blob: ea46550ffc03a1f0bc7e77f8e7b8edc21b516cee [file] [log] [blame]
Renato Golina5b283a2014-04-01 09:51:49 +00001==============================
2TableGen Language Introduction
3==============================
4
5.. contents::
6 :local:
7
8.. warning::
9 This document is extremely rough. If you find something lacking, please
Tanya Lattner377a9842015-08-05 03:51:17 +000010 fix it, file a documentation bug, or ask about it on llvm-dev.
Renato Golina5b283a2014-04-01 09:51:49 +000011
12Introduction
13============
14
15This document is not meant to be a normative spec about the TableGen language
16in and of itself (i.e. how to understand a given construct in terms of how
17it affects the final set of records represented by the TableGen file). For
18the formal language specification, see :doc:`LangRef`.
19
20TableGen syntax
21===============
22
23TableGen doesn't care about the meaning of data (that is up to the backend to
24define), but it does care about syntax, and it enforces a simple type system.
25This section describes the syntax and the constructs allowed in a TableGen file.
26
27TableGen primitives
28-------------------
29
30TableGen comments
31^^^^^^^^^^^^^^^^^
32
33TableGen supports C++ style "``//``" comments, which run to the end of the
34line, and it also supports **nestable** "``/* */``" comments.
35
36.. _TableGen type:
37
38The TableGen type system
39^^^^^^^^^^^^^^^^^^^^^^^^
40
41TableGen files are strongly typed, in a simple (but complete) type-system.
42These types are used to perform automatic conversions, check for errors, and to
43help interface designers constrain the input that they allow. Every `value
44definition`_ is required to have an associated type.
45
46TableGen supports a mixture of very low-level types (such as ``bit``) and very
47high-level types (such as ``dag``). This flexibility is what allows it to
48describe a wide range of information conveniently and compactly. The TableGen
49types are:
50
51``bit``
52 A 'bit' is a boolean value that can hold either 0 or 1.
53
54``int``
55 The 'int' type represents a simple 32-bit integer value, such as 5.
56
57``string``
58 The 'string' type represents an ordered sequence of characters of arbitrary
59 length.
60
Alex Bradbury6d1bf4d2017-05-02 13:47:10 +000061``code``
62 The `code` type represents a code fragment, which can be single/multi-line
63 string literal.
64
Renato Golina5b283a2014-04-01 09:51:49 +000065``bits<n>``
66 A 'bits' type is an arbitrary, but fixed, size integer that is broken up
67 into individual bits. This type is useful because it can handle some bits
68 being defined while others are undefined.
69
70``list<ty>``
71 This type represents a list whose elements are some other type. The
72 contained type is arbitrary: it can even be another list type.
73
74Class type
75 Specifying a class name in a type context means that the defined value must
76 be a subclass of the specified class. This is useful in conjunction with
77 the ``list`` type, for example, to constrain the elements of the list to a
78 common base class (e.g., a ``list<Register>`` can only contain definitions
79 derived from the "``Register``" class).
80
81``dag``
82 This type represents a nestable directed graph of elements.
83
84To date, these types have been sufficient for describing things that TableGen
85has been used for, but it is straight-forward to extend this list if needed.
86
87.. _TableGen expressions:
88
89TableGen values and expressions
90^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
91
92TableGen allows for a pretty reasonable number of different expression forms
93when building up values. These forms allow the TableGen file to be written in a
94natural syntax and flavor for the application. The current expression forms
95supported include:
96
97``?``
98 uninitialized field
99
100``0b1001011``
Pete Coopere2164682014-08-07 05:47:13 +0000101 binary integer value.
102 Note that this is sized by the number of bits given and will not be
103 silently extended/truncated.
Renato Golina5b283a2014-04-01 09:51:49 +0000104
Renato Golina5b283a2014-04-01 09:51:49 +0000105``7``
106 decimal integer value
107
108``0x7F``
109 hexadecimal integer value
110
111``"foo"``
Alex Bradbury6d1bf4d2017-05-02 13:47:10 +0000112 a single-line string value, can be assigned to ``string`` or ``code`` variable.
