result value cannot be precisely represented in the given scale, the
12978value is rounded up or down to the closest representable value. The rounding
12979direction is unspecified.
12980
12981It is undefined behavior if the source value does not fit within the range of
12982the fixed point type.
12983
12984
12985Examples
12986"""""""""
12987
12988.. code-block:: llvm
12989
12990 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 2, i32 0) ; %res = 6 (2 x 3 = 6)
12991 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 2, i32 1) ; %res = 3 (1.5 x 1 = 1.5)
12992 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 -2, i32 1) ; %res = -3 (1.5 x -1 = -1.5)
12993
12994 ; The result in the following could be rounded up to -2 or down to -2.5
12995 %res = call i4 @llvm.smul.fix.i4(i4 3, i4 -3, i32 1) ; %res = -5 (or -4) (1.5 x -1.5 = -2.25)
12996
12997
Sean Silvaf722b002012-12-07 10:36:55 +000012998Specialised Arithmetic Intrinsics
12999---------------------------------
13000
Owen Andersonacea2292015-07-11 07:01:27 +000013001'``llvm.canonicalize.*``' Intrinsic
13002^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13003
13004Syntax:
13005"""""""
13006
13007::
13008
13009 declare float @llvm.canonicalize.f32(float %a)
13010 declare double @llvm.canonicalize.f64(double %b)
13011
13012Overview:
13013"""""""""
13014
13015The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sanjay Patel16e9a292018-03-21 14:15:33 +000013016encoding of a floating-point number. This canonicalization is useful for
Owen Andersonacea2292015-07-11 07:01:27 +000013017implementing certain numeric primitives such as frexp. The canonical encoding is
13018defined by IEEE-754-2008 to be:
13019
13020::
13021
13022 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silva7515d332015-08-06 22:56:48 +000013023 representation in a format. Applied to declets, significands of finite
Owen Andersonacea2292015-07-11 07:01:27 +000013024 numbers, infinities, and NaNs, especially in decimal formats.
13025
13026This operation can also be considered equivalent to the IEEE-754-2008
Sean Silva7515d332015-08-06 22:56:48 +000013027conversion of a floating-point value to the same format. NaNs are handled
Owen Andersonacea2292015-07-11 07:01:27 +000013028according to section 6.2.
13029
13030Examples of non-canonical encodings:
13031
Sean Silva7515d332015-08-06 22:56:48 +000013032- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Andersonacea2292015-07-11 07:01:27 +000013033 converted to a canonical representation per hardware-specific protocol.
Sanjay Patel16e9a292018-03-21 14:15:33 +000013034- Many normal decimal floating-point numbers have non-canonical alternative
Owen Andersonacea2292015-07-11 07:01:27 +000013035 encodings.
13036- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelfb916c22016-02-24 23:44:19 +000013037 These are treated as non-canonical encodings of zero and will be flushed to
Owen Andersonacea2292015-07-11 07:01:27 +000013038 a zero of the same sign by this operation.
13039
13040Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
13041default exception handling must signal an invalid exception, and produce a
13042quiet NaN result.
13043
13044This function should always be implementable as multiplication by 1.0, provided
Sean Silva7515d332015-08-06 22:56:48 +000013045that the compiler does not constant fold the operation. Likewise, division by
130461.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Andersonacea2292015-07-11 07:01:27 +000013047-0.0 is also sufficient provided that the rounding mode is not -Infinity.
13048
Sean Silva7515d332015-08-06 22:56:48 +000013049``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Andersonacea2292015-07-11 07:01:27 +000013050
13051- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
13052- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
13053 to ``(x == y)``
13054
13055Additionally, the sign of zero must be conserved:
13056``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
13057
13058The payload bits of a NaN must be conserved, with two exceptions.
13059First, environments which use only a single canonical representation of NaN
Sean Silva7515d332015-08-06 22:56:48 +000013060must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Andersonacea2292015-07-11 07:01:27 +000013061usual methods.
13062
13063The canonicalization operation may be optimized away if:
13064
Sean Silva7515d332015-08-06 22:56:48 +000013065- The input is known to be canonical. For example, it was produced by a
Owen Andersonacea2292015-07-11 07:01:27 +000013066 floating-point operation that is required by the standard to be canonical.
13067- The result is consumed only by (or fused with) other floating-point
Sanjay Patel16e9a292018-03-21 14:15:33 +000013068 operations. That is, the bits of the floating-point value are not examined.
Owen Andersonacea2292015-07-11 07:01:27 +000013069
Sean Silvaf722b002012-12-07 10:36:55 +000013070'``llvm.fmuladd.*``' Intrinsic
13071^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13072
13073Syntax:
13074"""""""
13075
13076::
13077
13078 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
13079 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
13080
13081Overview:
13082"""""""""
13083
13084The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +000013085expressions that can be fused if the code generator determines that (a) the
13086target instruction set has support for a fused operation, and (b) that the
13087fused operation is more efficient than the equivalent, separate pair of mul
13088and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +000013089
13090Arguments:
13091""""""""""
13092
13093The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
13094multiplicands, a and b, and an addend c.
13095
13096Semantics:
13097""""""""""
13098
13099The expression:
13100
13101::
13102
13103 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
13104
13105is equivalent to the expression a \* b + c, except that rounding will
13106not be performed between the multiplication and addition steps if the
13107code generator fuses the operations. Fusion is not guaranteed, even if
13108the target platform supports it. If a fused multiply-add is required the
Matt Arsenaulte9320912014-01-31 00:09:00 +000013109corresponding llvm.fma.\* intrinsic function should be used
13110instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvaf722b002012-12-07 10:36:55 +000013111
13112Examples:
13113"""""""""
13114
13115.. code-block:: llvm
13116
Tim Northover6eaf8402014-06-13 14:24:23 +000013117 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvaf722b002012-12-07 10:36:55 +000013118
Amara Emerson8f1f7ce2017-05-09 10:43:25 +000013119
13120Experimental Vector Reduction Intrinsics
13121----------------------------------------
13122
13123Horizontal reductions of vectors can be expressed using the following
13124intrinsics. Each one takes a vector operand as an input and applies its
13125respective operation across all elements of the vector, returning a single
13126scalar result of the same element type.
13127
13128
13129'``llvm.experimental.vector.reduce.add.*``' Intrinsic
13130^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13131
13132Syntax:
13133"""""""
13134
13135::
13136
13137 declare i32 @llvm.experimental.vector.reduce.add.i32.v4i32(<4 x i32> %a)
13138 declare i64 @llvm.experimental.vector.reduce.add.i64.v2i64(<2 x i64> %a)
13139
13140Overview:
13141"""""""""
13142
13143The '``llvm.experimental.vector.reduce.add.*``' intrinsics do an integer ``ADD``
13144reduction of a vector, returning the result as a scalar. The return type matches
13145the element-type of the vector input.
13146
13147Arguments:
13148""""""""""
13149The argument to this intrinsic must be a vector of integer values.
13150
13151'``llvm.experimental.vector.reduce.fadd.*``' Intrinsic
13152^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13153
13154Syntax:
13155"""""""
13156
13157::
13158
13159 declare float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %a)
13160 declare double @llvm.experimental.vector.reduce.fadd.f64.v2f64(double %acc, <2 x double> %a)
13161
13162Overview:
13163"""""""""
13164
Sanjay Patel16e9a292018-03-21 14:15:33 +000013165The '``llvm.experimental.vector.reduce.fadd.*``' intrinsics do a floating-point
Amara Emerson8f1f7ce2017-05-09 10:43:25 +000013166``ADD`` reduction of a vector, returning the result as a scalar. The return type
13167matches the element-type of the vector input.
13168
13169If the intrinsic call has fast-math flags, then the reduction will not preserve
13170the associativity of an equivalent scalarized counterpart. If it does not have
13171fast-math flags, then the reduction will be *ordered*, implying that the
13172operation respects the associativity of a scalarized reduction.
13173
13174
13175Arguments:
13176""""""""""
13177The first argument to this intrinsic is a scalar accumulator value, which is
13178only used when there are no fast-math flags attached. This argument may be undef
13179when fast-math flags are used.
13180
Sanjay Patel16e9a292018-03-21 14:15:33 +000013181The second argument must be a vector of floating-point values.
Amara Emerson8f1f7ce2017-05-09 10:43:25 +000013182
13183Examples:
13184"""""""""
13185
13186.. code-block:: llvm
13187
13188 %fast = call fast float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
13189 %ord = call float @llvm.experimental.vector.reduce.fadd.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
13190
13191
13192'``llvm.experimental.vector.reduce.mul.*``' Intrinsic
13193^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13194
13195Syntax:
13196"""""""
13197
13198::
13199
13200 declare i32 @llvm.experimental.vector.reduce.mul.i32.v4i32(<4 x i32> %a)
13201 declare i64 @llvm.experimental.vector.reduce.mul.i64.v2i64(<2 x i64> %a)
13202
13203Overview:
13204"""""""""
13205
13206The '``llvm.experimental.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
13207reduction of a vector, returning the result as a scalar. The return type matches
13208the element-type of the vector input.
13209
13210Arguments:
13211""""""""""
13212The argument to this intrinsic must be a vector of integer values.
13213
13214'``llvm.experimental.vector.reduce.fmul.*``' Intrinsic
13215^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13216
13217Syntax:
13218"""""""
13219
13220::
13221
13222 declare float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %a)
13223 declare double @llvm.experimental.vector.reduce.fmul.f64.v2f64(double %acc, <2 x double> %a)
13224
13225Overview:
13226"""""""""
13227
Sanjay Patel16e9a292018-03-21 14:15:33 +000013228The '``llvm.experimental.vector.reduce.fmul.*``' intrinsics do a floating-point
Amara Emerson8f1f7ce2017-05-09 10:43:25 +000013229``MUL`` reduction of a vector, returning the result as a scalar. The return type
13230matches the element-type of the vector input.
13231
13232If the intrinsic call has fast-math flags, then the reduction will not preserve
13233the associativity of an equivalent scalarized counterpart. If it does not have
13234fast-math flags, then the reduction will be *ordered*, implying that the
13235operation respects the associativity of a scalarized reduction.
13236
13237
13238Arguments:
13239""""""""""
13240The first argument to this intrinsic is a scalar accumulator value, which is
13241only used when there are no fast-math flags attached. This argument may be undef
13242when fast-math flags are used.
13243
Sanjay Patel16e9a292018-03-21 14:15:33 +000013244The second argument must be a vector of floating-point values.
Amara Emerson8f1f7ce2017-05-09 10:43:25 +000013245
13246Examples:
13247"""""""""
13248
13249.. code-block:: llvm
13250
13251 %fast = call fast float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float undef, <4 x float> %input) ; fast reduction
13252 %ord = call float @llvm.experimental.vector.reduce.fmul.f32.v4f32(float %acc, <4 x float> %input) ; ordered reduction
13253
13254'``llvm.experimental.vector.reduce.and.*``' Intrinsic
13255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13256
13257Syntax:
13258"""""""
13259
13260::
13261
13262 declare i32 @llvm.experimental.vector.reduce.and.i32.v4i32(<4 x i32> %a)
13263
13264Overview:
13265"""""""""
13266
13267The '``llvm.experimental.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
13268reduction of a vector, returning the result as a scalar. The return type matches
13269the element-type of the vector input.
13270
13271Arguments:
13272""""""""""
13273The argument to this intrinsic must be a vector of integer values.
13274
13275'``llvm.experimental.vector.reduce.or.*``' Intrinsic
13276^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13277
13278Syntax:
13279"""""""
13280
13281::
13282
13283 declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
13284
13285Overview:
13286"""""""""
13287
13288The '``llvm.experimental.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
13289of a vector, returning the result as a scalar. The return type matches the
13290element-type of the vector input.
13291
13292Arguments:
13293""""""""""
13294The argument to this intrinsic must be a vector of integer values.
13295
13296'``llvm.experimental.vector.reduce.xor.*``' Intrinsic
13297^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13298
13299Syntax:
13300"""""""
13301
13302::
13303
13304 declare i32 @llvm.experimental.vector.reduce.xor.i32.v4i32(<4 x i32> %a)
13305
13306Overview:
13307"""""""""
13308
13309The '``llvm.experimental.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
13310reduction of a vector, returning the result as a scalar. The return type matches
13311the element-type of the vector input.
13312
13313Arguments:
13314""""""""""
13315The argument to this intrinsic must be a vector of integer values.
13316
13317'``llvm.experimental.vector.reduce.smax.*``' Intrinsic
13318^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13319
13320Syntax:
13321"""""""
13322
13323::
13324
13325 declare i32 @llvm.experimental.vector.reduce.smax.i32.v4i32(<4 x i32> %a)
13326
13327Overview:
13328"""""""""
13329
13330The '``llvm.experimental.vector.reduce.smax.*``' intrinsics do a signed integer
13331``MAX`` reduction of a vector, returning the result as a scalar. The return type
13332matches the element-type of the vector input.
13333
13334Arguments:
13335""""""""""
13336The argument to this intrinsic must be a vector of integer values.
13337
13338'``llvm.experimental.vector.reduce.smin.*``' Intrinsic
13339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13340
13341Syntax:
13342"""""""
13343
13344::
13345
13346 declare i32 @llvm.experimental.vector.reduce.smin.i32.v4i32(<4 x i32> %a)
13347
13348Overview:
13349"""""""""
13350
13351The '``llvm.experimental.vector.reduce.smin.*``' intrinsics do a signed integer
13352``MIN`` reduction of a vector, returning the result as a scalar. The return type
13353matches the element-type of the vector input.
13354
13355Arguments:
13356""""""""""
13357The argument to this intrinsic must be a vector of integer values.
13358
13359'``llvm.experimental.vector.reduce.umax.*``' Intrinsic
13360^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13361
13362Syntax:
13363"""""""
13364
13365::
13366
13367 declare i32 @llvm.experimental.vector.reduce.umax.i32.v4i32(<4 x i32> %a)
13368
13369Overview:
13370"""""""""
13371
13372The '``llvm.experimental.vector.reduce.umax.*``' intrinsics do an unsigned
13373integer ``MAX`` reduction of a vector, returning the result as a scalar. The
13374return type matches the element-type of the vector input.
13375
13376Arguments:
13377""""""""""
13378The argument to this intrinsic must be a vector of integer values.
13379
13380'``llvm.experimental.vector.reduce.umin.*``' Intrinsic
13381^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13382
13383Syntax:
13384"""""""
13385
13386::
13387
13388 declare i32 @llvm.experimental.vector.reduce.umin.i32.v4i32(<4 x i32> %a)
13389
13390Overview:
13391"""""""""
13392
13393The '``llvm.experimental.vector.reduce.umin.*``' intrinsics do an unsigned
13394integer ``MIN`` reduction of a vector, returning the result as a scalar. The
13395return type matches the element-type of the vector input.
13396
13397Arguments:
13398""""""""""
13399The argument to this intrinsic must be a vector of integer values.
13400
13401'``llvm.experimental.vector.reduce.fmax.*``' Intrinsic
13402^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13403
13404Syntax:
13405"""""""
13406
13407::
13408
13409 declare float @llvm.experimental.vector.reduce.fmax.f32.v4f32(<4 x float> %a)
13410 declare double @llvm.experimental.vector.reduce.fmax.f64.v2f64(<2 x double> %a)
13411
13412Overview:
13413"""""""""
13414
Sanjay Patel16e9a292018-03-21 14:15:33 +000013415The '``llvm.experimental.vector.reduce.fmax.*``' intrinsics do a floating-point
Amara Emerson8f1f7ce2017-05-09 10:43:25 +000013416``MAX`` reduction of a vector, returning the result as a scalar. The return type
13417matches the element-type of the vector input.
