blob: fd1525c00cac285d11b7410714a36520377530e0 [file] [log] [blame]
Nadav Rotem59f2af92012-12-19 07:22:24 +00001==========================
2Auto-Vectorization in LLVM
3==========================
4
Sean Silva12ae5152012-12-20 22:42:20 +00005.. contents::
6 :local:
7
Nadav Rotem3fe91a42013-04-15 22:21:25 +00008LLVM has two vectorizers: The :ref:`Loop Vectorizer <loop-vectorizer>`,
Nadav Rotem96e0b962013-04-15 22:11:07 +00009which operates on Loops, and the :ref:`SLP Vectorizer
Nadav Rotemb5a8a902013-06-26 17:59:35 +000010<slp-vectorizer>`. These vectorizers
Sean Silva12ae5152012-12-20 22:42:20 +000011focus on different optimization opportunities and use different techniques.
Nadav Rotem3fe91a42013-04-15 22:21:25 +000012The SLP vectorizer merges multiple scalars that are found in the code into
Nadav Rotemb5a8a902013-06-26 17:59:35 +000013vectors while the Loop Vectorizer widens instructions in loops
14to operate on multiple consecutive iterations.
Sean Silva12ae5152012-12-20 22:42:20 +000015
Nadav Rotem055028f2013-08-05 04:27:34 +000016Both the Loop Vectorizer and the SLP Vectorizer are enabled by default.
17
Sean Silva12ae5152012-12-20 22:42:20 +000018.. _loop-vectorizer:
Nadav Rotem59f2af92012-12-19 07:22:24 +000019
20The Loop Vectorizer
21===================
22
Nadav Rotem649a33e2012-12-19 18:04:44 +000023Usage
Sean Silva62417032012-12-20 02:40:45 +000024-----
Nadav Rotem649a33e2012-12-19 18:04:44 +000025
Nadav Rotem055028f2013-08-05 04:27:34 +000026The Loop Vectorizer is enabled by default, but it can be disabled
27through clang using the command line flag:
Nadav Rotem59f2af92012-12-19 07:22:24 +000028
29.. code-block:: console
30
Nadav Rotemdf4381b2013-04-08 21:34:49 +000031 $ clang ... -fno-vectorize file.c
Nadav Rotem3e6da7e2012-12-19 18:02:36 +000032
Nadav Rotem4aa55bb2013-01-04 17:49:45 +000033Command line flags
34^^^^^^^^^^^^^^^^^^
35
36The loop vectorizer uses a cost model to decide on the optimal vectorization factor
37and unroll factor. However, users of the vectorizer can force the vectorizer to use
38specific values. Both 'clang' and 'opt' support the flags below.
39
40Users can control the vectorization SIMD width using the command line flag "-force-vector-width".
41
42.. code-block:: console
43
44 $ clang -mllvm -force-vector-width=8 ...
45 $ opt -loop-vectorize -force-vector-width=8 ...
46
Eli Friedman8a5dfea2017-05-31 23:02:55 +000047Users can control the unroll factor using the command line flag "-force-vector-interleave"
Nadav Rotem4aa55bb2013-01-04 17:49:45 +000048
49.. code-block:: console
50
Eli Friedman8a5dfea2017-05-31 23:02:55 +000051 $ clang -mllvm -force-vector-interleave=2 ...
52 $ opt -loop-vectorize -force-vector-interleave=2 ...
Nadav Rotem4aa55bb2013-01-04 17:49:45 +000053
Tyler Nowicki9487d2a2014-06-27 18:30:08 +000054Pragma loop hint directives
55^^^^^^^^^^^^^^^^^^^^^^^^^^^
56
57The ``#pragma clang loop`` directive allows loop vectorization hints to be
58specified for the subsequent for, while, do-while, or c++11 range-based for
59loop. The directive allows vectorization and interleaving to be enabled or
60disabled. Vector width as well as interleave count can also be manually
61specified. The following example explicitly enables vectorization and
62interleaving:
63
64.. code-block:: c++
65
66 #pragma clang loop vectorize(enable) interleave(enable)
67 while(...) {
68 ...