Renato Golina5b283a2014-04-01 09:51:49 +0000113
114``[{ ... }]``
115 usually called a "code fragment", but is just a multiline string literal
116
117``[ X, Y, Z ]<type>``
118 list value. <type> is the type of the list element and is usually optional.
119 In rare cases, TableGen is unable to deduce the element type in which case
120 the user must specify it explicitly.
121
Pete Coopere2164682014-08-07 05:47:13 +0000122``{ a, b, 0b10 }``
123 initializer for a "bits<4>" value.
124 1-bit from "a", 1-bit from "b", 2-bits from 0b10.
Renato Golina5b283a2014-04-01 09:51:49 +0000125
126``value``
127 value reference
128
129``value{17}``
130 access to one bit of a value
131
132``value{15-17}``
Alex Bradbury6d1bf4d2017-05-02 13:47:10 +0000133 access to an ordered sequence of bits of a value, in particular ``value{15-17}``
134 produces an order that is the reverse of ``value{17-15}``.
Renato Golina5b283a2014-04-01 09:51:49 +0000135
136``DEF``
137 reference to a record definition
138
139``CLASS<val list>``
140 reference to a new anonymous definition of CLASS with the specified template
141 arguments.
142
143``X.Y``
144 reference to the subfield of a value
145
146``list[4-7,17,2-3]``
147 A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from it.
148 Elements may be included multiple times.
149
150``foreach <var> = [ <list> ] in { <body> }``
151
152``foreach <var> = [ <list> ] in <def>``
153 Replicate <body> or <def>, replacing instances of <var> with each value
154 in <list>. <var> is scoped at the level of the ``foreach`` loop and must
Nicolai Haehnle6b71fcb2018-06-04 14:26:12 +0000155 not conflict with any other object introduced in <body> or <def>. Only
156 ``def``\s and ``defm``\s are expanded within <body>.
Renato Golina5b283a2014-04-01 09:51:49 +0000157
158``foreach <var> = 0-15 in ...``
159
160``foreach <var> = {0-15,32-47} in ...``
161 Loop over ranges of integers. The braces are required for multiple ranges.
162
163``(DEF a, b)``
164 a dag value. The first element is required to be a record definition, the
165 remaining elements in the list may be arbitrary other values, including
166 nested ```dag``' values.
167
Nicolai Haehnle23187642018-03-14 11:00:26 +0000168``!con(a, b, ...)``
169 Concatenate two or more DAG nodes. Their operations must equal.
170
171 Example: !con((op a1:$name1, a2:$name2), (op b1:$name3)) results in
172 the DAG node (op a1:$name1, a2:$name2, b1:$name3).
173
174``!dag(op, children, names)``
175 Generate a DAG node programmatically. 'children' and 'names' must be lists
176 of equal length or unset ('?'). 'names' must be a 'list<string>'.
177
178 Due to limitations of the type system, 'children' must be a list of items
179 of a common type. In practice, this means that they should either have the
180 same type or be records with a common superclass. Mixing dag and non-dag
Nicolai Haehnle14236eb2018-03-14 11:00:33 +0000181 items is not possible. However, '?' can be used.
Nicolai Haehnle23187642018-03-14 11:00:26 +0000182
Nicolai Haehnle14236eb2018-03-14 11:00:33 +0000183 Example: !dag(op, [a1, a2, ?], ["name1", "name2", "name3"]) results in
184 (op a1:$name1, a2:$name2, ?:$name3).
Nicolai Haehnle23187642018-03-14 11:00:26 +0000185
Daniel Sandersd80222a2014-05-07 10:13:19 +0000186``!listconcat(a, b, ...)``
187 A list value that is the result of concatenating the 'a' and 'b' lists.
188 The lists must have the same element type.
189 More than two arguments are accepted with the result being the concatenation
190 of all the lists given.
191
Daniel Sanders1913eeb2014-05-02 19:25:52 +0000192``!strconcat(a, b, ...)``
Renato Golina5b283a2014-04-01 09:51:49 +0000193 A string value that is the result of concatenating the 'a' and 'b' strings.