13418
13419If the intrinsic call has the ``nnan`` fast-math flag then the operation can
13420assume that NaNs are not present in the input vector.
13421
13422Arguments:
13423""""""""""
Sanjay Patel16e9a292018-03-21 14:15:33 +000013424The argument to this intrinsic must be a vector of floating-point values.
Amara Emerson8f1f7ce2017-05-09 10:43:25 +000013425
13426'``llvm.experimental.vector.reduce.fmin.*``' Intrinsic
13427^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13428
13429Syntax:
13430"""""""
13431
13432::
13433
13434 declare float @llvm.experimental.vector.reduce.fmin.f32.v4f32(<4 x float> %a)
13435 declare double @llvm.experimental.vector.reduce.fmin.f64.v2f64(<2 x double> %a)
13436
13437Overview:
13438"""""""""
13439
Sanjay Patel16e9a292018-03-21 14:15:33 +000013440The '``llvm.experimental.vector.reduce.fmin.*``' intrinsics do a floating-point
Amara Emerson8f1f7ce2017-05-09 10:43:25 +000013441``MIN`` reduction of a vector, returning the result as a scalar. The return type
13442matches the element-type of the vector input.
13443
13444If the intrinsic call has the ``nnan`` fast-math flag then the operation can
13445assume that NaNs are not present in the input vector.
13446
13447Arguments:
13448""""""""""
Sanjay Patel16e9a292018-03-21 14:15:33 +000013449The argument to this intrinsic must be a vector of floating-point values.
Amara Emerson8f1f7ce2017-05-09 10:43:25 +000013450
Sanjay Patel16e9a292018-03-21 14:15:33 +000013451Half Precision Floating-Point Intrinsics
Sean Silvaf722b002012-12-07 10:36:55 +000013452----------------------------------------
13453
Sanjay Patel16e9a292018-03-21 14:15:33 +000013454For most target platforms, half precision floating-point is a
Sean Silvaf722b002012-12-07 10:36:55 +000013455storage-only format. This means that it is a dense encoding (in memory)
13456but does not support computation in the format.
13457
Sanjay Patel16e9a292018-03-21 14:15:33 +000013458This means that code must first load the half-precision floating-point
Sean Silvaf722b002012-12-07 10:36:55 +000013459value as an i16, then convert it to float with
13460:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
13461then be performed on the float value (including extending to double
13462etc). To store the value back to memory, it is first converted to float
13463if needed, then converted to i16 with
13464:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
13465i16 value.
13466
13467.. _int_convert_to_fp16:
13468
13469'``llvm.convert.to.fp16``' Intrinsic
13470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13471
13472Syntax:
13473"""""""
13474
13475::
13476
Tim Northover3e61ccd2014-07-17 10:51:23 +000013477 declare i16 @llvm.convert.to.fp16.f32(float %a)
13478 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvaf722b002012-12-07 10:36:55 +000013479
13480Overview:
13481"""""""""
13482
Tim Northover3e61ccd2014-07-17 10:51:23 +000013483The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel16e9a292018-03-21 14:15:33 +000013484conventional floating-point type to half precision floating-point format.
Sean Silvaf722b002012-12-07 10:36:55 +000013485
13486Arguments:
13487""""""""""
13488
13489The intrinsic function contains single argument - the value to be
13490converted.
13491
13492Semantics:
13493""""""""""
13494
Tim Northover3e61ccd2014-07-17 10:51:23 +000013495The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
Sanjay Patel16e9a292018-03-21 14:15:33 +000013496conventional floating-point format to half precision floating-point format. The
Tim Northover3e61ccd2014-07-17 10:51:23 +000013497return value is an ``i16`` which contains the converted number.
Sean Silvaf722b002012-12-07 10:36:55 +000013498
13499Examples:
13500"""""""""
13501
13502.. code-block:: llvm
13503
Tim Northover3e61ccd2014-07-17 10:51:23 +000013504 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvaf722b002012-12-07 10:36:55 +000013505 store i16 %res, i16* @x, align 2
13506
13507.. _int_convert_from_fp16:
13508
13509'``llvm.convert.from.fp16``' Intrinsic
13510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13511
13512Syntax:
13513"""""""
13514
13515::
13516
Tim Northover3e61ccd2014-07-17 10:51:23 +000013517 declare float @llvm.convert.from.fp16.f32(i16 %a)
13518 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvaf722b002012-12-07 10:36:55 +000013519
13520Overview:
13521"""""""""
13522
13523The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel16e9a292018-03-21 14:15:33 +000013524conversion from half precision floating-point format to single precision
13525floating-point format.
Sean Silvaf722b002012-12-07 10:36:55 +000013526
13527Arguments:
13528""""""""""
13529
13530The intrinsic function contains single argument - the value to be
13531converted.
13532
13533Semantics:
13534""""""""""
13535
13536The '``llvm.convert.from.fp16``' intrinsic function performs a
Sanjay Patel16e9a292018-03-21 14:15:33 +000013537conversion from half single precision floating-point format to single
13538precision floating-point format. The input half-float value is
Sean Silvaf722b002012-12-07 10:36:55 +000013539represented by an ``i16`` value.
13540
13541Examples:
13542"""""""""
13543
13544.. code-block:: llvm
13545
David Blaikie0effae82015-03-04 22:06:14 +000013546 %a = load i16, i16* @x, align 2
Matt Arsenault985d66c2014-07-10 03:22:16 +000013547 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvaf722b002012-12-07 10:36:55 +000013548
Duncan P. N. Exon Smithb056aa72015-03-03 17:24:31 +000013549.. _dbg_intrinsics:
13550
Sean Silvaf722b002012-12-07 10:36:55 +000013551Debugger Intrinsics
13552-------------------
13553
13554The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
13555prefix), are described in the `LLVM Source Level
Hans Wennborg55a93de2017-09-28 15:16:37 +000013556Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
Sean Silvaf722b002012-12-07 10:36:55 +000013557document.
13558
13559Exception Handling Intrinsics
13560-----------------------------
13561
13562The LLVM exception handling intrinsics (which all start with
13563``llvm.eh.`` prefix), are described in the `LLVM Exception
Hans Wennborg55a93de2017-09-28 15:16:37 +000013564Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
Sean Silvaf722b002012-12-07 10:36:55 +000013565
13566.. _int_trampoline:
13567
13568Trampoline Intrinsics
13569---------------------
13570
13571These intrinsics make it possible to excise one parameter, marked with
13572the :ref:`nest <nest>` attribute, from a function. The result is a
13573callable function pointer lacking the nest parameter - the caller does
13574not need to provide a value for it. Instead, the value to use is stored
13575in advance in a "trampoline", a block of memory usually allocated on the
13576stack, which also contains code to splice the nest value into the
13577argument list. This is used to implement the GCC nested function address
13578extension.
13579
13580For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
13581then the resulting function pointer has signature ``i32 (i32, i32)*``.
13582It can be created as follows:
13583
13584.. code-block:: llvm
13585
13586 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikieaf9251f2015-03-04 22:02:58 +000013587 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvaf722b002012-12-07 10:36:55 +000013588 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
13589 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
13590 %fp = bitcast i8* %p to i32 (i32, i32)*
13591
13592The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
13593``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
13594
13595.. _int_it:
13596
13597'``llvm.init.trampoline``' Intrinsic
13598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13599
13600Syntax:
13601"""""""
13602
13603::
13604
13605 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
13606
13607Overview:
13608"""""""""
13609
13610This fills the memory pointed to by ``tramp`` with executable code,
13611turning it into a trampoline.
13612
13613Arguments:
13614""""""""""
13615
13616The ``llvm.init.trampoline`` intrinsic takes three arguments, all
13617pointers. The ``tramp`` argument must point to a sufficiently large and
13618sufficiently aligned block of memory; this memory is written to by the
13619intrinsic. Note that the size and the alignment are target-specific -
13620LLVM currently provides no portable way of determining them, so a
13621front-end that generates this intrinsic needs to have some
13622target-specific knowledge. The ``func`` argument must hold a function
13623bitcast to an ``i8*``.
13624
13625Semantics:
13626""""""""""
13627
13628The block of memory pointed to by ``tramp`` is filled with target
13629dependent code, turning it into a function. Then ``tramp`` needs to be
13630passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
13631be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
13632function's signature is the same as that of ``func`` with any arguments
13633marked with the ``nest`` attribute removed. At most one such ``nest``
13634argument is allowed, and it must be of pointer type. Calling the new
13635function is equivalent to calling ``func`` with the same argument list,
13636but with ``nval`` used for the missing ``nest`` argument. If, after
13637calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
13638modified, then the effect of any later call to the returned function
13639pointer is undefined.
13640
13641.. _int_at:
13642
13643'``llvm.adjust.trampoline``' Intrinsic
13644^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13645
13646Syntax:
13647"""""""
13648
13649::
13650
13651 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
13652
13653Overview:
13654"""""""""
13655
13656This performs any required machine-specific adjustment to the address of
13657a trampoline (passed as ``tramp``).
13658
13659Arguments:
13660""""""""""
13661
13662``tramp`` must point to a block of memory which already has trampoline
13663code filled in by a previous call to
13664:ref:`llvm.init.trampoline <int_it>`.
13665
13666Semantics:
13667""""""""""
13668
13669On some architectures the address of the code to be executed needs to be
Sanjay Pateld4921232014-07-04 19:40:43 +000013670different than the address where the trampoline is actually stored. This
Sean Silvaf722b002012-12-07 10:36:55 +000013671intrinsic returns the executable address corresponding to ``tramp``
13672after performing the required machine specific adjustments. The pointer
13673returned can then be :ref:`bitcast and executed <int_trampoline>`.
13674
Elena Demikhovsky89711f82015-05-07 12:25:11 +000013675.. _int_mload_mstore:
13676
Elena Demikhovsky773f6482014-12-25 09:29:13 +000013677Masked Vector Load and Store Intrinsics
13678---------------------------------------
13679
13680LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
13681
13682.. _int_mload:
13683
13684'``llvm.masked.load.*``' Intrinsics
13685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13686
13687Syntax:
13688"""""""
Sanjay Patel16e9a292018-03-21 14:15:33 +000013689This is an overloaded intrinsic. The loaded data is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky773f6482014-12-25 09:29:13 +000013690
13691::
13692
Artur Pilipenko48917c92016-06-28 18:27:25 +000013693 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
13694 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky43be5f52015-11-19 07:17:16 +000013695 ;; The data is a vector of pointers to double
Artur Pilipenko48917c92016-06-28 18:27:25 +000013696 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky43be5f52015-11-19 07:17:16 +000013697 ;; The data is a vector of function pointers
Artur Pilipenko48917c92016-06-28 18:27:25 +000013698 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky773f6482014-12-25 09:29:13 +000013699
13700Overview:
13701"""""""""
13702
Elena Demikhovsky89711f82015-05-07 12:25:11 +000013703Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky773f6482014-12-25 09:29:13 +000013704
13705
13706Arguments:
13707""""""""""
13708
Elena Demikhovsky89711f82015-05-07 12:25:11 +000013709The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky773f6482014-12-25 09:29:13 +000013710
13711
13712Semantics:
13713""""""""""
13714
13715The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
13716The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
13717
13718
13719::
13720
Artur Pilipenko48917c92016-06-28 18:27:25 +000013721 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini18233dc2015-03-14 22:04:06 +000013722
Elena Demikhovsky773f6482014-12-25 09:29:13 +000013723 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikie0effae82015-03-04 22:06:14 +000013724 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskycce6e812014-12-29 09:47:51 +000013725 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky773f6482014-12-25 09:29:13 +000013726
13727.. _int_mstore:
13728
13729'``llvm.masked.store.*``' Intrinsics
13730^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13731
13732Syntax:
13733"""""""
Sanjay Patel16e9a292018-03-21 14:15:33 +000013734This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type.
Elena Demikhovsky773f6482014-12-25 09:29:13 +000013735
13736::
13737
Artur Pilipenko48917c92016-06-28 18:27:25 +000013738 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
13739 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky43be5f52015-11-19 07:17:16 +000013740 ;; The data is a vector of pointers to double
Artur Pilipenko48917c92016-06-28 18:27:25 +000013741 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky43be5f52015-11-19 07:17:16 +000013742 ;; The data is a vector of function pointers
Artur Pilipenko48917c92016-06-28 18:27:25 +000013743 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky773f6482014-12-25 09:29:13 +000013744
13745Overview:
13746"""""""""
13747
13748Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
13749
13750Arguments:
13751""""""""""
13752
13753The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
13754
13755
13756Semantics:
13757""""""""""
13758
13759The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
13760The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
13761
13762::
13763
Artur Pilipenko48917c92016-06-28 18:27:25 +000013764 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini18233dc2015-03-14 22:04:06 +000013765
Elena Demikhovskycce6e812014-12-29 09:47:51 +000013766 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikie0effae82015-03-04 22:06:14 +000013767 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky773f6482014-12-25 09:29:13 +000013768 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
13769 store <16 x float> %res, <16 x float>* %ptr, align 4
13770
13771
Elena Demikhovsky89711f82015-05-07 12:25:11 +000013772Masked Vector Gather and Scatter Intrinsics
13773-------------------------------------------
13774
13775LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
13776
13777.. _int_mgather:
13778
13779'``llvm.masked.gather.*``' Intrinsics
13780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13781
13782Syntax:
13783"""""""
Sanjay Patel16e9a292018-03-21 14:15:33 +000013784This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating-point or pointer data type gathered together into one vector.
Elena Demikhovsky89711f82015-05-07 12:25:11 +000013785
13786::
13787
Elad Cohenea59a242017-05-03 12:28:54 +000013788 declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
13789 declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64 (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
13790 declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky89711f82015-05-07 12:25:11 +000013791
13792Overview:
13793"""""""""
13794
13795Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
13796
13797
13798Arguments:
13799""""""""""
13800
13801The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
13802
13803
13804Semantics:
13805""""""""""
13806
13807The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
13808The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
13809
13810
13811::
13812
Elad Cohenea59a242017-05-03 12:28:54 +000013813 %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
Elena Demikhovsky89711f82015-05-07 12:25:11 +000013814
13815 ;; The gather with all-true mask is equivalent to the following instruction sequence
13816 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
13817 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
13818 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
13819 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
13820
13821 %val0 = load double, double* %ptr0, align 8
13822 %val1 = load double, double* %ptr1, align 8
13823 %val2 = load double, double* %ptr2, align 8
13824 %val3 = load double, double* %ptr3, align 8
13825
13826 %vec0 = insertelement <4 x double>undef, %val0, 0
13827 %vec01 = insertelement <4 x double>%vec0, %val1, 1
13828 %vec012 = insertelement <4 x double>%vec01, %val2, 2
13829 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
13830
13831.. _int_mscatter:
13832
13833'``llvm.masked.scatter.*``' Intrinsics
13834^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13835
13836Syntax:
13837"""""""
Sanjay Patel16e9a292018-03-21 14:15:33 +000013838This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky89711f82015-05-07 12:25:11 +000013839
13840::
13841
Elad Cohenea59a242017-05-03 12:28:54 +000013842 declare void @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
13843 declare void @llvm.masked.scatter.v16f32.v16p1f32 (<16 x float> <value>, <16 x float addrspace(1)*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
13844 declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky89711f82015-05-07 12:25:11 +000013845
13846Overview:
13847"""""""""
13848
13849Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
13850
13851Arguments:
13852""""""""""
13853
13854The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
13855
13856
13857Semantics:
13858""""""""""
13859
Bruce Mitchener767c34a2015-09-12 01:17:08 +000013860The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky89711f82015-05-07 12:25:11 +000013861
13862::
13863
Sylvestre Ledru3c5ec722016-02-14 20:16:22 +000013864 ;; This instruction unconditionally stores data vector in multiple addresses
Elad Cohenea59a242017-05-03 12:28:54 +000013865 call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
Elena Demikhovsky89711f82015-05-07 12:25:11 +000013866
13867 ;; It is equivalent to a list of scalar stores
13868 %val0 = extractelement <8 x i32> %value, i32 0
13869 %val1 = extractelement <8 x i32> %value, i32 1
13870 ..