69 }
70
71The following example implicitly enables vectorization and interleaving by
72specifying a vector width and interleaving count:
73
74.. code-block:: c++
75
76 #pragma clang loop vectorize_width(2) interleave_count(2)
77 for(...) {
78 ...
79 }
80
81See the Clang
82`language extensions
83<http://clang.llvm.org/docs/LanguageExtensions.html#extensions-for-loop-hint-optimizations>`_
84for details.
85
86Diagnostics
87-----------
88
89Many loops cannot be vectorized including loops with complicated control flow,
90unvectorizable types, and unvectorizable calls. The loop vectorizer generates
91optimization remarks which can be queried using command line options to identify
92and diagnose loops that are skipped by the loop-vectorizer.
93
94Optimization remarks are enabled using:
95
96``-Rpass=loop-vectorize`` identifies loops that were successfully vectorized.
97
98``-Rpass-missed=loop-vectorize`` identifies loops that failed vectorization and
99indicates if vectorization was specified.
100
101``-Rpass-analysis=loop-vectorize`` identifies the statements that caused
Ayal Zaksf93293e2017-05-23 07:08:02 +0000102vectorization to fail. If in addition ``-fsave-optimization-record`` is
103provided, multiple causes of vectorization failure may be listed (this behavior
104might change in the future).
Tyler Nowicki9487d2a2014-06-27 18:30:08 +0000105
106Consider the following loop:
107
108.. code-block:: c++
109
110 #pragma clang loop vectorize(enable)
111 for (int i = 0; i < Length; i++) {
112 switch(A[i]) {
113 case 0: A[i] = i*2; break;
114 case 1: A[i] = i; break;
115 default: A[i] = 0;
116 }
117 }
118
119The command line ``-Rpass-missed=loop-vectorized`` prints the remark:
120
121.. code-block:: console
122
123 no_switch.cpp:4:5: remark: loop not vectorized: vectorization is explicitly enabled [-Rpass-missed=loop-vectorize]
124
125And the command line ``-Rpass-analysis=loop-vectorize`` indicates that the
126switch statement cannot be vectorized.
127
128.. code-block:: console
129
130 no_switch.cpp:4:5: remark: loop not vectorized: loop contains a switch statement [-Rpass-analysis=loop-vectorize]
131 switch(A[i]) {
132 ^
133
134To ensure line and column numbers are produced include the command line options
135``-gline-tables-only`` and ``-gcolumn-info``. See the Clang `user manual
136<http://clang.llvm.org/docs/UsersManual.html#options-to-emit-optimization-reports>`_
137for details
138
Nadav Rotem59f2af92012-12-19 07:22:24 +0000139Features
Sean Silva62417032012-12-20 02:40:45 +0000140--------
Nadav Rotem59f2af92012-12-19 07:22:24 +0000141
142The LLVM Loop Vectorizer has a number of features that allow it to vectorize
143complex loops.
144
145Loops with unknown trip count
Sean Silva62417032012-12-20 02:40:45 +0000146^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotem59f2af92012-12-19 07:22:24 +0000147
148The Loop Vectorizer supports loops with an unknown trip count.
149In the loop below, the iteration ``start`` and ``finish`` points are unknown,
150and the Loop Vectorizer has a mechanism to vectorize loops that do not start
Sean Silva68d5b272012-12-20 02:23:25 +0000151at zero. In this example, 'n' may not be a multiple of the vector width, and
Nadav Rotem59f2af92012-12-19 07:22:24 +0000152the vectorizer has to execute the last few iterations as scalar code. Keeping
153a scalar copy of the loop increases the code size.