Daniel Sanders1913eeb2014-05-02 19:25:52 +0000194 More than two arguments are accepted with the result being the concatenation
195 of all the strings given.
Renato Golina5b283a2014-04-01 09:51:49 +0000196
197``str1#str2``
198 "#" (paste) is a shorthand for !strconcat. It may concatenate things that
199 are not quoted strings, in which case an implicit !cast<string> is done on
200 the operand of the paste.
201
202``!cast<type>(a)``
Nicolai Haehnlea9e8c1d2018-03-06 13:48:39 +0000203 If 'a' is a string, a record of type *type* obtained by looking up the
204 string 'a' in the list of all records defined by the time that all template
205 arguments in 'a' are fully resolved.
206
207 For example, if !cast<type>(a) appears in a multiclass definition, or in a
208 class instantiated inside of a multiclass definition, and 'a' does not
209 reference any template arguments of the multiclass, then a record of name
210 'a' must be instantiated earlier in the source file. If 'a' does reference
211 a template argument, then the lookup is delayed until defm statements
212 instantiating the multiclass (or later, if the defm occurs in another
213 multiclass and template arguments of the inner multiclass that are
214 referenced by 'a' are substituted by values that themselves contain
215 references to template arguments of the outer multiclass).
216
217 If the type of 'a' does not match *type*, TableGen aborts with an error.
218
Nicolai Haehnlea9e8c1d2018-03-06 13:48:39 +0000219 Otherwise, perform a normal type cast e.g. between an int and a bit, or
220 between record types. This allows casting a record to a subclass, though if
221 the types do not match, constant folding will be inhibited. !cast<string>
222 is a special case in that the argument can be an int or a record. In the
223 latter case, the record's name is returned.
Renato Golina5b283a2014-04-01 09:51:49 +0000224
Nicolai Haehnlea2472db2018-03-09 12:24:06 +0000225``!isa<type>(a)``
226 Returns an integer: 1 if 'a' is dynamically of the given type, 0 otherwise.
227
Renato Golina5b283a2014-04-01 09:51:49 +0000228``!subst(a, b, c)``
229 If 'a' and 'b' are of string type or are symbol references, substitute 'b'
230 for 'a' in 'c.' This operation is analogous to $(subst) in GNU make.
231
232``!foreach(a, b, c)``
Nicolai Haehnled5cc0e02018-03-05 15:21:04 +0000233 For each member of dag or list 'b' apply operator 'c'. 'a' is the name
234 of a variable that will be substituted by members of 'b' in 'c'.
235 This operation is analogous to $(foreach) in GNU make.
Renato Golina5b283a2014-04-01 09:51:49 +0000236
Nicolai Haehnle8498a492018-03-06 13:49:16 +0000237``!foldl(start, lst, a, b, expr)``
238 Perform a left-fold over 'lst' with the given starting value. 'a' and 'b'
239 are variable names which will be substituted in 'expr'. If you think of
240 expr as a function f(a,b), the fold will compute
241 'f(...f(f(start, lst[0]), lst[1]), ...), lst[n-1])' for a list of length n.
242 As usual, 'a' will be of the type of 'start', and 'b' will be of the type
243 of elements of 'lst'. These types need not be the same, but 'expr' must be
244 of the same type as 'start'.
245
Renato Golina5b283a2014-04-01 09:51:49 +0000246``!head(a)``
247 The first element of list 'a.'
248
249``!tail(a)``
250 The 2nd-N elements of list 'a.'
251
252``!empty(a)``
253 An integer {0,1} indicating whether list 'a' is empty.
254
Nicolai Haehnlec3435022018-02-23 10:46:07 +0000255``!size(a)``
256 An integer indicating the number of elements in list 'a'.
257
Renato Golina5b283a2014-04-01 09:51:49 +0000258``!if(a,b,c)``
259 'b' if the result of 'int' or 'bit' operator 'a' is nonzero, 'c' otherwise.
260
261``!eq(a,b)``
262 'bit 1' if string a is equal to string b, 0 otherwise. This only operates
263 on string, int and bit objects. Use !cast<string> to compare other types of
264 objects.