13871 %val7 = extractelement <8 x i32> %value, i32 7
13872 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
13873 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
13874 ..
13875 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
13876 ;; Note: the order of the following stores is important when they overlap:
13877 store i32 %val0, i32* %ptr0, align 4
13878 store i32 %val1, i32* %ptr1, align 4
13879 ..
13880 store i32 %val7, i32* %ptr7, align 4
13881
13882
Elena Demikhovskyed92eef2018-06-06 09:11:46 +000013883Masked Vector Expanding Load and Compressing Store Intrinsics
13884-------------------------------------------------------------
13885
13886LLVM provides intrinsics for expanding load and compressing store operations. Data selected from a vector according to a mask is stored in consecutive memory addresses (compressed store), and vice-versa (expanding load). These operations effective map to "if (cond.i) a[j++] = v.i" and "if (cond.i) v.i = a[j++]" patterns, respectively. Note that when the mask starts with '1' bits followed by '0' bits, these operations are identical to :ref:`llvm.masked.store <int_mstore>` and :ref:`llvm.masked.load <int_mload>`.
13887
13888.. _int_expandload:
13889
13890'``llvm.masked.expandload.*``' Intrinsics
13891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13892
13893Syntax:
13894"""""""
13895This is an overloaded intrinsic. Several values of integer, floating point or pointer data type are loaded from consecutive memory addresses and stored into the elements of a vector according to the mask.
13896
13897::
13898
13899 declare <16 x float> @llvm.masked.expandload.v16f32 (float* <ptr>, <16 x i1> <mask>, <16 x float> <passthru>)
13900 declare <2 x i64> @llvm.masked.expandload.v2i64 (i64* <ptr>, <2 x i1> <mask>, <2 x i64> <passthru>)
13901
13902Overview:
13903"""""""""
13904
13905Reads a number of scalar values sequentially from memory location provided in '``ptr``' and spreads them in a vector. The '``mask``' holds a bit for each vector lane. The number of elements read from memory is equal to the number of '1' bits in the mask. The loaded elements are positioned in the destination vector according to the sequence of '1' and '0' bits in the mask. E.g., if the mask vector is '10010001', "explandload" reads 3 values from memory addresses ptr, ptr+1, ptr+2 and places them in lanes 0, 3 and 7 accordingly. The masked-off lanes are filled by elements from the corresponding lanes of the '``passthru``' operand.
13906
13907
13908Arguments:
13909""""""""""
13910
13911The first operand is the base pointer for the load. It has the same underlying type as the element of the returned vector. The second operand, mask, is a vector of boolean values with the same number of elements as the return type. The third is a pass-through value that is used to fill the masked-off lanes of the result. The return type and the type of the '``passthru``' operand have the same vector type.
13912
13913Semantics:
13914""""""""""
13915
13916The '``llvm.masked.expandload``' intrinsic is designed for reading multiple scalar values from adjacent memory addresses into possibly non-adjacent vector lanes. It is useful for targets that support vector expanding loads and allows vectorizing loop with cross-iteration dependency like in the following example:
13917
13918.. code-block:: c
13919
13920 // In this loop we load from B and spread the elements into array A.
13921 double *A, B; int *C;
13922 for (int i = 0; i < size; ++i) {
13923 if (C[i] != 0)
13924 A[i] = B[j++];
13925 }
13926
13927
13928.. code-block:: llvm
13929
13930 ; Load several elements from array B and expand them in a vector.
13931 ; The number of loaded elements is equal to the number of '1' elements in the Mask.
13932 %Tmp = call <8 x double> @llvm.masked.expandload.v8f64(double* %Bptr, <8 x i1> %Mask, <8 x double> undef)
13933 ; Store the result in A
13934 call void @llvm.masked.store.v8f64.p0v8f64(<8 x double> %Tmp, <8 x double>* %Aptr, i32 8, <8 x i1> %Mask)
Mandeep Singh Grang08238b72018-11-01 23:22:25 +000013935
Elena Demikhovskyed92eef2018-06-06 09:11:46 +000013936 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
13937 %MaskI = bitcast <8 x i1> %Mask to i8
13938 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
13939 %MaskI64 = zext i8 %MaskIPopcnt to i64
13940 %BNextInd = add i64 %BInd, %MaskI64
13941
13942
13943Other targets may support this intrinsic differently, for example, by lowering it into a sequence of conditional scalar load operations and shuffles.
13944If all mask elements are '1', the intrinsic behavior is equivalent to the regular unmasked vector load.
13945
13946.. _int_compressstore:
13947
13948'``llvm.masked.compressstore.*``' Intrinsics
13949^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13950
13951Syntax:
13952"""""""
13953This is an overloaded intrinsic. A number of scalar values of integer, floating point or pointer data type are collected from an input vector and stored into adjacent memory addresses. A mask defines which elements to collect from the vector.
13954
13955::
13956
13957 declare void @llvm.masked.compressstore.v8i32 (<8 x i32> <value>, i32* <ptr>, <8 x i1> <mask>)
13958 declare void @llvm.masked.compressstore.v16f32 (<16 x float> <value>, float* <ptr>, <16 x i1> <mask>)
13959
13960Overview:
13961"""""""""
13962
13963Selects elements from input vector '``value``' according to the '``mask``'. All selected elements are written into adjacent memory addresses starting at address '`ptr`', from lower to higher. The mask holds a bit for each vector lane, and is used to select elements to be stored. The number of elements to be stored is equal to the number of active bits in the mask.
13964
13965Arguments:
13966""""""""""
13967
13968The first operand is the input vector, from which elements are collected and written to memory. The second operand is the base pointer for the store, it has the same underlying type as the element of the input vector operand. The third operand is the mask, a vector of boolean values. The mask and the input vector must have the same number of vector elements.
13969
13970
13971Semantics:
13972""""""""""
13973
13974The '``llvm.masked.compressstore``' intrinsic is designed for compressing data in memory. It allows to collect elements from possibly non-adjacent lanes of a vector and store them contiguously in memory in one IR operation. It is useful for targets that support compressing store operations and allows vectorizing loops with cross-iteration dependences like in the following example:
13975
13976.. code-block:: c
13977
13978 // In this loop we load elements from A and store them consecutively in B
13979 double *A, B; int *C;
13980 for (int i = 0; i < size; ++i) {
13981 if (C[i] != 0)
13982 B[j++] = A[i]
13983 }
13984
13985
13986.. code-block:: llvm
13987
13988 ; Load elements from A.
13989 %Tmp = call <8 x double> @llvm.masked.load.v8f64.p0v8f64(<8 x double>* %Aptr, i32 8, <8 x i1> %Mask, <8 x double> undef)
13990 ; Store all selected elements consecutively in array B
13991 call <void> @llvm.masked.compressstore.v8f64(<8 x double> %Tmp, double* %Bptr, <8 x i1> %Mask)
Mandeep Singh Grang08238b72018-11-01 23:22:25 +000013992
Elena Demikhovskyed92eef2018-06-06 09:11:46 +000013993 ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
13994 %MaskI = bitcast <8 x i1> %Mask to i8
13995 %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
13996 %MaskI64 = zext i8 %MaskIPopcnt to i64
13997 %BNextInd = add i64 %BInd, %MaskI64
13998
13999
14000Other targets may support this intrinsic differently, for example, by lowering it into a sequence of branches that guard scalar store operations.
14001
14002
Sean Silvaf722b002012-12-07 10:36:55 +000014003Memory Use Markers
14004------------------
14005
Sanjay Pateld4921232014-07-04 19:40:43 +000014006This class of intrinsics provides information about the lifetime of
Sean Silvaf722b002012-12-07 10:36:55 +000014007memory objects and ranges where variables are immutable.
14008
Reid Kleckner4b70bfc2013-12-19 02:14:12 +000014009.. _int_lifestart:
14010
Sean Silvaf722b002012-12-07 10:36:55 +000014011'``llvm.lifetime.start``' Intrinsic
14012^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14013
14014Syntax:
14015"""""""
14016
14017::
14018
14019 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
14020
14021Overview:
14022"""""""""
14023
14024The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
14025object's lifetime.
14026
14027Arguments:
14028""""""""""
14029
14030The first argument is a constant integer representing the size of the
14031object, or -1 if it is variable sized. The second argument is a pointer
14032to the object.
14033
14034Semantics:
14035""""""""""
14036
14037This intrinsic indicates that before this point in the code, the value
14038of the memory pointed to by ``ptr`` is dead. This means that it is known
14039to never be used and has an undefined value. A load from the pointer
14040that precedes this intrinsic can be replaced with ``'undef'``.
14041
Reid Kleckner4b70bfc2013-12-19 02:14:12 +000014042.. _int_lifeend:
14043
Sean Silvaf722b002012-12-07 10:36:55 +000014044'``llvm.lifetime.end``' Intrinsic
14045^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14046
14047Syntax:
14048"""""""
14049
14050::
14051
14052 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
14053
14054Overview:
14055"""""""""
14056
14057The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
14058object's lifetime.
14059
14060Arguments:
14061""""""""""
14062
14063The first argument is a constant integer representing the size of the
14064object, or -1 if it is variable sized. The second argument is a pointer
14065to the object.
14066
14067Semantics:
14068""""""""""
14069
14070This intrinsic indicates that after this point in the code, the value of
14071the memory pointed to by ``ptr`` is dead. This means that it is known to
14072never be used and has an undefined value. Any stores into the memory
14073object following this intrinsic may be removed as dead.
14074
14075'``llvm.invariant.start``' Intrinsic
14076^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14077
14078Syntax:
14079"""""""
Mehdi Amini804c8152016-08-13 23:31:24 +000014080This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvaf722b002012-12-07 10:36:55 +000014081
14082::
14083
Mehdi Amini804c8152016-08-13 23:31:24 +000014084 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvaf722b002012-12-07 10:36:55 +000014085
14086Overview:
14087"""""""""
14088
14089The '``llvm.invariant.start``' intrinsic specifies that the contents of
14090a memory object will not change.
14091
14092Arguments:
14093""""""""""
14094
14095The first argument is a constant integer representing the size of the
14096object, or -1 if it is variable sized. The second argument is a pointer
14097to the object.
14098
14099Semantics:
14100""""""""""
14101
14102This intrinsic indicates that until an ``llvm.invariant.end`` that uses
14103the return value, the referenced memory location is constant and
14104unchanging.
14105
14106'``llvm.invariant.end``' Intrinsic
14107^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14108
14109Syntax:
14110"""""""
Mehdi Amini804c8152016-08-13 23:31:24 +000014111This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvaf722b002012-12-07 10:36:55 +000014112
14113::
14114
Mehdi Amini804c8152016-08-13 23:31:24 +000014115 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvaf722b002012-12-07 10:36:55 +000014116
14117Overview:
14118"""""""""
14119
14120The '``llvm.invariant.end``' intrinsic specifies that the contents of a
14121memory object are mutable.
14122
14123Arguments:
14124""""""""""
14125
14126The first argument is the matching ``llvm.invariant.start`` intrinsic.
14127The second argument is a constant integer representing the size of the
14128object, or -1 if it is variable sized and the third argument is a
14129pointer to the object.
14130
14131Semantics:
14132""""""""""
14133
14134This intrinsic indicates that the memory is mutable again.
14135
Piotr Padlewski9648b462018-05-03 11:03:01 +000014136'``llvm.launder.invariant.group``' Intrinsic
Piotr Padlewskif3abce42015-09-15 18:32:14 +000014137^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14138
14139Syntax:
14140"""""""
Yaxun Liu35ad1262017-11-16 16:32:16 +000014141This is an overloaded intrinsic. The memory object can belong to any address
14142space. The returned pointer must belong to the same address space as the
14143argument.
Piotr Padlewskif3abce42015-09-15 18:32:14 +000014144
14145::
14146
Piotr Padlewski9648b462018-05-03 11:03:01 +000014147 declare i8* @llvm.launder.invariant.group.p0i8(i8* <ptr>)
Piotr Padlewskif3abce42015-09-15 18:32:14 +000014148
14149Overview:
14150"""""""""
14151
Piotr Padlewski9648b462018-05-03 11:03:01 +000014152The '``llvm.launder.invariant.group``' intrinsic can be used when an invariant
Piotr Padlewskic2f24d92018-07-02 04:49:30 +000014153established by ``invariant.group`` metadata no longer holds, to obtain a new
14154pointer value that carries fresh invariant group information. It is an
14155experimental intrinsic, which means that its semantics might change in the
14156future.
Piotr Padlewskif3abce42015-09-15 18:32:14 +000014157
14158
14159Arguments:
14160""""""""""
14161
Piotr Padlewskic2f24d92018-07-02 04:49:30 +000014162The ``llvm.launder.invariant.group`` takes only one argument, which is a pointer
14163to the memory.
Piotr Padlewskif3abce42015-09-15 18:32:14 +000014164
14165Semantics:
14166""""""""""
14167
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014168Returns another pointer that aliases its argument but which is considered different
Piotr Padlewskif3abce42015-09-15 18:32:14 +000014169for the purposes of ``load``/``store`` ``invariant.group`` metadata.
Piotr Padlewski9648b462018-05-03 11:03:01 +000014170It does not read any accessible memory and the execution can be speculated.
Piotr Padlewskif3abce42015-09-15 18:32:14 +000014171
Piotr Padlewskic2f24d92018-07-02 04:49:30 +000014172'``llvm.strip.invariant.group``' Intrinsic
14173^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14174
14175Syntax:
14176"""""""
14177This is an overloaded intrinsic. The memory object can belong to any address
14178space. The returned pointer must belong to the same address space as the
14179argument.
14180
14181::
14182
14183 declare i8* @llvm.strip.invariant.group.p0i8(i8* <ptr>)
14184
14185Overview:
14186"""""""""
14187
14188The '``llvm.strip.invariant.group``' intrinsic can be used when an invariant
14189established by ``invariant.group`` metadata no longer holds, to obtain a new pointer
14190value that does not carry the invariant information. It is an experimental
14191intrinsic, which means that its semantics might change in the future.
14192
14193
14194Arguments:
14195""""""""""
14196
14197The ``llvm.strip.invariant.group`` takes only one argument, which is a pointer
14198to the memory.
14199
14200Semantics:
14201""""""""""
14202
14203Returns another pointer that aliases its argument but which has no associated
14204``invariant.group`` metadata.
14205It does not read any memory and can be speculated.