154
155.. code-block:: c++
156
157 void bar(float *A, float* B, float K, int start, int end) {
Sean Silva9baa6e42012-12-20 22:47:41 +0000158 for (int i = start; i < end; ++i)
159 A[i] *= B[i] + K;
Nadav Rotem59f2af92012-12-19 07:22:24 +0000160 }
161
162Runtime Checks of Pointers
Sean Silva62417032012-12-20 02:40:45 +0000163^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotem59f2af92012-12-19 07:22:24 +0000164
165In the example below, if the pointers A and B point to consecutive addresses,
166then it is illegal to vectorize the code because some elements of A will be
167written before they are read from array B.
168
169Some programmers use the 'restrict' keyword to notify the compiler that the
170pointers are disjointed, but in our example, the Loop Vectorizer has no way of
171knowing that the pointers A and B are unique. The Loop Vectorizer handles this
172loop by placing code that checks, at runtime, if the arrays A and B point to
173disjointed memory locations. If arrays A and B overlap, then the scalar version
Sean Silva689858b2012-12-20 22:59:36 +0000174of the loop is executed.
Nadav Rotem59f2af92012-12-19 07:22:24 +0000175
176.. code-block:: c++
177
178 void bar(float *A, float* B, float K, int n) {
Sean Silva9baa6e42012-12-20 22:47:41 +0000179 for (int i = 0; i < n; ++i)
180 A[i] *= B[i] + K;
Nadav Rotem59f2af92012-12-19 07:22:24 +0000181 }
182
183
184Reductions
Sean Silva62417032012-12-20 02:40:45 +0000185^^^^^^^^^^
Nadav Rotem59f2af92012-12-19 07:22:24 +0000186
Sean Silva689858b2012-12-20 22:59:36 +0000187In this example the ``sum`` variable is used by consecutive iterations of
Nadav Rotem59f2af92012-12-19 07:22:24 +0000188the loop. Normally, this would prevent vectorization, but the vectorizer can
Sean Silva68d5b272012-12-20 02:23:25 +0000189detect that 'sum' is a reduction variable. The variable 'sum' becomes a vector
Nadav Rotem59f2af92012-12-19 07:22:24 +0000190of integers, and at the end of the loop the elements of the array are added
Sean Silva689858b2012-12-20 22:59:36 +0000191together to create the correct result. We support a number of different
Nadav Rotem59f2af92012-12-19 07:22:24 +0000192reduction operations, such as addition, multiplication, XOR, AND and OR.
193
194.. code-block:: c++
195
196 int foo(int *A, int *B, int n) {
197 unsigned sum = 0;
198 for (int i = 0; i < n; ++i)
Sean Silva689858b2012-12-20 22:59:36 +0000199 sum += A[i] + 5;
Nadav Rotem59f2af92012-12-19 07:22:24 +0000200 return sum;
201 }
202
Nadav Rotem2a92c102013-01-08 17:46:30 +0000203We support floating point reduction operations when `-ffast-math` is used.
204
Nadav Rotem59f2af92012-12-19 07:22:24 +0000205Inductions
Sean Silva62417032012-12-20 02:40:45 +0000206^^^^^^^^^^
Nadav Rotem59f2af92012-12-19 07:22:24 +0000207
208In this example the value of the induction variable ``i`` is saved into an
209array. The Loop Vectorizer knows to vectorize induction variables.
210
211.. code-block:: c++
212
213 void bar(float *A, float* B, float K, int n) {
Sean Silva9baa6e42012-12-20 22:47:41 +0000214 for (int i = 0; i < n; ++i)
215 A[i] = i;
Nadav Rotem59f2af92012-12-19 07:22:24 +0000216 }
217
218If Conversion
Sean Silva62417032012-12-20 02:40:45 +0000219^^^^^^^^^^^^^
Nadav Rotem59f2af92012-12-19 07:22:24 +0000220
221The Loop Vectorizer is able to "flatten" the IF statement in the code and
222generate a single stream of instructions. The Loop Vectorizer supports any
223control flow in the innermost loop. The innermost loop may contain complex
224nesting of IFs, ELSEs and even GOTOs.