265
Nicolai Haehnleaf0de502018-03-14 11:00:57 +0000266``!ne(a,b)``
267 The negation of ``!eq(a,b)``.
268
269``!le(a,b), !lt(a,b), !ge(a,b), !gt(a,b)``
270 (Signed) comparison of integer values that returns bit 1 or 0 depending on
271 the result of the comparison.
272
Nicolai Haehnle8ed1fd42018-03-14 11:00:43 +0000273``!shl(a,b)`` ``!srl(a,b)`` ``!sra(a,b)``
274 The usual shift operators. Operations are on 64-bit integers, the result
275 is undefined for shift counts outside [0, 63].
276
277``!add(a,b,...)`` ``!and(a,b,...)`` ``!or(a,b,...)``
278 The usual arithmetic and binary operators.
Adam Nemet30cced12014-07-17 17:04:27 +0000279
Renato Golina5b283a2014-04-01 09:51:49 +0000280Note that all of the values have rules specifying how they convert to values
281for different types. These rules allow you to assign a value like "``7``"
282to a "``bits<4>``" value, for example.
283
284Classes and definitions
285-----------------------
286
287As mentioned in the :doc:`introduction <index>`, classes and definitions (collectively known as
288'records') in TableGen are the main high-level unit of information that TableGen
289collects. Records are defined with a ``def`` or ``class`` keyword, the record
290name, and an optional list of "`template arguments`_". If the record has
291superclasses, they are specified as a comma separated list that starts with a
292colon character ("``:``"). If `value definitions`_ or `let expressions`_ are
293needed for the class, they are enclosed in curly braces ("``{}``"); otherwise,
294the record ends with a semicolon.
295
296Here is a simple TableGen file:
297
Renato Golin88ea57f2016-07-20 12:16:38 +0000298.. code-block:: text
Renato Golina5b283a2014-04-01 09:51:49 +0000299
300 class C { bit V = 1; }
301 def X : C;
302 def Y : C {
303 string Greeting = "hello";
304 }
305
306This example defines two definitions, ``X`` and ``Y``, both of which derive from
307the ``C`` class. Because of this, they both get the ``V`` bit value. The ``Y``
308definition also gets the Greeting member as well.
309
310In general, classes are useful for collecting together the commonality between a
311group of records and isolating it in a single place. Also, classes permit the
312specification of default values for their subclasses, allowing the subclasses to
313override them as they wish.
314
315.. _value definition:
316.. _value definitions:
317
318Value definitions
319^^^^^^^^^^^^^^^^^
320
321Value definitions define named entries in records. A value must be defined
322before it can be referred to as the operand for another value definition or
323before the value is reset with a `let expression`_. A value is defined by
324specifying a `TableGen type`_ and a name. If an initial value is available, it
325may be specified after the type with an equal sign. Value definitions require
326terminating semicolons.
327
328.. _let expression:
329.. _let expressions:
330.. _"let" expressions within a record:
331
332'let' expressions
333^^^^^^^^^^^^^^^^^
334
335A record-level let expression is used to change the value of a value definition
336in a record. This is primarily useful when a superclass defines a value that a
337derived class or definition wants to override. Let expressions consist of the
338'``let``' keyword followed by a value name, an equal sign ("``=``"), and a new
339value. For example, a new class could be added to the example above, redefining
340the ``V`` field for all of its subclasses:
341
Renato Golin88ea57f2016-07-20 12:16:38 +0000342.. code-block:: text
Renato Golina5b283a2014-04-01 09:51:49 +0000343
344 class D : C { let V = 0; }
345 def Z : D;
346
347In this case, the ``Z`` definition will have a zero value for its ``V`` value,
348despite the fact that it derives (indirectly) from the ``C`` class, because the
349``D`` class overrode its value.