14206
14207
14208
Sanjay Patela61bf372018-03-20 16:38:22 +000014209.. _constrainedfp:
14210
Sanjay Patel16e9a292018-03-21 14:15:33 +000014211Constrained Floating-Point Intrinsics
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014212-------------------------------------
14213
Sanjay Patel16e9a292018-03-21 14:15:33 +000014214These intrinsics are used to provide special handling of floating-point
14215operations when specific rounding mode or floating-point exception behavior is
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014216required. By default, LLVM optimization passes assume that the rounding mode is
Sanjay Patel16e9a292018-03-21 14:15:33 +000014217round-to-nearest and that floating-point exceptions will not be monitored.
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014218Constrained FP intrinsics are used to support non-default rounding modes and
14219accurately preserve exception behavior without compromising LLVM's ability to
14220optimize FP code when the default behavior is used.
14221
Sanjay Patel16e9a292018-03-21 14:15:33 +000014222Each of these intrinsics corresponds to a normal floating-point operation. The
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014223first two arguments and the return value are the same as the corresponding FP
14224operation.
14225
14226The third argument is a metadata argument specifying the rounding mode to be
14227assumed. This argument must be one of the following strings:
14228
14229::
Andrew Kaylorf7c70af2017-04-20 18:18:36 +000014230
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014231 "round.dynamic"
14232 "round.tonearest"
14233 "round.downward"
14234 "round.upward"
14235 "round.towardzero"
14236
14237If this argument is "round.dynamic" optimization passes must assume that the
14238rounding mode is unknown and may change at runtime. No transformations that
14239depend on rounding mode may be performed in this case.
14240
14241The other possible values for the rounding mode argument correspond to the
14242similarly named IEEE rounding modes. If the argument is any of these values
14243optimization passes may perform transformations as long as they are consistent
14244with the specified rounding mode.
14245
14246For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
14247"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
14248'x-0' should evaluate to '-0' when rounding downward. However, this
14249transformation is legal for all other rounding modes.
14250
14251For values other than "round.dynamic" optimization passes may assume that the
14252actual runtime rounding mode (as defined in a target-specific manner) matches
14253the specified rounding mode, but this is not guaranteed. Using a specific
14254non-dynamic rounding mode which does not match the actual rounding mode at
14255runtime results in undefined behavior.
14256
Sanjay Patel16e9a292018-03-21 14:15:33 +000014257The fourth argument to the constrained floating-point intrinsics specifies the
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014258required exception behavior. This argument must be one of the following
14259strings:
14260
14261::
Andrew Kaylorf7c70af2017-04-20 18:18:36 +000014262
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014263 "fpexcept.ignore"
14264 "fpexcept.maytrap"
14265 "fpexcept.strict"
14266
14267If this argument is "fpexcept.ignore" optimization passes may assume that the
Sanjay Patel16e9a292018-03-21 14:15:33 +000014268exception status flags will not be read and that floating-point exceptions will
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014269be masked. This allows transformations to be performed that may change the
14270exception semantics of the original code. For example, FP operations may be
14271speculatively executed in this case whereas they must not be for either of the
14272other possible values of this argument.
14273
14274If the exception behavior argument is "fpexcept.maytrap" optimization passes
14275must avoid transformations that may raise exceptions that would not have been
14276raised by the original code (such as speculatively executing FP operations), but
14277passes are not required to preserve all exceptions that are implied by the
14278original code. For example, exceptions may be potentially hidden by constant
14279folding.
14280
14281If the exception behavior argument is "fpexcept.strict" all transformations must
Sanjay Patel16e9a292018-03-21 14:15:33 +000014282strictly preserve the floating-point exception semantics of the original code.
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014283Any FP exception that would have been raised by the original code must be raised
14284by the transformed code, and the transformed code must not raise any FP
14285exceptions that would not have been raised by the original code. This is the
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014286exception behavior argument that will be used if the code being compiled reads
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014287the FP exception status flags, but this mode can also be used with code that
14288unmasks FP exceptions.
14289
Sanjay Patel16e9a292018-03-21 14:15:33 +000014290The number and order of floating-point exceptions is NOT guaranteed. For
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014291example, a series of FP operations that each may raise exceptions may be
14292vectorized into a single instruction that raises each unique exception a single
14293time.
14294
14295
14296'``llvm.experimental.constrained.fadd``' Intrinsic
14297^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14298
14299Syntax:
14300"""""""
14301
14302::
14303
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014304 declare <type>
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014305 @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
14306 metadata <rounding mode>,
Andrew Kaylor325c6862017-05-25 21:31:00 +000014307 metadata <exception behavior>)
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014308
14309Overview:
14310"""""""""
14311
14312The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
14313two operands.
14314
14315
14316Arguments:
14317""""""""""
14318
14319The first two arguments to the '``llvm.experimental.constrained.fadd``'
Sanjay Patel16e9a292018-03-21 14:15:33 +000014320intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14321of floating-point values. Both arguments must have identical types.
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014322
14323The third and fourth arguments specify the rounding mode and exception
14324behavior as described above.
14325
14326Semantics:
14327""""""""""
14328
Sanjay Patel16e9a292018-03-21 14:15:33 +000014329The value produced is the floating-point sum of the two value operands and has
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014330the same type as the operands.
14331
14332
14333'``llvm.experimental.constrained.fsub``' Intrinsic
14334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14335
14336Syntax:
14337"""""""
14338
14339::
14340
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014341 declare <type>
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014342 @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
14343 metadata <rounding mode>,
Andrew Kaylor325c6862017-05-25 21:31:00 +000014344 metadata <exception behavior>)
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014345
14346Overview:
14347"""""""""
14348
14349The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
14350of its two operands.
14351
14352
14353Arguments:
14354""""""""""
14355
14356The first two arguments to the '``llvm.experimental.constrained.fsub``'
Sanjay Patel16e9a292018-03-21 14:15:33 +000014357intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14358of floating-point values. Both arguments must have identical types.
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014359
14360The third and fourth arguments specify the rounding mode and exception
14361behavior as described above.
14362
14363Semantics:
14364""""""""""
14365
Sanjay Patel16e9a292018-03-21 14:15:33 +000014366The value produced is the floating-point difference of the two value operands
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014367and has the same type as the operands.
14368
14369
14370'``llvm.experimental.constrained.fmul``' Intrinsic
14371^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14372
14373Syntax:
14374"""""""
14375
14376::
14377
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014378 declare <type>
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014379 @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
14380 metadata <rounding mode>,
Andrew Kaylor325c6862017-05-25 21:31:00 +000014381 metadata <exception behavior>)
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014382
14383Overview:
14384"""""""""
14385
14386The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
14387its two operands.
14388
14389
14390Arguments:
14391""""""""""
14392
14393The first two arguments to the '``llvm.experimental.constrained.fmul``'
Sanjay Patel16e9a292018-03-21 14:15:33 +000014394intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14395of floating-point values. Both arguments must have identical types.
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014396
14397The third and fourth arguments specify the rounding mode and exception
14398behavior as described above.
14399
14400Semantics:
14401""""""""""
14402
Sanjay Patel16e9a292018-03-21 14:15:33 +000014403The value produced is the floating-point product of the two value operands and
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014404has the same type as the operands.
14405
14406
14407'``llvm.experimental.constrained.fdiv``' Intrinsic
14408^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14409
14410Syntax:
14411"""""""
14412
14413::
14414
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014415 declare <type>
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014416 @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
14417 metadata <rounding mode>,
Andrew Kaylor325c6862017-05-25 21:31:00 +000014418 metadata <exception behavior>)
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014419
14420Overview:
14421"""""""""
14422
14423The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
14424its two operands.
14425
14426
14427Arguments:
14428""""""""""
14429
14430The first two arguments to the '``llvm.experimental.constrained.fdiv``'
Sanjay Patel16e9a292018-03-21 14:15:33 +000014431intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14432of floating-point values. Both arguments must have identical types.
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014433
14434The third and fourth arguments specify the rounding mode and exception
14435behavior as described above.
14436
14437Semantics:
14438""""""""""
14439
Sanjay Patel16e9a292018-03-21 14:15:33 +000014440The value produced is the floating-point quotient of the two value operands and
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014441has the same type as the operands.
14442
14443
14444'``llvm.experimental.constrained.frem``' Intrinsic
14445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14446
14447Syntax:
14448"""""""
14449
14450::
14451
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014452 declare <type>
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014453 @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
14454 metadata <rounding mode>,
Andrew Kaylor325c6862017-05-25 21:31:00 +000014455 metadata <exception behavior>)
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014456
14457Overview:
14458"""""""""
14459
14460The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
14461from the division of its two operands.
14462
14463
14464Arguments:
14465""""""""""
14466
14467The first two arguments to the '``llvm.experimental.constrained.frem``'
Sanjay Patel16e9a292018-03-21 14:15:33 +000014468intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
14469of floating-point values. Both arguments must have identical types.
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014470
14471The third and fourth arguments specify the rounding mode and exception
14472behavior as described above. The rounding mode argument has no effect, since
14473the result of frem is never rounded, but the argument is included for
Sanjay Patel16e9a292018-03-21 14:15:33 +000014474consistency with the other constrained floating-point intrinsics.
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014475
14476Semantics:
14477""""""""""
14478
Sanjay Patel16e9a292018-03-21 14:15:33 +000014479The value produced is the floating-point remainder from the division of the two
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014480value operands and has the same type as the operands. The remainder has the
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014481same sign as the dividend.
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014482
Wei Ding75acc652017-08-24 04:18:24 +000014483'``llvm.experimental.constrained.fma``' Intrinsic
Cameron McInally1b823862018-11-02 15:51:43 +000014484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Wei Ding75acc652017-08-24 04:18:24 +000014485
14486Syntax:
14487"""""""
14488
14489::
14490
14491 declare <type>
14492 @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
14493 metadata <rounding mode>,
14494 metadata <exception behavior>)
14495
14496Overview:
14497"""""""""
14498
14499The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
14500fused-multiply-add operation on its operands.
14501
14502Arguments:
14503""""""""""
14504
14505The first three arguments to the '``llvm.experimental.constrained.fma``'
Sanjay Patel16e9a292018-03-21 14:15:33 +000014506intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector
14507<t_vector>` of floating-point values. All arguments must have identical types.
Wei Ding75acc652017-08-24 04:18:24 +000014508
14509The fourth and fifth arguments specify the rounding mode and exception behavior
14510as described above.
14511
14512Semantics:
14513""""""""""
14514
14515The result produced is the product of the first two operands added to the third
14516operand computed with infinite precision, and then rounded to the target
14517precision.
Andrew Kaylore6f10d32017-01-26 23:27:59 +000014518
Andrew Kaylor325c6862017-05-25 21:31:00 +000014519Constrained libm-equivalent Intrinsics
14520--------------------------------------
14521
Sanjay Patel16e9a292018-03-21 14:15:33 +000014522In addition to the basic floating-point operations for which constrained
Andrew Kaylor325c6862017-05-25 21:31:00 +000014523intrinsics are described above, there are constrained versions of various
14524operations which provide equivalent behavior to a corresponding libm function.
14525These intrinsics allow the precise behavior of these operations with respect to
14526rounding mode and exception behavior to be controlled.
14527
Sanjay Patel16e9a292018-03-21 14:15:33 +000014528As with the basic constrained floating-point intrinsics, the rounding mode
Andrew Kaylor325c6862017-05-25 21:31:00 +000014529and exception behavior arguments only control the behavior of the optimizer.
Sanjay Patel16e9a292018-03-21 14:15:33 +000014530They do not change the runtime floating-point environment.
Andrew Kaylor325c6862017-05-25 21:31:00 +000014531
14532
14533'``llvm.experimental.constrained.sqrt``' Intrinsic
14534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14535
14536Syntax:
14537"""""""
14538
14539::
14540
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014541 declare <type>
Andrew Kaylor325c6862017-05-25 21:31:00 +000014542 @llvm.experimental.constrained.sqrt(<type> <op1>,
14543 metadata <rounding mode>,
14544 metadata <exception behavior>)
14545
14546Overview:
14547"""""""""
14548
14549The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
14550of the specified value, returning the same value as the libm '``sqrt``'
14551functions would, but without setting ``errno``.
14552
14553Arguments:
14554""""""""""
14555
Sanjay Patel16e9a292018-03-21 14:15:33 +000014556The first argument and the return type are floating-point numbers of the same
Andrew Kaylor325c6862017-05-25 21:31:00 +000014557type.
14558
14559The second and third arguments specify the rounding mode and exception
14560behavior as described above.
14561
14562Semantics:
14563""""""""""
14564
14565This function returns the nonnegative square root of the specified value.
Sanjay Patel16e9a292018-03-21 14:15:33 +000014566If the value is less than negative zero, a floating-point exception occurs
Hiroshi Inouef90f5512018-01-16 13:19:48 +000014567and the return value is architecture specific.
Andrew Kaylor325c6862017-05-25 21:31:00 +000014568
14569
14570'``llvm.experimental.constrained.pow``' Intrinsic
14571^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14572
14573Syntax:
14574"""""""
14575
14576::
14577
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014578 declare <type>
Andrew Kaylor325c6862017-05-25 21:31:00 +000014579 @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
14580 metadata <rounding mode>,
14581 metadata <exception behavior>)
14582
14583Overview:
14584"""""""""
14585
14586The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
14587raised to the (positive or negative) power specified by the second operand.
14588
14589Arguments:
14590""""""""""
14591
Sanjay Patel16e9a292018-03-21 14:15:33 +000014592The first two arguments and the return value are floating-point numbers of the
Andrew Kaylor325c6862017-05-25 21:31:00 +000014593same type. The second argument specifies the power to which the first argument
14594should be raised.
14595
14596The third and fourth arguments specify the rounding mode and exception
14597behavior as described above.
14598
14599Semantics:
14600""""""""""
14601
14602This function returns the first value raised to the second power,
14603returning the same values as the libm ``pow`` functions would, and
14604handles error conditions in the same way.
14605
14606
14607'``llvm.experimental.constrained.powi``' Intrinsic
14608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14609
14610Syntax:
14611"""""""
14612
14613::
14614
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014615 declare <type>
Andrew Kaylor325c6862017-05-25 21:31:00 +000014616 @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
14617 metadata <rounding mode>,
14618 metadata <exception behavior>)
14619
14620Overview:
14621"""""""""
14622
14623The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
14624raised to the (positive or negative) power specified by the second operand. The
Mandeep Singh Grang08238b72018-11-01 23:22:25 +000014625order of evaluation of multiplications is not defined. When a vector of
Sanjay Patel16e9a292018-03-21 14:15:33 +000014626floating-point type is used, the second argument remains a scalar integer value.
Andrew Kaylor325c6862017-05-25 21:31:00 +000014627
14628
14629Arguments:
14630""""""""""
14631
Sanjay Patel16e9a292018-03-21 14:15:33 +000014632The first argument and the return value are floating-point numbers of the same
Andrew Kaylor325c6862017-05-25 21:31:00 +000014633type. The second argument is a 32-bit signed integer specifying the power to
14634which the first argument should be raised.
14635
14636The third and fourth arguments specify the rounding mode and exception
14637behavior as described above.
14638
14639Semantics:
14640""""""""""
14641
14642This function returns the first value raised to the second power with an
14643unspecified sequence of rounding operations.