225
226.. code-block:: c++
227
228 int foo(int *A, int *B, int n) {
229 unsigned sum = 0;
230 for (int i = 0; i < n; ++i)
231 if (A[i] > B[i])
232 sum += A[i] + 5;
233 return sum;
234 }
235
236Pointer Induction Variables
Sean Silva62417032012-12-20 02:40:45 +0000237^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotem59f2af92012-12-19 07:22:24 +0000238
239This example uses the "accumulate" function of the standard c++ library. This
240loop uses C++ iterators, which are pointers, and not integer indices.
241The Loop Vectorizer detects pointer induction variables and can vectorize
242this loop. This feature is important because many C++ programs use iterators.
243
244.. code-block:: c++
245
246 int baz(int *A, int n) {
247 return std::accumulate(A, A + n, 0);
248 }
249
250Reverse Iterators
Sean Silva62417032012-12-20 02:40:45 +0000251^^^^^^^^^^^^^^^^^
Nadav Rotem59f2af92012-12-19 07:22:24 +0000252
253The Loop Vectorizer can vectorize loops that count backwards.
254
255.. code-block:: c++
256
257 int foo(int *A, int *B, int n) {
258 for (int i = n; i > 0; --i)
259 A[i] +=1;
260 }
261
262Scatter / Gather
Sean Silva62417032012-12-20 02:40:45 +0000263^^^^^^^^^^^^^^^^
Nadav Rotem59f2af92012-12-19 07:22:24 +0000264
Nadav Rotemf574b882013-01-03 01:47:02 +0000265The Loop Vectorizer can vectorize code that becomes a sequence of scalar instructions
266that scatter/gathers memory.
Nadav Rotem59f2af92012-12-19 07:22:24 +0000267
268.. code-block:: c++
269
Arnold Schwaighofer6a7d2632014-03-12 23:23:44 +0000270 int foo(int * A, int * B, int n) {
271 for (intptr_t i = 0; i < n; ++i)
Arnold Schwaighofer8d469322014-03-12 23:58:07 +0000272 A[i] += B[i * 4];
Nadav Rotem59f2af92012-12-19 07:22:24 +0000273 }
274
Arnold Schwaighofer6a7d2632014-03-12 23:23:44 +0000275In many situations the cost model will inform LLVM that this is not beneficial
276and LLVM will only vectorize such code if forced with "-mllvm -force-vector-width=#".
277
Nadav Rotemaf086272012-12-19 07:36:35 +0000278Vectorization of Mixed Types
Sean Silva62417032012-12-20 02:40:45 +0000279^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotem59f2af92012-12-19 07:22:24 +0000280
281The Loop Vectorizer can vectorize programs with mixed types. The Vectorizer
282cost model can estimate the cost of the type conversion and decide if
283vectorization is profitable.
284
285.. code-block:: c++
286
287 int foo(int *A, char *B, int n, int k) {
Sean Silva9baa6e42012-12-20 22:47:41 +0000288 for (int i = 0; i < n; ++i)
Sean Silva5e816332012-12-20 22:49:13 +0000289 A[i] += 4 * B[i];
Nadav Rotem59f2af92012-12-19 07:22:24 +0000290 }
291
Renato Golinabafaba2013-02-23 13:25:41 +0000292Global Structures Alias Analysis
293^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
294
295Access to global structures can also be vectorized, with alias analysis being
296used to make sure accesses don't alias. Run-time checks can also be added on
297pointer access to structure members.
298
299Many variations are supported, but some that rely on undefined behaviour being
300ignored (as other compilers do) are still being left un-vectorized.
301
302.. code-block:: c++
303
304 struct { int A[100], K, B[100]; } Foo;
305
306 int foo() {
307 for (int i = 0; i < 100; ++i)
308 Foo.A[i] = Foo.B[i] + 100;
309 }
310
Nadav Rotem59f2af92012-12-19 07:22:24 +0000311Vectorization of function calls
Sean Silva62417032012-12-20 02:40:45 +0000312^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotem59f2af92012-12-19 07:22:24 +0000313
Sanjay Patel337d7112019-01-10 17:02:55 +0000314The Loop Vectorizer can vectorize intrinsic math functions.