350
Nicolai Haehnle6b71fcb2018-06-04 14:26:12 +0000351References between variables in a record are substituted late, which gives
352``let`` expressions unusual power. Consider this admittedly silly example:
353
354.. code-block:: text
355
356 class A<int x> {
357 int Y = x;
358 int Yplus1 = !add(Y, 1);
359 int xplus1 = !add(x, 1);
360 }
361 def Z : A<5> {
362 let Y = 10;
363 }
364
365The value of ``Z.xplus1`` will be 6, but the value of ``Z.Yplus1`` is 11. Use
366this power wisely.
367
Renato Golina5b283a2014-04-01 09:51:49 +0000368.. _template arguments:
369
370Class template arguments
371^^^^^^^^^^^^^^^^^^^^^^^^
372
373TableGen permits the definition of parameterized classes as well as normal
374concrete classes. Parameterized TableGen classes specify a list of variable
375bindings (which may optionally have defaults) that are bound when used. Here is
376a simple example:
377
Renato Golin88ea57f2016-07-20 12:16:38 +0000378.. code-block:: text
Renato Golina5b283a2014-04-01 09:51:49 +0000379
380 class FPFormat<bits<3> val> {
381 bits<3> Value = val;
382 }
383 def NotFP : FPFormat<0>;
384 def ZeroArgFP : FPFormat<1>;
385 def OneArgFP : FPFormat<2>;
386 def OneArgFPRW : FPFormat<3>;
387 def TwoArgFP : FPFormat<4>;
388 def CompareFP : FPFormat<5>;
389 def CondMovFP : FPFormat<6>;
390 def SpecialFP : FPFormat<7>;
391
392In this case, template arguments are used as a space efficient way to specify a
393list of "enumeration values", each with a "``Value``" field set to the specified
394integer.
395
396The more esoteric forms of `TableGen expressions`_ are useful in conjunction
397with template arguments. As an example:
398
Renato Golin88ea57f2016-07-20 12:16:38 +0000399.. code-block:: text
Renato Golina5b283a2014-04-01 09:51:49 +0000400
401 class ModRefVal<bits<2> val> {
402 bits<2> Value = val;
403 }
404
405 def None : ModRefVal<0>;
406 def Mod : ModRefVal<1>;
407 def Ref : ModRefVal<2>;
408 def ModRef : ModRefVal<3>;
409
410 class Value<ModRefVal MR> {
411 // Decode some information into a more convenient format, while providing
412 // a nice interface to the user of the "Value" class.
413 bit isMod = MR.Value{0};
414 bit isRef = MR.Value{1};
415
416 // other stuff...
417 }
418
419 // Example uses
420 def bork : Value<Mod>;
421 def zork : Value<Ref>;
422 def hork : Value<ModRef>;
423
424This is obviously a contrived example, but it shows how template arguments can
425be used to decouple the interface provided to the user of the class from the
426actual internal data representation expected by the class. In this case,
427running ``llvm-tblgen`` on the example prints the following definitions:
428
Renato Golin88ea57f2016-07-20 12:16:38 +0000429.. code-block:: text
Renato Golina5b283a2014-04-01 09:51:49 +0000430
431 def bork { // Value
432 bit isMod = 1;
433 bit isRef = 0;
434 }
435 def hork { // Value
436 bit isMod = 1;
437 bit isRef = 1;
438 }
439 def zork { // Value
440 bit isMod = 0;
441 bit isRef = 1;
442 }
443
444This shows that TableGen was able to dig into the argument and extract a piece
445of information that was requested by the designer of the "Value" class. For
446more realistic examples, please see existing users of TableGen, such as the X86
447backend.
448
449Multiclass definitions and instances
450^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
451
452While classes with template arguments are a good way to factor commonality
453between two instances of a definition, multiclasses allow a convenient notation
454for defining multiple definitions at once (instances of implicitly constructed
455classes). For example, consider an 3-address instruction set whose instructions
456come in two forms: "``reg = reg op reg``" and "``reg = reg op imm``"
457(e.g. SPARC). In this case, you'd like to specify in one place that this
458commonality exists, then in a separate place indicate what all the ops are.