14644
14645
14646'``llvm.experimental.constrained.sin``' Intrinsic
14647^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14648
14649Syntax:
14650"""""""
14651
14652::
14653
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014654 declare <type>
Andrew Kaylor325c6862017-05-25 21:31:00 +000014655 @llvm.experimental.constrained.sin(<type> <op1>,
14656 metadata <rounding mode>,
14657 metadata <exception behavior>)
14658
14659Overview:
14660"""""""""
14661
14662The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
14663first operand.
14664
14665Arguments:
14666""""""""""
14667
Sanjay Patel16e9a292018-03-21 14:15:33 +000014668The first argument and the return type are floating-point numbers of the same
Andrew Kaylor325c6862017-05-25 21:31:00 +000014669type.
14670
14671The second and third arguments specify the rounding mode and exception
14672behavior as described above.
14673
14674Semantics:
14675""""""""""
14676
14677This function returns the sine of the specified operand, returning the
14678same values as the libm ``sin`` functions would, and handles error
14679conditions in the same way.
14680
14681
14682'``llvm.experimental.constrained.cos``' Intrinsic
14683^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14684
14685Syntax:
14686"""""""
14687
14688::
14689
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014690 declare <type>
Andrew Kaylor325c6862017-05-25 21:31:00 +000014691 @llvm.experimental.constrained.cos(<type> <op1>,
14692 metadata <rounding mode>,
14693 metadata <exception behavior>)
14694
14695Overview:
14696"""""""""
14697
14698The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
14699first operand.
14700
14701Arguments:
14702""""""""""
14703
Sanjay Patel16e9a292018-03-21 14:15:33 +000014704The first argument and the return type are floating-point numbers of the same
Andrew Kaylor325c6862017-05-25 21:31:00 +000014705type.
14706
14707The second and third arguments specify the rounding mode and exception
14708behavior as described above.
14709
14710Semantics:
14711""""""""""
14712
14713This function returns the cosine of the specified operand, returning the
14714same values as the libm ``cos`` functions would, and handles error
14715conditions in the same way.
14716
14717
14718'``llvm.experimental.constrained.exp``' Intrinsic
14719^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14720
14721Syntax:
14722"""""""
14723
14724::
14725
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014726 declare <type>
Andrew Kaylor325c6862017-05-25 21:31:00 +000014727 @llvm.experimental.constrained.exp(<type> <op1>,
14728 metadata <rounding mode>,
14729 metadata <exception behavior>)
14730
14731Overview:
14732"""""""""
14733
14734The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
14735exponential of the specified value.
14736
14737Arguments:
14738""""""""""
14739
Sanjay Patel16e9a292018-03-21 14:15:33 +000014740The first argument and the return value are floating-point numbers of the same
Andrew Kaylor325c6862017-05-25 21:31:00 +000014741type.
14742
14743The second and third arguments specify the rounding mode and exception
14744behavior as described above.
14745
14746Semantics:
14747""""""""""
14748
14749This function returns the same values as the libm ``exp`` functions
14750would, and handles error conditions in the same way.
14751
14752
14753'``llvm.experimental.constrained.exp2``' Intrinsic
14754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14755
14756Syntax:
14757"""""""
14758
14759::
14760
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014761 declare <type>
Andrew Kaylor325c6862017-05-25 21:31:00 +000014762 @llvm.experimental.constrained.exp2(<type> <op1>,
14763 metadata <rounding mode>,
14764 metadata <exception behavior>)
14765
14766Overview:
14767"""""""""
14768
14769The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
14770exponential of the specified value.
14771
14772
14773Arguments:
14774""""""""""
14775
Sanjay Patel16e9a292018-03-21 14:15:33 +000014776The first argument and the return value are floating-point numbers of the same
Andrew Kaylor325c6862017-05-25 21:31:00 +000014777type.
14778
14779The second and third arguments specify the rounding mode and exception
14780behavior as described above.
14781
14782Semantics:
14783""""""""""
14784
14785This function returns the same values as the libm ``exp2`` functions
14786would, and handles error conditions in the same way.
14787
14788
14789'``llvm.experimental.constrained.log``' Intrinsic
14790^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14791
14792Syntax:
14793"""""""
14794
14795::
14796
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014797 declare <type>
Andrew Kaylor325c6862017-05-25 21:31:00 +000014798 @llvm.experimental.constrained.log(<type> <op1>,
14799 metadata <rounding mode>,
14800 metadata <exception behavior>)
14801
14802Overview:
14803"""""""""
14804
14805The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
14806logarithm of the specified value.
14807
14808Arguments:
14809""""""""""
14810
Sanjay Patel16e9a292018-03-21 14:15:33 +000014811The first argument and the return value are floating-point numbers of the same
Andrew Kaylor325c6862017-05-25 21:31:00 +000014812type.
14813
14814The second and third arguments specify the rounding mode and exception
14815behavior as described above.
14816
14817
14818Semantics:
14819""""""""""
14820
14821This function returns the same values as the libm ``log`` functions
14822would, and handles error conditions in the same way.
14823
14824
14825'``llvm.experimental.constrained.log10``' Intrinsic
14826^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14827
14828Syntax:
14829"""""""
14830
14831::
14832
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014833 declare <type>
Andrew Kaylor325c6862017-05-25 21:31:00 +000014834 @llvm.experimental.constrained.log10(<type> <op1>,
14835 metadata <rounding mode>,
14836 metadata <exception behavior>)
14837
14838Overview:
14839"""""""""
14840
14841The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
14842logarithm of the specified value.
14843
14844Arguments:
14845""""""""""
14846
Sanjay Patel16e9a292018-03-21 14:15:33 +000014847The first argument and the return value are floating-point numbers of the same
Andrew Kaylor325c6862017-05-25 21:31:00 +000014848type.
14849
14850The second and third arguments specify the rounding mode and exception
14851behavior as described above.
14852
14853Semantics:
14854""""""""""
14855
14856This function returns the same values as the libm ``log10`` functions
14857would, and handles error conditions in the same way.
14858
14859
14860'``llvm.experimental.constrained.log2``' Intrinsic
14861^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14862
14863Syntax:
14864"""""""
14865
14866::
14867
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014868 declare <type>
Andrew Kaylor325c6862017-05-25 21:31:00 +000014869 @llvm.experimental.constrained.log2(<type> <op1>,
14870 metadata <rounding mode>,
14871 metadata <exception behavior>)
14872
14873Overview:
14874"""""""""
14875
14876The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
14877logarithm of the specified value.
14878
14879Arguments:
14880""""""""""
14881
Sanjay Patel16e9a292018-03-21 14:15:33 +000014882The first argument and the return value are floating-point numbers of the same
Andrew Kaylor325c6862017-05-25 21:31:00 +000014883type.
14884
14885The second and third arguments specify the rounding mode and exception
14886behavior as described above.
14887
14888Semantics:
14889""""""""""
14890
14891This function returns the same values as the libm ``log2`` functions
14892would, and handles error conditions in the same way.
14893
14894
14895'``llvm.experimental.constrained.rint``' Intrinsic
14896^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14897
14898Syntax:
14899"""""""
14900
14901::
14902
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014903 declare <type>
Andrew Kaylor325c6862017-05-25 21:31:00 +000014904 @llvm.experimental.constrained.rint(<type> <op1>,
14905 metadata <rounding mode>,
14906 metadata <exception behavior>)
14907
14908Overview:
14909"""""""""
14910
14911The '``llvm.experimental.constrained.rint``' intrinsic returns the first
Sanjay Patel16e9a292018-03-21 14:15:33 +000014912operand rounded to the nearest integer. It may raise an inexact floating-point
Andrew Kaylor325c6862017-05-25 21:31:00 +000014913exception if the operand is not an integer.
14914
14915Arguments:
14916""""""""""
14917
Sanjay Patel16e9a292018-03-21 14:15:33 +000014918The first argument and the return value are floating-point numbers of the same
Andrew Kaylor325c6862017-05-25 21:31:00 +000014919type.
14920
14921The second and third arguments specify the rounding mode and exception
14922behavior as described above.
14923
14924Semantics:
14925""""""""""
14926
14927This function returns the same values as the libm ``rint`` functions
14928would, and handles error conditions in the same way. The rounding mode is
14929described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel16e9a292018-03-21 14:15:33 +000014930mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylor325c6862017-05-25 21:31:00 +000014931mode argument is only intended as information to the compiler.
14932
14933
14934'``llvm.experimental.constrained.nearbyint``' Intrinsic
14935^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14936
14937Syntax:
14938"""""""
14939
14940::
14941
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000014942 declare <type>
Andrew Kaylor325c6862017-05-25 21:31:00 +000014943 @llvm.experimental.constrained.nearbyint(<type> <op1>,
14944 metadata <rounding mode>,
14945 metadata <exception behavior>)
14946
14947Overview:
14948"""""""""
14949
14950The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
Mandeep Singh Grang08238b72018-11-01 23:22:25 +000014951operand rounded to the nearest integer. It will not raise an inexact
Sanjay Patel16e9a292018-03-21 14:15:33 +000014952floating-point exception if the operand is not an integer.
Andrew Kaylor325c6862017-05-25 21:31:00 +000014953
14954
14955Arguments:
14956""""""""""
14957
Sanjay Patel16e9a292018-03-21 14:15:33 +000014958The first argument and the return value are floating-point numbers of the same
Andrew Kaylor325c6862017-05-25 21:31:00 +000014959type.
14960
14961The second and third arguments specify the rounding mode and exception
14962behavior as described above.
14963
14964Semantics:
14965""""""""""
14966
14967This function returns the same values as the libm ``nearbyint`` functions
14968would, and handles error conditions in the same way. The rounding mode is
14969described, not determined, by the rounding mode argument. The actual rounding
Sanjay Patel16e9a292018-03-21 14:15:33 +000014970mode is determined by the runtime floating-point environment. The rounding
Andrew Kaylor325c6862017-05-25 21:31:00 +000014971mode argument is only intended as information to the compiler.
14972
14973
Cameron McInally3277e772018-10-30 21:01:29 +000014974'``llvm.experimental.constrained.maxnum``' Intrinsic
Cameron McInally1b823862018-11-02 15:51:43 +000014975^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Cameron McInally3277e772018-10-30 21:01:29 +000014976
14977Syntax:
14978"""""""
14979
14980::
14981
14982 declare <type>
14983 @llvm.experimental.constrained.maxnum(<type> <op1>, <type> <op2>
14984 metadata <rounding mode>,
14985 metadata <exception behavior>)
14986
14987Overview:
14988"""""""""
14989
Michael Kruse42a382c2018-12-20 04:58:07 +000014990The '``llvm.experimental.constrained.maxnum``' intrinsic returns the maximum
Cameron McInally3277e772018-10-30 21:01:29 +000014991of the two arguments.
14992
14993Arguments:
14994""""""""""
14995
Michael Kruse42a382c2018-12-20 04:58:07 +000014996The first two arguments and the return value are floating-point numbers
Cameron McInally3277e772018-10-30 21:01:29 +000014997of the same type.
14998
14999The third and forth arguments specify the rounding mode and exception
15000behavior as described above.
15001
15002Semantics:
15003""""""""""
15004
15005This function follows the IEEE-754 semantics for maxNum. The rounding mode is
15006described, not determined, by the rounding mode argument. The actual rounding
15007mode is determined by the runtime floating-point environment. The rounding
15008mode argument is only intended as information to the compiler.
15009
15010
15011'``llvm.experimental.constrained.minnum``' Intrinsic
Cameron McInally1b823862018-11-02 15:51:43 +000015012^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Cameron McInally3277e772018-10-30 21:01:29 +000015013
15014Syntax:
15015"""""""
15016
15017::
15018
15019 declare <type>
15020 @llvm.experimental.constrained.minnum(<type> <op1>, <type> <op2>
15021 metadata <rounding mode>,
15022 metadata <exception behavior>)
15023
15024Overview:
15025"""""""""
15026
15027The '``llvm.experimental.constrained.minnum``' intrinsic returns the minimum
15028of the two arguments.
15029
15030Arguments:
15031""""""""""
15032
15033The first two arguments and the return value are floating-point numbers
15034of the same type.
15035
15036The third and forth arguments specify the rounding mode and exception
15037behavior as described above.
15038
15039Semantics:
15040""""""""""
15041
15042This function follows the IEEE-754 semantics for minNum. The rounding mode is
15043described, not determined, by the rounding mode argument. The actual rounding
15044mode is determined by the runtime floating-point environment. The rounding
15045mode argument is only intended as information to the compiler.
15046
15047
Cameron McInally7c442632018-11-05 15:59:49 +000015048'``llvm.experimental.constrained.ceil``' Intrinsic
15049^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15050
15051Syntax:
15052"""""""
15053
15054::
15055
15056 declare <type>
15057 @llvm.experimental.constrained.ceil(<type> <op1>,
15058 metadata <rounding mode>,
15059 metadata <exception behavior>)
15060
15061Overview:
15062"""""""""
15063
Michael Kruse42a382c2018-12-20 04:58:07 +000015064The '``llvm.experimental.constrained.ceil``' intrinsic returns the ceiling of the
Cameron McInally7c442632018-11-05 15:59:49 +000015065first operand.
15066
15067Arguments:
15068""""""""""
15069
15070The first argument and the return value are floating-point numbers of the same
15071type.
15072
15073The second and third arguments specify the rounding mode and exception
15074behavior as described above. The rounding mode is currently unused for this
15075intrinsic.
15076
15077Semantics:
15078""""""""""
15079
15080This function returns the same values as the libm ``ceil`` functions
15081would and handles error conditions in the same way.
15082
15083
15084'``llvm.experimental.constrained.floor``' Intrinsic
15085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15086
15087Syntax:
15088"""""""
15089
15090::
15091
15092 declare <type>
15093 @llvm.experimental.constrained.floor(<type> <op1>,
15094 metadata <rounding mode>,
15095 metadata <exception behavior>)
15096
15097Overview:
15098"""""""""
15099
Michael Kruse42a382c2018-12-20 04:58:07 +000015100The '``llvm.experimental.constrained.floor``' intrinsic returns the floor of the
Cameron McInally7c442632018-11-05 15:59:49 +000015101first operand.
15102
15103Arguments:
15104""""""""""
15105
15106The first argument and the return value are floating-point numbers of the same
15107type.
15108
15109The second and third arguments specify the rounding mode and exception
15110behavior as described above. The rounding mode is currently unused for this
15111intrinsic.
15112
15113Semantics:
15114""""""""""
15115
15116This function returns the same values as the libm ``floor`` functions
Michael Kruse42a382c2018-12-20 04:58:07 +000015117would and handles error conditions in the same way.
Cameron McInally7c442632018-11-05 15:59:49 +000015118
15119
15120'``llvm.experimental.constrained.round``' Intrinsic
15121^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15122
15123Syntax:
15124"""""""
15125
15126::
15127
15128 declare <type>
15129 @llvm.experimental.constrained.round(<type> <op1>,
15130 metadata <rounding mode>,
15131 metadata <exception behavior>)
15132
15133Overview:
15134"""""""""
15135
Michael Kruse42a382c2018-12-20 04:58:07 +000015136The '``llvm.experimental.constrained.round``' intrinsic returns the first
Cameron McInally7c442632018-11-05 15:59:49 +000015137operand rounded to the nearest integer.
15138
15139Arguments:
15140""""""""""
15141
15142The first argument and the return value are floating-point numbers of the same
15143type.
15144
15145The second and third arguments specify the rounding mode and exception
15146behavior as described above. The rounding mode is currently unused for this
15147intrinsic.