Nadav Rotem59f2af92012-12-19 07:22:24 +0000315See the table below for a list of these functions.
316
317+-----+-----+---------+
318| pow | exp | exp2 |
319+-----+-----+---------+
320| sin | cos | sqrt |
321+-----+-----+---------+
322| log |log2 | log10 |
323+-----+-----+---------+
324|fabs |floor| ceil |
325+-----+-----+---------+
326|fma |trunc|nearbyint|
327+-----+-----+---------+
Nadav Rotemf7769e32012-12-26 06:03:35 +0000328| | | fmuladd |
329+-----+-----+---------+
Nadav Rotem59f2af92012-12-19 07:22:24 +0000330
Sanjay Patel337d7112019-01-10 17:02:55 +0000331Note that the optimizer may not be able to vectorize math library functions
332that correspond to these intrinsics if the library calls access external state
333such as "errno". To allow better optimization of C/C++ math library functions,
334use "-fno-math-errno".
335
Benjamin Kramer19949d82013-02-28 19:33:46 +0000336The loop vectorizer knows about special instructions on the target and will
337vectorize a loop containing a function call that maps to the instructions. For
338example, the loop below will be vectorized on Intel x86 if the SSE4.1 roundps
339instruction is available.
340
341.. code-block:: c++
342
343 void foo(float *f) {
344 for (int i = 0; i != 1024; ++i)
345 f[i] = floorf(f[i]);
346 }
Nadav Rotemf574b882013-01-03 01:47:02 +0000347
348Partial unrolling during vectorization
349^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
350
351Modern processors feature multiple execution units, and only programs that contain a
Nadav Rotem43f39282013-01-03 01:56:33 +0000352high degree of parallelism can fully utilize the entire width of the machine.
Nadav Rotemf574b882013-01-03 01:47:02 +0000353The Loop Vectorizer increases the instruction level parallelism (ILP) by
354performing partial-unrolling of loops.
355
356In the example below the entire array is accumulated into the variable 'sum'.
Nadav Rotem43f39282013-01-03 01:56:33 +0000357This is inefficient because only a single execution port can be used by the processor.
Nadav Rotemf574b882013-01-03 01:47:02 +0000358By unrolling the code the Loop Vectorizer allows two or more execution ports
Nadav Rotem43f39282013-01-03 01:56:33 +0000359to be used simultaneously.
Nadav Rotemf574b882013-01-03 01:47:02 +0000360
361.. code-block:: c++
362
363 int foo(int *A, int *B, int n) {
364 unsigned sum = 0;
365 for (int i = 0; i < n; ++i)
366 sum += A[i];
367 return sum;
368 }
369
Nadav Rotem4aa55bb2013-01-04 17:49:45 +0000370The Loop Vectorizer uses a cost model to decide when it is profitable to unroll loops.
371The decision to unroll the loop depends on the register pressure and the generated code size.
Nadav Rotemf574b882013-01-03 01:47:02 +0000372
Nadav Rotem67a6ec82012-12-19 08:28:24 +0000373Performance
Sean Silva62417032012-12-20 02:40:45 +0000374-----------
Nadav Rotem67a6ec82012-12-19 08:28:24 +0000375
Ed Masteffc045a2015-04-14 20:52:58 +0000376This section shows the execution time of Clang on a simple benchmark:
James Y Knight8986b312019-01-14 22:27:32 +0000377`gcc-loops <https://github.com/llvm/llvm-test-suite/tree/master/SingleSource/UnitTests/Vectorizer>`_.