459
460Here is an example TableGen fragment that shows this idea:
461
Renato Golin88ea57f2016-07-20 12:16:38 +0000462.. code-block:: text
Renato Golina5b283a2014-04-01 09:51:49 +0000463
464 def ops;
465 def GPR;
466 def Imm;
467 class inst<int opc, string asmstr, dag operandlist>;
468
469 multiclass ri_inst<int opc, string asmstr> {
470 def _rr : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
471 (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
472 def _ri : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
473 (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
474 }
475
476 // Instantiations of the ri_inst multiclass.
477 defm ADD : ri_inst<0b111, "add">;
478 defm SUB : ri_inst<0b101, "sub">;
479 defm MUL : ri_inst<0b100, "mul">;
480 ...
481
482The name of the resultant definitions has the multidef fragment names appended
483to them, so this defines ``ADD_rr``, ``ADD_ri``, ``SUB_rr``, etc. A defm may
484inherit from multiple multiclasses, instantiating definitions from each
485multiclass. Using a multiclass this way is exactly equivalent to instantiating
486the classes multiple times yourself, e.g. by writing:
487
Renato Golin88ea57f2016-07-20 12:16:38 +0000488.. code-block:: text
Renato Golina5b283a2014-04-01 09:51:49 +0000489
490 def ops;
491 def GPR;
492 def Imm;
493 class inst<int opc, string asmstr, dag operandlist>;
494
495 class rrinst<int opc, string asmstr>
496 : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
497 (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
498
499 class riinst<int opc, string asmstr>
500 : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
501 (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
502
503 // Instantiations of the ri_inst multiclass.
504 def ADD_rr : rrinst<0b111, "add">;
505 def ADD_ri : riinst<0b111, "add">;
506 def SUB_rr : rrinst<0b101, "sub">;
507 def SUB_ri : riinst<0b101, "sub">;
508 def MUL_rr : rrinst<0b100, "mul">;
509 def MUL_ri : riinst<0b100, "mul">;
510 ...
511
512A ``defm`` can also be used inside a multiclass providing several levels of
513multiclass instantiations.
514
Renato Golin88ea57f2016-07-20 12:16:38 +0000515.. code-block:: text
Renato Golina5b283a2014-04-01 09:51:49 +0000516
517 class Instruction<bits<4> opc, string Name> {
518 bits<4> opcode = opc;
519 string name = Name;
520 }
521
522 multiclass basic_r<bits<4> opc> {
523 def rr : Instruction<opc, "rr">;
524 def rm : Instruction<opc, "rm">;
525 }
526
527 multiclass basic_s<bits<4> opc> {
528 defm SS : basic_r<opc>;
529 defm SD : basic_r<opc>;
530 def X : Instruction<opc, "x">;
531 }
532
533 multiclass basic_p<bits<4> opc> {
534 defm PS : basic_r<opc>;
535 defm PD : basic_r<opc>;
536 def Y : Instruction<opc, "y">;
537 }
538
539 defm ADD : basic_s<0xf>, basic_p<0xf>;
540 ...
541
542 // Results
543 def ADDPDrm { ...
544 def ADDPDrr { ...
545 def ADDPSrm { ...
546 def ADDPSrr { ...
547 def ADDSDrm { ...
548 def ADDSDrr { ...
549 def ADDY { ...
550 def ADDX { ...
551
552``defm`` declarations can inherit from classes too, the rule to follow is that
553the class list must start after the last multiclass, and there must be at least
554one multiclass before them.
555
Renato Golin88ea57f2016-07-20 12:16:38 +0000556.. code-block:: text
Renato Golina5b283a2014-04-01 09:51:49 +0000557
558 class XD { bits<4> Prefix = 11; }
559 class XS { bits<4> Prefix = 12; }
560
561 class I<bits<4> op> {
562 bits<4> opcode = op;
563 }
564
565 multiclass R {
566 def rr : I<4>;
567 def rm : I<2>;
568 }
569
570 multiclass Y {
571 defm SS : R, XD;
572 defm SD : R, XS;
573 }
574
575 defm Instr : Y;
576
577 // Results
578 def InstrSDrm {
579 bits<4> opcode = { 0, 0, 1, 0 };
580 bits<4> Prefix = { 1, 1, 0, 0 };
581 }
582 ...