15148
15149Semantics:
15150""""""""""
15151
15152This function returns the same values as the libm ``round`` functions
15153would and handles error conditions in the same way.
15154
15155
15156'``llvm.experimental.constrained.trunc``' Intrinsic
15157^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15158
15159Syntax:
15160"""""""
15161
15162::
15163
15164 declare <type>
15165 @llvm.experimental.constrained.trunc(<type> <op1>,
15166 metadata <truncing mode>,
15167 metadata <exception behavior>)
15168
15169Overview:
15170"""""""""
15171
Michael Kruse42a382c2018-12-20 04:58:07 +000015172The '``llvm.experimental.constrained.trunc``' intrinsic returns the first
15173operand rounded to the nearest integer not larger in magnitude than the
Cameron McInally7c442632018-11-05 15:59:49 +000015174operand.
15175
15176Arguments:
15177""""""""""
15178
15179The first argument and the return value are floating-point numbers of the same
15180type.
15181
15182The second and third arguments specify the truncing mode and exception
15183behavior as described above. The truncing mode is currently unused for this
15184intrinsic.
15185
15186Semantics:
15187""""""""""
15188
15189This function returns the same values as the libm ``trunc`` functions
15190would and handles error conditions in the same way.
15191
15192
Sean Silvaf722b002012-12-07 10:36:55 +000015193General Intrinsics
15194------------------
15195
15196This class of intrinsics is designed to be generic and has no specific
15197purpose.
15198
15199'``llvm.var.annotation``' Intrinsic
15200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15201
15202Syntax:
15203"""""""
15204
15205::
15206
15207 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
15208
15209Overview:
15210"""""""""
15211
15212The '``llvm.var.annotation``' intrinsic.
15213
15214Arguments:
15215""""""""""
15216
15217The first argument is a pointer to a value, the second is a pointer to a
15218global string, the third is a pointer to a global string which is the
15219source file name, and the last argument is the line number.
15220
15221Semantics:
15222""""""""""
15223
15224This intrinsic allows annotation of local variables with arbitrary
15225strings. This can be useful for special purpose optimizations that want
15226to look for these annotations. These have no other defined use; they are
15227ignored by code generation and optimization.
15228
Michael Gottesman872b4e52013-03-26 00:34:27 +000015229'``llvm.ptr.annotation.*``' Intrinsic
15230^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15231
15232Syntax:
15233"""""""
15234
15235This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
15236pointer to an integer of any width. *NOTE* you must specify an address space for
15237the pointer. The identifier for the default address space is the integer
15238'``0``'.
15239
15240::
15241
15242 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
15243 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
15244 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
15245 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
15246 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
15247
15248Overview:
15249"""""""""
15250
15251The '``llvm.ptr.annotation``' intrinsic.
15252
15253Arguments:
15254""""""""""
15255
15256The first argument is a pointer to an integer value of arbitrary bitwidth
15257(result of some expression), the second is a pointer to a global string, the
15258third is a pointer to a global string which is the source file name, and the
15259last argument is the line number. It returns the value of the first argument.
15260
15261Semantics:
15262""""""""""
15263
15264This intrinsic allows annotation of a pointer to an integer with arbitrary
15265strings. This can be useful for special purpose optimizations that want to look
15266for these annotations. These have no other defined use; they are ignored by code
15267generation and optimization.
15268
Sean Silvaf722b002012-12-07 10:36:55 +000015269'``llvm.annotation.*``' Intrinsic
15270^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15271
15272Syntax:
15273"""""""
15274
15275This is an overloaded intrinsic. You can use '``llvm.annotation``' on
15276any integer bit width.
15277
15278::
15279
15280 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
15281 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
15282 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
15283 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
15284 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
15285
15286Overview:
15287"""""""""
15288
15289The '``llvm.annotation``' intrinsic.
15290
15291Arguments:
15292""""""""""
15293
15294The first argument is an integer value (result of some expression), the
15295second is a pointer to a global string, the third is a pointer to a
15296global string which is the source file name, and the last argument is
15297the line number. It returns the value of the first argument.
15298
15299Semantics:
15300""""""""""
15301
15302This intrinsic allows annotations to be put on arbitrary expressions
15303with arbitrary strings. This can be useful for special purpose
15304optimizations that want to look for these annotations. These have no
15305other defined use; they are ignored by code generation and optimization.
15306
Reid Klecknerc86178e2017-09-05 20:14:58 +000015307'``llvm.codeview.annotation``' Intrinsic
Reid Klecknereef60fb2017-09-05 20:26:25 +000015308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reid Klecknerc86178e2017-09-05 20:14:58 +000015309
15310Syntax:
15311"""""""
15312
15313This annotation emits a label at its program point and an associated
15314``S_ANNOTATION`` codeview record with some additional string metadata. This is
15315used to implement MSVC's ``__annotation`` intrinsic. It is marked
15316``noduplicate``, so calls to this intrinsic prevent inlining and should be
15317considered expensive.
15318
15319::
15320
15321 declare void @llvm.codeview.annotation(metadata)
15322
15323Arguments:
15324""""""""""
15325
15326The argument should be an MDTuple containing any number of MDStrings.
15327
Sean Silvaf722b002012-12-07 10:36:55 +000015328'``llvm.trap``' Intrinsic
15329^^^^^^^^^^^^^^^^^^^^^^^^^
15330
15331Syntax:
15332"""""""
15333
15334::
15335
Vedant Kumar3d60ff72018-11-14 19:53:41 +000015336 declare void @llvm.trap() cold noreturn nounwind
Sean Silvaf722b002012-12-07 10:36:55 +000015337
15338Overview:
15339"""""""""
15340
15341The '``llvm.trap``' intrinsic.
15342
15343Arguments:
15344""""""""""
15345
15346None.
15347
15348Semantics:
15349""""""""""
15350
15351This intrinsic is lowered to the target dependent trap instruction. If
15352the target does not have a trap instruction, this intrinsic will be
15353lowered to a call of the ``abort()`` function.
15354
15355'``llvm.debugtrap``' Intrinsic
15356^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15357
15358Syntax:
15359"""""""
15360
15361::
15362
15363 declare void @llvm.debugtrap() nounwind
15364
15365Overview:
15366"""""""""
15367
15368The '``llvm.debugtrap``' intrinsic.
15369
15370Arguments:
15371""""""""""
15372
15373None.
15374
15375Semantics:
15376""""""""""
15377
15378This intrinsic is lowered to code which is intended to cause an
15379execution trap with the intention of requesting the attention of a
15380debugger.
15381
15382'``llvm.stackprotector``' Intrinsic
15383^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15384
15385Syntax:
15386"""""""
15387
15388::
15389
15390 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
15391
15392Overview:
15393"""""""""
15394
15395The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
15396onto the stack at ``slot``. The stack slot is adjusted to ensure that it
15397is placed on the stack before local variables.
15398
15399Arguments:
15400""""""""""
15401
15402The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
15403The first argument is the value loaded from the stack guard
15404``@__stack_chk_guard``. The second variable is an ``alloca`` that has
15405enough space to hold the value of the guard.
15406
15407Semantics:
15408""""""""""
15409
Michael Gottesman2a64a632013-08-12 18:35:32 +000015410This intrinsic causes the prologue/epilogue inserter to force the position of
15411the ``AllocaInst`` stack slot to be before local variables on the stack. This is
15412to ensure that if a local variable on the stack is overwritten, it will destroy
15413the value of the guard. When the function exits, the guard on the stack is
15414checked against the original guard by ``llvm.stackprotectorcheck``. If they are
15415different, then ``llvm.stackprotectorcheck`` causes the program to abort by
15416calling the ``__stack_chk_fail()`` function.
15417
Tim Shene7221e62016-04-19 19:40:37 +000015418'``llvm.stackguard``' Intrinsic
15419^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15420
15421Syntax:
15422"""""""
15423
15424::
15425
15426 declare i8* @llvm.stackguard()
15427
15428Overview:
15429"""""""""
15430
15431The ``llvm.stackguard`` intrinsic returns the system stack guard value.
15432
15433It should not be generated by frontends, since it is only for internal usage.
15434The reason why we create this intrinsic is that we still support IR form Stack
15435Protector in FastISel.
15436
15437Arguments:
15438""""""""""
15439
15440None.
15441
15442Semantics:
15443""""""""""
15444
15445On some platforms, the value returned by this intrinsic remains unchanged
15446between loads in the same thread. On other platforms, it returns the same
15447global variable value, if any, e.g. ``@__stack_chk_guard``.
15448
15449Currently some platforms have IR-level customized stack guard loading (e.g.
15450X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
15451in the future.
15452
Sean Silvaf722b002012-12-07 10:36:55 +000015453'``llvm.objectsize``' Intrinsic
15454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15455
15456Syntax:
15457"""""""
15458
15459::
15460
George Burgess IV3479ed62017-03-21 20:08:59 +000015461 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>)
15462 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>)
Sean Silvaf722b002012-12-07 10:36:55 +000015463
15464Overview:
15465"""""""""
15466
15467The ``llvm.objectsize`` intrinsic is designed to provide information to
15468the optimizers to determine at compile time whether a) an operation
15469(like memcpy) will overflow a buffer that corresponds to an object, or
15470b) that a runtime check for overflow isn't necessary. An object in this
15471context means an allocation of a specific class, structure, array, or
15472other object.
15473
15474Arguments:
15475""""""""""
15476
George Burgess IV3479ed62017-03-21 20:08:59 +000015477The ``llvm.objectsize`` intrinsic takes three arguments. The first argument is
15478a pointer to or into the ``object``. The second argument determines whether
15479``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size
15480is unknown. The third argument controls how ``llvm.objectsize`` acts when
George Burgess IV401e29e2018-07-09 22:21:16 +000015481``null`` in address space 0 is used as its pointer argument. If it's ``false``,
15482``llvm.objectsize`` reports 0 bytes available when given ``null``. Otherwise, if
15483the ``null`` is in a non-zero address space or if ``true`` is given for the
15484third argument of ``llvm.objectsize``, we assume its size is unknown.
George Burgess IV3479ed62017-03-21 20:08:59 +000015485
15486The second and third arguments only accept constants.
Sean Silvaf722b002012-12-07 10:36:55 +000015487
15488Semantics:
15489""""""""""
15490
15491The ``llvm.objectsize`` intrinsic is lowered to a constant representing
15492the size of the object concerned. If the size cannot be determined at
15493compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
15494on the ``min`` argument).
15495
15496'``llvm.expect``' Intrinsic
15497^^^^^^^^^^^^^^^^^^^^^^^^^^^
15498
15499Syntax:
15500"""""""
15501
Duncan P. N. Exon Smithe6562c52014-02-02 22:43:55 +000015502This is an overloaded intrinsic. You can use ``llvm.expect`` on any
15503integer bit width.
15504
Sean Silvaf722b002012-12-07 10:36:55 +000015505::
15506
Duncan P. N. Exon Smithe6562c52014-02-02 22:43:55 +000015507 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvaf722b002012-12-07 10:36:55 +000015508 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
15509 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
15510
15511Overview:
15512"""""""""
15513
15514The ``llvm.expect`` intrinsic provides information about expected (the
15515most probable) value of ``val``, which can be used by optimizers.
15516
15517Arguments:
15518""""""""""
15519
15520The ``llvm.expect`` intrinsic takes two arguments. The first argument is
15521a value. The second argument is an expected value, this needs to be a
15522constant value, variables are not allowed.
15523
15524Semantics:
15525""""""""""
15526
15527This intrinsic is lowered to the ``val``.
15528
Philip Reamesfb3da5c2015-04-26 22:23:12 +000015529.. _int_assume:
15530
Hal Finkel8ef7b172014-07-25 21:13:35 +000015531'``llvm.assume``' Intrinsic
15532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15533
15534Syntax:
15535"""""""
15536
15537::
15538
15539 declare void @llvm.assume(i1 %cond)
15540
15541Overview:
15542"""""""""
15543
15544The ``llvm.assume`` allows the optimizer to assume that the provided
15545condition is true. This information can then be used in simplifying other parts
15546of the code.
15547
15548Arguments:
15549""""""""""
15550
15551The condition which the optimizer may assume is always true.
15552
15553Semantics:
15554""""""""""
15555
15556The intrinsic allows the optimizer to assume that the provided condition is
15557always true whenever the control flow reaches the intrinsic call. No code is
15558generated for this intrinsic, and instructions that contribute only to the
15559provided condition are not used for code generation. If the condition is
15560violated during execution, the behavior is undefined.
15561
Sanjay Patel2f393362015-01-14 16:03:58 +000015562Note that the optimizer might limit the transformations performed on values
Hal Finkel8ef7b172014-07-25 21:13:35 +000015563used by the ``llvm.assume`` intrinsic in order to preserve the instructions
15564only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel2f393362015-01-14 16:03:58 +000015565if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel8ef7b172014-07-25 21:13:35 +000015566sufficient overall improvement in code quality. For this reason,
15567``llvm.assume`` should not be used to document basic mathematical invariants
15568that the optimizer can otherwise deduce or facts that are of little use to the
15569optimizer.
15570
Daniel Berlinf2da6f92017-02-07 19:29:25 +000015571.. _int_ssa_copy:
15572
15573'``llvm.ssa_copy``' Intrinsic
15574^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15575
15576Syntax:
15577"""""""
15578
15579::
15580
15581 declare type @llvm.ssa_copy(type %operand) returned(1) readnone
15582
15583Arguments:
15584""""""""""
15585
15586The first argument is an operand which is used as the returned value.
15587
15588Overview:
15589""""""""""
15590
15591The ``llvm.ssa_copy`` intrinsic can be used to attach information to
15592operations by copying them and giving them new names. For example,
15593the PredicateInfo utility uses it to build Extended SSA form, and
15594attach various forms of information to operands that dominate specific
15595uses. It is not meant for general use, only for building temporary
15596renaming forms that require value splits at certain points.
15597
Peter Collingbournedba91462016-06-24 21:21:32 +000015598.. _type.test:
Peter Collingbourne5a81e142015-02-20 20:30:47 +000015599
Peter Collingbournedba91462016-06-24 21:21:32 +000015600'``llvm.type.test``' Intrinsic
Peter Collingbourne5a81e142015-02-20 20:30:47 +000015601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15602
15603Syntax:
15604"""""""
15605
15606::
15607
Peter Collingbournedba91462016-06-24 21:21:32 +000015608 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbourne5a81e142015-02-20 20:30:47 +000015609
15610
15611Arguments:
15612""""""""""
15613
15614The first argument is a pointer to be tested. The second argument is a
Peter Collingbournedba91462016-06-24 21:21:32 +000015615metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbourne5a81e142015-02-20 20:30:47 +000015616
15617Overview:
15618"""""""""
15619
Peter Collingbournedba91462016-06-24 21:21:32 +000015620The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
15621with the given type identifier.
Peter Collingbourne5a81e142015-02-20 20:30:47 +000015622
Peter Collingbourne02296e22016-06-25 00:23:04 +000015623'``llvm.type.checked.load``' Intrinsic
15624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15625
15626Syntax:
15627"""""""
15628
15629::
15630
15631 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
15632
15633
15634Arguments:
15635""""""""""
15636
15637The first argument is a pointer from which to load a function pointer. The
15638second argument is the byte offset from which to load the function pointer. The
15639third argument is a metadata object representing a :doc:`type identifier
15640<TypeMetadata>`.