Sean Silva689858b2012-12-20 22:59:36 +0000378This benchmarks is a collection of loops from the GCC autovectorization
Nadav Rotem3e6da7e2012-12-19 18:02:36 +0000379`page <http://gcc.gnu.org/projects/tree-ssa/vectorization.html>`_ by Dorit Nuzman.
Nadav Rotem67a6ec82012-12-19 08:28:24 +0000380
Nadav Rotem6d1fc532012-12-20 00:03:36 +0000381The chart below compares GCC-4.7, ICC-13, and Clang-SVN with and without loop vectorization at -O3, tuned for "corei7-avx", running on a Sandybridge iMac.
Sean Silva689858b2012-12-20 22:59:36 +0000382The Y-axis shows the time in msec. Lower is better. The last column shows the geomean of all the kernels.
Nadav Rotem67a6ec82012-12-19 08:28:24 +0000383
384.. image:: gcc-loops.png
385
Nadav Rotem13410a12013-01-04 19:00:42 +0000386And Linpack-pc with the same configuration. Result is Mflops, higher is better.
387
388.. image:: linpack-pc.png
389
Ayal Zaks98be03e2017-05-29 15:36:23 +0000390Ongoing Development Directions
391------------------------------
392
393.. toctree::
394 :hidden:
395
396 Proposals/VectorizationPlan
397
398:doc:`Proposals/VectorizationPlan`
399 Modeling the process and upgrading the infrastructure of LLVM's Loop Vectorizer.
400
Nadav Rotemfc175d92013-04-15 05:53:23 +0000401.. _slp-vectorizer:
Sean Silva12ae5152012-12-20 22:42:20 +0000402
Nadav Rotemfc175d92013-04-15 05:53:23 +0000403The SLP Vectorizer
404==================
Nadav Rotem59f2af92012-12-19 07:22:24 +0000405
Nadav Rotem649a33e2012-12-19 18:04:44 +0000406Details
Sean Silva62417032012-12-20 02:40:45 +0000407-------
Nadav Rotem649a33e2012-12-19 18:04:44 +0000408
Nadav Rotemfc175d92013-04-15 05:53:23 +0000409The goal of SLP vectorization (a.k.a. superword-level parallelism) is
Nadav Rotemb5a8a902013-06-26 17:59:35 +0000410to combine similar independent instructions
411into vector instructions. Memory accesses, arithmetic operations, comparison
412operations, PHI-nodes, can all be vectorized using this technique.
Nadav Rotem59f2af92012-12-19 07:22:24 +0000413
414For example, the following function performs very similar operations on its
415inputs (a1, b1) and (a2, b2). The basic-block vectorizer may combine these
416into vector operations.
417
418.. code-block:: c++
419
Nadav Rotemfc175d92013-04-15 05:53:23 +0000420 void foo(int a1, int a2, int b1, int b2, int *A) {
421 A[0] = a1*(a1 + b1)/b1 + 50*b1/a1;
422 A[1] = a2*(a2 + b2)/b2 + 50*b2/a2;
Nadav Rotem59f2af92012-12-19 07:22:24 +0000423 }
424
Nadav Rotemb5a8a902013-06-26 17:59:35 +0000425The SLP-vectorizer processes the code bottom-up, across basic blocks, in search of scalars to combine.
Nadav Rotem59f2af92012-12-19 07:22:24 +0000426
Nadav Rotemfc175d92013-04-15 05:53:23 +0000427Usage
428------
Nadav Rotema15dedb2013-04-14 07:42:25 +0000429
Nadav Rotem055028f2013-08-05 04:27:34 +0000430The SLP Vectorizer is enabled by default, but it can be disabled
Nadav Rotemfc175d92013-04-15 05:53:23 +0000431through clang using the command line flag:
Nadav Rotema15dedb2013-04-14 07:42:25 +0000432
Nadav Rotemfc175d92013-04-15 05:53:23 +0000433.. code-block:: console
434
Nadav Rotem055028f2013-08-05 04:27:34 +0000435 $ clang -fno-slp-vectorize file.c