583 def InstrSSrr {
584 bits<4> opcode = { 0, 1, 0, 0 };
585 bits<4> Prefix = { 1, 0, 1, 1 };
586 }
587
588File scope entities
589-------------------
590
591File inclusion
592^^^^^^^^^^^^^^
593
594TableGen supports the '``include``' token, which textually substitutes the
595specified file in place of the include directive. The filename should be
596specified as a double quoted string immediately after the '``include``' keyword.
597Example:
598
Renato Golin88ea57f2016-07-20 12:16:38 +0000599.. code-block:: text
Renato Golina5b283a2014-04-01 09:51:49 +0000600
601 include "foo.td"
602
603'let' expressions
604^^^^^^^^^^^^^^^^^
605
606"Let" expressions at file scope are similar to `"let" expressions within a
607record`_, except they can specify a value binding for multiple records at a
608time, and may be useful in certain other cases. File-scope let expressions are
609really just another way that TableGen allows the end-user to factor out
610commonality from the records.
611
612File-scope "let" expressions take a comma-separated list of bindings to apply,
613and one or more records to bind the values in. Here are some examples:
614
Renato Golin88ea57f2016-07-20 12:16:38 +0000615.. code-block:: text
Renato Golina5b283a2014-04-01 09:51:49 +0000616
617 let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in
618 def RET : I<0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]>;
619
620 let isCall = 1 in
621 // All calls clobber the non-callee saved registers...
622 let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
623 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
624 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] in {
625 def CALLpcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops),
626 "call\t${dst:call}", []>;
627 def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops),
628 "call\t{*}$dst", [(X86call GR32:$dst)]>;
629 def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
630 "call\t{*}$dst", []>;
631 }
632
633File-scope "let" expressions are often useful when a couple of definitions need
634to be added to several records, and the records do not otherwise need to be
635opened, as in the case with the ``CALL*`` instructions above.
636
637It's also possible to use "let" expressions inside multiclasses, providing more
638ways to factor out commonality from the records, specially if using several
639levels of multiclass instantiations. This also avoids the need of using "let"
640expressions within subsequent records inside a multiclass.
641
Renato Golin88ea57f2016-07-20 12:16:38 +0000642.. code-block:: text
Renato Golina5b283a2014-04-01 09:51:49 +0000643
644 multiclass basic_r<bits<4> opc> {
645 let Predicates = [HasSSE2] in {
646 def rr : Instruction<opc, "rr">;
647 def rm : Instruction<opc, "rm">;
648 }
649 let Predicates = [HasSSE3] in
650 def rx : Instruction<opc, "rx">;
651 }
652
653 multiclass basic_ss<bits<4> opc> {
654 let IsDouble = 0 in
655 defm SS : basic_r<opc>;
656
657 let IsDouble = 1 in
658 defm SD : basic_r<opc>;
659 }
660
661 defm ADD : basic_ss<0xf>;
662
663Looping
664^^^^^^^
665
666TableGen supports the '``foreach``' block, which textually replicates the loop
667body, substituting iterator values for iterator references in the body.
668Example:
669
Renato Golin88ea57f2016-07-20 12:16:38 +0000670.. code-block:: text
Renato Golina5b283a2014-04-01 09:51:49 +0000671
672 foreach i = [0, 1, 2, 3] in {
673 def R#i : Register<...>;
674 def F#i : Register<...>;
675 }
676
677This will create objects ``R0``, ``R1``, ``R2`` and ``R3``. ``foreach`` blocks
678may be nested. If there is only one item in the body the braces may be
679elided:
680
Renato Golin88ea57f2016-07-20 12:16:38 +0000681.. code-block:: text
Renato Golina5b283a2014-04-01 09:51:49 +0000682
683 foreach i = [0, 1, 2, 3] in
684 def R#i : Register<...>;
685
686Code Generator backend info
687===========================
688
689Expressions used by code generator to describe instructions and isel patterns:
690
691``(implicit a)``
692 an implicitly defined physical register. This tells the dag instruction
693 selection emitter the input pattern's extra definitions matches implicit
694 physical register definitions.
695