15641
15642Overview:
15643"""""""""
15644
15645The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
15646virtual table pointer using type metadata. This intrinsic is used to implement
15647control flow integrity in conjunction with virtual call optimization. The
15648virtual call optimization pass will optimize away ``llvm.type.checked.load``
15649intrinsics associated with devirtualized calls, thereby removing the type
15650check in cases where it is not needed to enforce the control flow integrity
15651constraint.
15652
15653If the given pointer is associated with a type metadata identifier, this
15654function returns true as the second element of its return value. (Note that
15655the function may also return true if the given pointer is not associated
15656with a type metadata identifier.) If the function's return value's second
15657element is true, the following rules apply to the first element:
15658
15659- If the given pointer is associated with the given type metadata identifier,
15660 it is the function pointer loaded from the given byte offset from the given
15661 pointer.
15662
15663- If the given pointer is not associated with the given type metadata
15664 identifier, it is one of the following (the choice of which is unspecified):
15665
15666 1. The function pointer that would have been loaded from an arbitrarily chosen
15667 (through an unspecified mechanism) pointer associated with the type
15668 metadata.
15669
15670 2. If the function has a non-void return type, a pointer to a function that
15671 returns an unspecified value without causing side effects.
15672
15673If the function's return value's second element is false, the value of the
15674first element is undefined.
15675
15676
Sean Silvaf722b002012-12-07 10:36:55 +000015677'``llvm.donothing``' Intrinsic
15678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15679
15680Syntax:
15681"""""""
15682
15683::
15684
15685 declare void @llvm.donothing() nounwind readnone
15686
15687Overview:
15688"""""""""
15689
Juergen Ributzkac08387e2014-10-23 22:36:13 +000015690The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Dasf35e0d32016-02-26 03:33:59 +000015691three intrinsics (besides ``llvm.experimental.patchpoint`` and
15692``llvm.experimental.gc.statepoint``) that can be called with an invoke
15693instruction.
Sean Silvaf722b002012-12-07 10:36:55 +000015694
15695Arguments:
15696""""""""""
15697
15698None.
15699
15700Semantics:
15701""""""""""
15702
15703This intrinsic does nothing, and it's removed by optimizers and ignored
15704by codegen.
Andrew Tricke97b1322013-12-24 02:57:25 +000015705
Sanjoy Dasf9e72192016-03-11 19:08:34 +000015706'``llvm.experimental.deoptimize``' Intrinsic
15707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15708
15709Syntax:
15710"""""""
15711
15712::
15713
15714 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
15715
15716Overview:
15717"""""""""
15718
15719This intrinsic, together with :ref:`deoptimization operand bundles
15720<deopt_opbundles>`, allow frontends to express transfer of control and
15721frame-local state from the currently executing (typically more specialized,
15722hence faster) version of a function into another (typically more generic, hence
15723slower) version.
15724
15725In languages with a fully integrated managed runtime like Java and JavaScript
15726this intrinsic can be used to implement "uncommon trap" or "side exit" like
15727functionality. In unmanaged languages like C and C++, this intrinsic can be
15728used to represent the slow paths of specialized functions.
15729
15730
15731Arguments:
15732""""""""""
15733
15734The intrinsic takes an arbitrary number of arguments, whose meaning is
15735decided by the :ref:`lowering strategy<deoptimize_lowering>`.
15736
15737Semantics:
15738""""""""""
15739
15740The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
15741deoptimization continuation (denoted using a :ref:`deoptimization
15742operand bundle <deopt_opbundles>`) and returns the value returned by
15743the deoptimization continuation. Defining the semantic properties of
15744the continuation itself is out of scope of the language reference --
15745as far as LLVM is concerned, the deoptimization continuation can
15746invoke arbitrary side effects, including reading from and writing to
15747the entire heap.
15748
15749Deoptimization continuations expressed using ``"deopt"`` operand bundles always
15750continue execution to the end of the physical frame containing them, so all
15751calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
15752
15753 - ``@llvm.experimental.deoptimize`` cannot be invoked.
15754 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
15755 - The ``ret`` instruction must return the value produced by the
15756 ``@llvm.experimental.deoptimize`` call if there is one, or void.
15757
15758Note that the above restrictions imply that the return type for a call to
15759``@llvm.experimental.deoptimize`` will match the return type of its immediate
15760caller.
15761
15762The inliner composes the ``"deopt"`` continuations of the caller into the
15763``"deopt"`` continuations present in the inlinee, and also updates calls to this
15764intrinsic to return directly from the frame of the function it inlined into.
15765
Sanjoy Dasd2e75bd2016-05-12 01:17:38 +000015766All declarations of ``@llvm.experimental.deoptimize`` must share the
15767same calling convention.
15768
Sanjoy Dasf9e72192016-03-11 19:08:34 +000015769.. _deoptimize_lowering:
15770
15771Lowering:
15772"""""""""
15773
Sanjoy Das8ba5ebc2016-03-24 20:23:29 +000015774Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
15775symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
15776ensure that this symbol is defined). The call arguments to
15777``@llvm.experimental.deoptimize`` are lowered as if they were formal
15778arguments of the specified types, and not as varargs.
15779
Sanjoy Dasf9e72192016-03-11 19:08:34 +000015780
Sanjoy Dasde765682016-03-31 00:18:46 +000015781'``llvm.experimental.guard``' Intrinsic
15782^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15783
15784Syntax:
15785"""""""
15786
15787::
15788
15789 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
15790
15791Overview:
15792"""""""""
15793
15794This intrinsic, together with :ref:`deoptimization operand bundles
15795<deopt_opbundles>`, allows frontends to express guards or checks on
15796optimistic assumptions made during compilation. The semantics of
15797``@llvm.experimental.guard`` is defined in terms of
15798``@llvm.experimental.deoptimize`` -- its body is defined to be
15799equivalent to:
15800
Renato Golin88ea57f2016-07-20 12:16:38 +000015801.. code-block:: text
Sanjoy Dasde765682016-03-31 00:18:46 +000015802
Renato Golin88ea57f2016-07-20 12:16:38 +000015803 define void @llvm.experimental.guard(i1 %pred, <args...>) {
15804 %realPred = and i1 %pred, undef
15805 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Dasde765682016-03-31 00:18:46 +000015806
Renato Golin88ea57f2016-07-20 12:16:38 +000015807 leave:
15808 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
15809 ret void
Sanjoy Dasde765682016-03-31 00:18:46 +000015810
Renato Golin88ea57f2016-07-20 12:16:38 +000015811 continue:
15812 ret void
15813 }
Sanjoy Dasde765682016-03-31 00:18:46 +000015814
Sanjoy Das793e6192016-04-30 00:55:59 +000015815
15816with the optional ``[, !make.implicit !{}]`` present if and only if it
15817is present on the call site. For more details on ``!make.implicit``,
15818see :doc:`FaultMaps`.
15819
Sanjoy Dasde765682016-03-31 00:18:46 +000015820In words, ``@llvm.experimental.guard`` executes the attached
15821``"deopt"`` continuation if (but **not** only if) its first argument
15822is ``false``. Since the optimizer is allowed to replace the ``undef``
15823with an arbitrary value, it can optimize guard to fail "spuriously",
15824i.e. without the original condition being false (hence the "not only
15825if"); and this allows for "check widening" type optimizations.
15826
15827``@llvm.experimental.guard`` cannot be invoked.
15828
15829
Max Kazantsevc05ba542018-12-07 14:39:46 +000015830'``llvm.experimental.widenable.condition``' Intrinsic
15831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15832
15833Syntax:
15834"""""""
15835
15836::
15837
15838 declare i1 @llvm.experimental.widenable.condition()
15839
15840Overview:
15841"""""""""
15842
15843This intrinsic represents a "widenable condition" which is
15844boolean expressions with the following property: whether this
15845expression is `true` or `false`, the program is correct and
15846well-defined.
15847
15848Together with :ref:`deoptimization operand bundles <deopt_opbundles>`,
15849``@llvm.experimental.widenable.condition`` allows frontends to
15850express guards or checks on optimistic assumptions made during
15851compilation and represent them as branch instructions on special
15852conditions.
15853
15854While this may appear similar in semantics to `undef`, it is very
15855different in that an invocation produces a particular, singular
15856value. It is also intended to be lowered late, and remain available
15857for specific optimizations and transforms that can benefit from its
15858special properties.
15859
15860Arguments:
15861""""""""""
15862
15863None.
15864
15865Semantics:
15866""""""""""
15867
15868The intrinsic ``@llvm.experimental.widenable.condition()``
15869returns either `true` or `false`. For each evaluation of a call
15870to this intrinsic, the program must be valid and correct both if
15871it returns `true` and if it returns `false`. This allows
15872transformation passes to replace evaluations of this intrinsic
15873with either value whenever one is beneficial.
15874
15875When used in a branch condition, it allows us to choose between
15876two alternative correct solutions for the same problem, like
15877in example below:
15878
15879.. code-block:: text
15880
15881 %cond = call i1 @llvm.experimental.widenable.condition()
15882 br i1 %cond, label %solution_1, label %solution_2
15883
15884 label %fast_path:
15885 ; Apply memory-consuming but fast solution for a task.
15886
15887 label %slow_path:
15888 ; Cheap in memory but slow solution.
15889
15890Whether the result of intrinsic's call is `true` or `false`,
15891it should be correct to pick either solution. We can switch
15892between them by replacing the result of
15893``@llvm.experimental.widenable.condition`` with different
15894`i1` expressions.
15895
15896This is how it can be used to represent guards as widenable branches:
15897
15898.. code-block:: text
15899
15900 block:
15901 ; Unguarded instructions
15902 call void @llvm.experimental.guard(i1 %cond, <args...>) ["deopt"(<deopt_args...>)]
15903 ; Guarded instructions
15904
15905Can be expressed in an alternative equivalent form of explicit branch using
15906``@llvm.experimental.widenable.condition``:
15907
15908.. code-block:: text
15909
15910 block:
15911 ; Unguarded instructions
15912 %widenable_condition = call i1 @llvm.experimental.widenable.condition()
15913 %guard_condition = and i1 %cond, %widenable_condition
15914 br i1 %guard_condition, label %guarded, label %deopt
15915
15916 guarded:
15917 ; Guarded instructions
15918
15919 deopt:
15920 call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]
15921
15922So the block `guarded` is only reachable when `%cond` is `true`,
15923and it should be valid to go to the block `deopt` whenever `%cond`
15924is `true` or `false`.
15925
15926``@llvm.experimental.widenable.condition`` will never throw, thus
15927it cannot be invoked.
15928
15929Guard widening:
15930"""""""""""""""
15931
15932When ``@llvm.experimental.widenable.condition()`` is used in
15933condition of a guard represented as explicit branch, it is
15934legal to widen the guard's condition with any additional
15935conditions.
15936
15937Guard widening looks like replacement of
15938
15939.. code-block:: text
15940
15941 %widenable_cond = call i1 @llvm.experimental.widenable.condition()
15942 %guard_cond = and i1 %cond, %widenable_cond
15943 br i1 %guard_cond, label %guarded, label %deopt
15944
15945with
15946
15947.. code-block:: text
15948
15949 %widenable_cond = call i1 @llvm.experimental.widenable.condition()
15950 %new_cond = and i1 %any_other_cond, %widenable_cond
15951 %new_guard_cond = and i1 %cond, %new_cond
15952 br i1 %new_guard_cond, label %guarded, label %deopt
15953
15954for this branch. Here `%any_other_cond` is an arbitrarily chosen
15955well-defined `i1` value. By making guard widening, we may
15956impose stricter conditions on `guarded` block and bail to the
15957deopt when the new condition is not met.
15958
15959Lowering:
15960"""""""""
15961
15962Default lowering strategy is replacing the result of
15963call of ``@llvm.experimental.widenable.condition`` with
15964constant `true`. However it is always correct to replace
15965it with any other `i1` value. Any pass can
15966freely do it if it can benefit from non-default lowering.
15967
15968
Peter Collingbourne74eabdd2016-04-22 21:18:02 +000015969'``llvm.load.relative``' Intrinsic
15970^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15971
15972Syntax:
15973"""""""
15974
15975::
15976
15977 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
15978
15979Overview:
15980"""""""""
15981
15982This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
15983adds ``%ptr`` to that value and returns it. The constant folder specifically
15984recognizes the form of this intrinsic and the constant initializers it may
15985load from; if a loaded constant initializer is known to have the form
15986``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
15987
15988LLVM provides that the calculation of such a constant initializer will
15989not overflow at link time under the medium code model if ``x`` is an
15990``unnamed_addr`` function. However, it does not provide this guarantee for
15991a constant initializer folded into a function body. This intrinsic can be
15992used to avoid the possibility of overflows when loading from such a constant.
15993
Dan Gohmanb5e0bec2017-11-08 21:59:51 +000015994'``llvm.sideeffect``' Intrinsic
15995^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15996
15997Syntax:
15998"""""""
15999
16000::
16001
16002 declare void @llvm.sideeffect() inaccessiblememonly nounwind
16003
16004Overview:
16005"""""""""
16006
16007The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
16008treat it as having side effects, so it can be inserted into a loop to
16009indicate that the loop shouldn't be assumed to terminate (which could
16010potentially lead to the loop being optimized away entirely), even if it's
16011an infinite loop with no other side effects.
16012
16013Arguments:
16014""""""""""
16015
16016None.
16017
16018Semantics:
16019""""""""""
16020
16021This intrinsic actually does nothing, but optimizers must assume that it
16022has externally observable side effects.
16023
James Y Knight3125e352018-11-07 15:24:12 +000016024'``llvm.is.constant.*``' Intrinsic
16025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16026
16027Syntax:
16028"""""""
16029
16030This is an overloaded intrinsic. You can use llvm.is.constant with any argument type.
16031
16032::
16033
16034 declare i1 @llvm.is.constant.i32(i32 %operand) nounwind readnone
16035 declare i1 @llvm.is.constant.f32(float %operand) nounwind readnone
16036 declare i1 @llvm.is.constant.TYPENAME(TYPE %operand) nounwind readnone
16037
16038Overview:
16039"""""""""
16040
16041The '``llvm.is.constant``' intrinsic will return true if the argument
16042is known to be a manifest compile-time constant. It is guaranteed to
16043fold to either true or false before generating machine code.
16044
16045Semantics:
16046""""""""""
16047
16048This intrinsic generates no code. If its argument is known to be a
16049manifest compile-time constant value, then the intrinsic will be
16050converted to a constant true value. Otherwise, it will be converted to
16051a constant false value.
16052
16053In particular, note that if the argument is a constant expression
16054which refers to a global (the address of which _is_ a constant, but
16055not manifest during the compile), then the intrinsic evaluates to
16056false.
16057
16058The result also intentionally depends on the result of optimization
16059passes -- e.g., the result can change depending on whether a
16060function gets inlined or not. A function's parameters are
16061obviously not constant. However, a call like
16062``llvm.is.constant.i32(i32 %param)`` *can* return true after the
16063function is inlined, if the value passed to the function parameter was
16064a constant.
16065
16066On the other hand, if constant folding is not run, it will never
16067evaluate to true, even in simple cases.
16068
Andrew Tricke97b1322013-12-24 02:57:25 +000016069Stack Map Intrinsics
16070--------------------
16071
16072LLVM provides experimental intrinsics to support runtime patching
16073mechanisms commonly desired in dynamic language JITs. These intrinsics
16074are described in :doc:`StackMaps`.
Igor Laevskyf7551532016-12-29 14:31:07 +000016075
16076Element Wise Atomic Memory Intrinsics
Igor Laevskydedd6232016-12-29 15:08:57 +000016077-------------------------------------
Igor Laevskyf7551532016-12-29 14:31:07 +000016078
16079These intrinsics are similar to the standard library memory intrinsics except
16080that they perform memory transfer as a sequence of atomic memory accesses.
16081
Daniel Neilson470c6952017-06-16 14:43:59 +000016082.. _int_memcpy_element_unordered_atomic:
Igor Laevskyf7551532016-12-29 14:31:07 +000016083
Daniel Neilson470c6952017-06-16 14:43:59 +000016084'``llvm.memcpy.element.unordered.atomic``' Intrinsic
16085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Igor Laevskyf7551532016-12-29 14:31:07 +000016086
16087Syntax:
16088"""""""
16089
Daniel Neilson470c6952017-06-16 14:43:59 +000016090This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
Igor Laevskyf7551532016-12-29 14:31:07 +000016091any integer bit width and for different address spaces. Not all targets
16092support all bit widths however.
16093
16094::
16095
Daniel Neilson470c6952017-06-16 14:43:59 +000016096 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
16097 i8* <src>,
16098 i32 <len>,
16099 i32 <element_size>)
16100 declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
16101 i8* <src>,
16102 i64 <len>,
16103 i32 <element_size>)
Igor Laevskyf7551532016-12-29 14:31:07 +000016104
16105Overview:
16106"""""""""
16107
Daniel Neilson470c6952017-06-16 14:43:59 +000016108The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
16109'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
16110as arrays with elements that are exactly ``element_size`` bytes, and the copy between
16111buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
16112that are a positive integer multiple of the ``element_size`` in size.
Igor Laevskyf7551532016-12-29 14:31:07 +000016113
16114Arguments:
16115""""""""""
16116
Daniel Neilson470c6952017-06-16 14:43:59 +000016117The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
16118intrinsic, with the added constraint that ``len`` is required to be a positive integer
16119multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
16120``element_size``, then the behaviour of the intrinsic is undefined.
Igor Laevskyf7551532016-12-29 14:31:07 +000016121
Daniel Neilson470c6952017-06-16 14:43:59 +000016122``element_size`` must be a compile-time constant positive power of two no greater than
16123target-specific atomic access size limit.
Igor Laevskyf7551532016-12-29 14:31:07 +000016124
Daniel Neilson470c6952017-06-16 14:43:59 +000016125For each of the input pointers ``align`` parameter attribute must be specified. It
16126must be a power of two no less than the ``element_size``. Caller guarantees that
16127both the source and destination pointers are aligned to that boundary.
Igor Laevskyf7551532016-12-29 14:31:07 +000016128
16129Semantics:
16130""""""""""
16131
Daniel Neilson470c6952017-06-16 14:43:59 +000016132The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
16133memory from the source location to the destination location. These locations are not
16134allowed to overlap. The memory copy is performed as a sequence of load/store operations
16135where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000016136aligned at an ``element_size`` boundary.
Igor Laevskyf7551532016-12-29 14:31:07 +000016137
16138The order of the copy is unspecified. The same value may be read from the source
16139buffer many times, but only one write is issued to the destination buffer per
Daniel Neilson470c6952017-06-16 14:43:59 +000016140element. It is well defined to have concurrent reads and writes to both source and
16141destination provided those reads and writes are unordered atomic when specified.
Igor Laevskyf7551532016-12-29 14:31:07 +000016142
16143This intrinsic does not provide any additional ordering guarantees over those
16144provided by a set of unordered loads from the source location and stores to the
16145destination.
16146
16147Lowering:
Igor Laevskydedd6232016-12-29 15:08:57 +000016148"""""""""
Igor Laevskyf7551532016-12-29 14:31:07 +000016149
Daniel Neilson470c6952017-06-16 14:43:59 +000016150In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
16151lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
16152is replaced with an actual element size.
Igor Laevskyf7551532016-12-29 14:31:07 +000016153
Daniel Neilsonc96acc52017-07-12 15:25:26 +000016154Optimizer is allowed to inline memory copy when it's profitable to do so.
16155
16156'``llvm.memmove.element.unordered.atomic``' Intrinsic
16157^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16158
16159Syntax:
16160"""""""
16161
16162This is an overloaded intrinsic. You can use
16163``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
16164different address spaces. Not all targets support all bit widths however.
16165
16166::
16167
16168 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
16169 i8* <src>,
16170 i32 <len>,
16171 i32 <element_size>)
16172 declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
16173 i8* <src>,
16174 i64 <len>,
16175 i32 <element_size>)
16176
16177Overview:
16178"""""""""
16179
16180The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
16181of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
16182``src`` are treated as arrays with elements that are exactly ``element_size``
16183bytes, and the copy between buffers uses a sequence of
16184:ref:`unordered atomic <ordering>` load/store operations that are a positive
16185integer multiple of the ``element_size`` in size.
16186
16187Arguments:
16188""""""""""
16189
16190The first three arguments are the same as they are in the
16191:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
16192``len`` is required to be a positive integer multiple of the ``element_size``.
16193If ``len`` is not a positive integer multiple of ``element_size``, then the
16194behaviour of the intrinsic is undefined.
16195
16196``element_size`` must be a compile-time constant positive power of two no
16197greater than a target-specific atomic access size limit.
16198
16199For each of the input pointers the ``align`` parameter attribute must be
16200specified. It must be a power of two no less than the ``element_size``. Caller
16201guarantees that both the source and destination pointers are aligned to that
16202boundary.
16203
16204Semantics:
16205""""""""""
16206
16207The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
16208of memory from the source location to the destination location. These locations
16209are allowed to overlap. The memory copy is performed as a sequence of load/store
16210operations where each access is guaranteed to be a multiple of ``element_size``
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000016211bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilsonc96acc52017-07-12 15:25:26 +000016212
16213The order of the copy is unspecified. The same value may be read from the source
16214buffer many times, but only one write is issued to the destination buffer per
16215element. It is well defined to have concurrent reads and writes to both source
16216and destination provided those reads and writes are unordered atomic when
16217specified.
16218
16219This intrinsic does not provide any additional ordering guarantees over those
16220provided by a set of unordered loads from the source location and stores to the
16221destination.
16222
16223Lowering:
16224"""""""""
16225
16226In the most general case call to the
16227'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
16228``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
16229actual element size.
16230
Daniel Neilson470c6952017-06-16 14:43:59 +000016231The optimizer is allowed to inline the memory copy when it's profitable to do so.
Daniel Neilsona06b0912017-07-12 21:57:23 +000016232
16233.. _int_memset_element_unordered_atomic:
16234
16235'``llvm.memset.element.unordered.atomic``' Intrinsic
16236^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16237
16238Syntax:
16239"""""""
16240
16241This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
16242any integer bit width and for different address spaces. Not all targets
16243support all bit widths however.
16244
16245::
16246
16247 declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
16248 i8 <value>,
16249 i32 <len>,
16250 i32 <element_size>)
16251 declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
16252 i8 <value>,
16253 i64 <len>,
16254 i32 <element_size>)
16255
16256Overview:
16257"""""""""
16258
16259The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
16260'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
16261with elements that are exactly ``element_size`` bytes, and the assignment to that array
16262uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
16263that are a positive integer multiple of the ``element_size`` in size.
16264
16265Arguments:
16266""""""""""
16267
16268The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
16269intrinsic, with the added constraint that ``len`` is required to be a positive integer
16270multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
16271``element_size``, then the behaviour of the intrinsic is undefined.
16272
16273``element_size`` must be a compile-time constant positive power of two no greater than
16274target-specific atomic access size limit.
16275
16276The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
16277must be a power of two no less than the ``element_size``. Caller guarantees that
16278the destination pointer is aligned to that boundary.
16279
16280Semantics:
16281""""""""""
16282
16283The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
16284memory starting at the destination location to the given ``value``. The memory is
16285set with a sequence of store operations where each access is guaranteed to be a
Jonas Devlieghere2b2534c2017-11-06 11:47:24 +000016286multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
Daniel Neilsona06b0912017-07-12 21:57:23 +000016287
16288The order of the assignment is unspecified. Only one write is issued to the
16289destination buffer per element. It is well defined to have concurrent reads and
16290writes to the destination provided those reads and writes are unordered atomic
16291when specified.
16292
16293This intrinsic does not provide any additional ordering guarantees over those
16294provided by a set of unordered stores to the destination.
16295
16296Lowering:
16297"""""""""
16298
16299In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
16300lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
16301is replaced with an actual element size.
16302
16303The optimizer is allowed to inline the memory assignment when it's profitable to do so.
Erik Pilkington25b1ceb2018-12-10 18:19:43 +000016304
16305Objective-C ARC Runtime Intrinsics
16306----------------------------------
16307
16308LLVM provides intrinsics that lower to Objective-C ARC runtime entry points.
16309LLVM is aware of the semantics of these functions, and optimizes based on that
16310knowledge. You can read more about the details of Objective-C ARC `here
16311<https://clang.llvm.org/docs/AutomaticReferenceCounting.html>`_.
16312
16313'``llvm.objc.autorelease``' Intrinsic
16314^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16315
16316Syntax:
16317"""""""
16318::
16319
16320 declare i8* @llvm.objc.autorelease(i8*)
16321
16322Lowering:
16323"""""""""
16324
16325Lowers to a call to `objc_autorelease <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autorelease>`_.
16326
16327'``llvm.objc.autoreleasePoolPop``' Intrinsic
16328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16329
16330Syntax:
16331"""""""
16332::
16333
16334 declare void @llvm.objc.autoreleasePoolPop(i8*)
16335
16336Lowering:
16337"""""""""
16338
16339Lowers to a call to `objc_autoreleasePoolPop <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-autoreleasepoolpop-void-pool>`_.
16340
16341'``llvm.objc.autoreleasePoolPush``' Intrinsic
16342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16343
16344Syntax:
16345"""""""
16346::
16347
16348 declare i8* @llvm.objc.autoreleasePoolPush()
16349
16350Lowering:
16351"""""""""
16352
16353Lowers to a call to `objc_autoreleasePoolPush <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-autoreleasepoolpush-void>`_.
16354
16355'``llvm.objc.autoreleaseReturnValue``' Intrinsic
16356^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16357
16358Syntax:
16359"""""""
16360::
16361
16362 declare i8* @llvm.objc.autoreleaseReturnValue(i8*)
16363
16364Lowering:
16365"""""""""
16366
16367Lowers to a call to `objc_autoreleaseReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue>`_.
16368
16369'``llvm.objc.copyWeak``' Intrinsic
16370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16371
16372Syntax:
16373"""""""
16374::
16375
16376 declare void @llvm.objc.copyWeak(i8**, i8**)
16377
16378Lowering:
16379"""""""""
16380
16381Lowers to a call to `objc_copyWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-copyweak-id-dest-id-src>`_.
16382
16383'``llvm.objc.destroyWeak``' Intrinsic
16384^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16385
16386Syntax:
16387"""""""
16388::
16389
16390 declare void @llvm.objc.destroyWeak(i8**)
16391
16392Lowering:
16393"""""""""
16394
16395Lowers to a call to `objc_destroyWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-destroyweak-id-object>`_.
16396
16397'``llvm.objc.initWeak``' Intrinsic
16398^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16399
16400Syntax:
16401"""""""
16402::
16403
16404 declare i8* @llvm.objc.initWeak(i8**, i8*)
16405
16406Lowering:
16407"""""""""
16408
16409Lowers to a call to `objc_initWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-initweak>`_.
16410
16411'``llvm.objc.loadWeak``' Intrinsic
16412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16413
16414Syntax:
16415"""""""
16416::
16417
16418 declare i8* @llvm.objc.loadWeak(i8**)
16419
16420Lowering:
16421"""""""""
16422
16423Lowers to a call to `objc_loadWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-loadweak>`_.
16424
16425'``llvm.objc.loadWeakRetained``' Intrinsic
16426^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16427
16428Syntax:
16429"""""""
16430::
16431
16432 declare i8* @llvm.objc.loadWeakRetained(i8**)
16433
16434Lowering:
16435"""""""""
16436
16437Lowers to a call to `objc_loadWeakRetained <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-loadweakretained>`_.
16438
16439'``llvm.objc.moveWeak``' Intrinsic
16440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16441
16442Syntax:
16443"""""""
16444::
16445
16446 declare void @llvm.objc.moveWeak(i8**, i8**)
16447
16448Lowering:
16449"""""""""
16450
16451Lowers to a call to `objc_moveWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-moveweak-id-dest-id-src>`_.
16452
16453'``llvm.objc.release``' Intrinsic
16454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16455
16456Syntax:
16457"""""""
16458::
16459
16460 declare void @llvm.objc.release(i8*)
16461
16462Lowering:
16463"""""""""
16464
16465Lowers to a call to `objc_release <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-release-id-value>`_.
16466
16467'``llvm.objc.retain``' Intrinsic
16468^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16469
16470Syntax:
16471"""""""
16472::
16473
16474 declare i8* @llvm.objc.retain(i8*)
16475
16476Lowering:
16477"""""""""
16478
16479Lowers to a call to `objc_retain <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retain>`_.
16480
16481'``llvm.objc.retainAutorelease``' Intrinsic
16482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16483
16484Syntax:
16485"""""""
16486::
16487
16488 declare i8* @llvm.objc.retainAutorelease(i8*)
16489
16490Lowering:
16491"""""""""
16492
16493Lowers to a call to `objc_retainAutorelease <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautorelease>`_.
16494
16495'``llvm.objc.retainAutoreleaseReturnValue``' Intrinsic
16496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16497
16498Syntax:
16499"""""""
16500::
16501
16502 declare i8* @llvm.objc.retainAutoreleaseReturnValue(i8*)
16503
16504Lowering:
16505"""""""""
16506
16507Lowers to a call to `objc_retainAutoreleaseReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautoreleasereturnvalue>`_.
16508
16509'``llvm.objc.retainAutoreleasedReturnValue``' Intrinsic
16510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16511
16512Syntax:
16513"""""""
16514::
16515
16516 declare i8* @llvm.objc.retainAutoreleasedReturnValue(i8*)
16517
16518Lowering:
16519"""""""""
16520
16521Lowers to a call to `objc_retainAutoreleasedReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautoreleasedreturnvalue>`_.
16522
16523'``llvm.objc.retainBlock``' Intrinsic
16524^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16525
16526Syntax:
16527"""""""
16528::
16529
16530 declare i8* @llvm.objc.retainBlock(i8*)
16531
16532Lowering:
16533"""""""""
16534
16535Lowers to a call to `objc_retainBlock <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainblock>`_.
16536
16537'``llvm.objc.storeStrong``' Intrinsic
16538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16539
16540Syntax:
16541"""""""
16542::
16543
16544 declare void @llvm.objc.storeStrong(i8**, i8*)
16545
16546Lowering:
16547"""""""""
16548
16549Lowers to a call to `objc_storeStrong <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-storestrong-id-object-id-value>`_.
16550
16551'``llvm.objc.storeWeak``' Intrinsic
16552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16553
16554Syntax:
16555"""""""
16556::
16557
16558 declare i8* @llvm.objc.storeWeak(i8**, i8*)
16559
16560Lowering:
16561"""""""""
16562
16563Lowers to a call to `objc_storeWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-storeweak>`_.