blob: ac4f8d183220cc2d1f577dfdb484d5e81a4398df [file] [log] [blame]
Nick Kledzik8ceb8b72012-12-12 20:46:15 +00001=====================
2YAML I/O
3=====================
4
5.. contents::
6 :local:
7
8Introduction to YAML
9====================
10
11YAML is a human readable data serialization language. The full YAML language
12spec can be read at `yaml.org
13<http://www.yaml.org/spec/1.2/spec.html#Introduction>`_. The simplest form of
14yaml is just "scalars", "mappings", and "sequences". A scalar is any number
15or string. The pound/hash symbol (#) begins a comment line. A mapping is
16a set of key-value pairs where the key ends with a colon. For example:
17
18.. code-block:: yaml
19
20 # a mapping
21 name: Tom
22 hat-size: 7
23
24A sequence is a list of items where each item starts with a leading dash ('-').
25For example:
26
27.. code-block:: yaml
28
29 # a sequence
30 - x86
31 - x86_64
32 - PowerPC
33
34You can combine mappings and sequences by indenting. For example a sequence
35of mappings in which one of the mapping values is itself a sequence:
36
37.. code-block:: yaml
38
39 # a sequence of mappings with one key's value being a sequence
40 - name: Tom
41 cpus:
42 - x86
43 - x86_64
44 - name: Bob
45 cpus:
46 - x86
47 - name: Dan
48 cpus:
49 - PowerPC
50 - x86
51
52Sometime sequences are known to be short and the one entry per line is too
53verbose, so YAML offers an alternate syntax for sequences called a "Flow
54Sequence" in which you put comma separated sequence elements into square
55brackets. The above example could then be simplified to :
56
57
58.. code-block:: yaml
59
60 # a sequence of mappings with one key's value being a flow sequence
61 - name: Tom
62 cpus: [ x86, x86_64 ]
63 - name: Bob
64 cpus: [ x86 ]
65 - name: Dan
66 cpus: [ PowerPC, x86 ]
67
68
69Introduction to YAML I/O
70========================
71
72The use of indenting makes the YAML easy for a human to read and understand,
73but having a program read and write YAML involves a lot of tedious details.
74The YAML I/O library structures and simplifies reading and writing YAML
75documents.
76
77YAML I/O assumes you have some "native" data structures which you want to be
78able to dump as YAML and recreate from YAML. The first step is to try
79writing example YAML for your data structures. You may find after looking at
80possible YAML representations that a direct mapping of your data structures
81to YAML is not very readable. Often the fields are not in the order that
82a human would find readable. Or the same information is replicated in multiple
83locations, making it hard for a human to write such YAML correctly.
84
85In relational database theory there is a design step called normalization in
86which you reorganize fields and tables. The same considerations need to
87go into the design of your YAML encoding. But, you may not want to change
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +000088your existing native data structures. Therefore, when writing out YAML
Nick Kledzik8ceb8b72012-12-12 20:46:15 +000089there may be a normalization step, and when reading YAML there would be a
90corresponding denormalization step.
91
92YAML I/O uses a non-invasive, traits based design. YAML I/O defines some
93abstract base templates. You specialize those templates on your data types.
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +000094For instance, if you have an enumerated type FooBar you could specialize
Nick Kledzik8ceb8b72012-12-12 20:46:15 +000095ScalarEnumerationTraits on that type and define the enumeration() method:
96
97.. code-block:: c++
98
99 using llvm::yaml::ScalarEnumerationTraits;
100 using llvm::yaml::IO;
101
102 template <>
103 struct ScalarEnumerationTraits<FooBar> {
104 static void enumeration(IO &io, FooBar &value) {
105 ...
106 }
107 };
108
109
110As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for
111both reading and writing YAML. That is, the mapping between in-memory enum
Daniel Dunbarff2515e2013-05-20 22:39:48 +0000112values and the YAML string representation is only in one place.
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000113This assures that the code for writing and parsing of YAML stays in sync.
114
115To specify a YAML mappings, you define a specialization on
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000116llvm::yaml::MappingTraits.
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000117If your native data structure happens to be a struct that is already normalized,
118then the specialization is simple. For example:
119
120.. code-block:: c++
121
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000122 using llvm::yaml::MappingTraits;
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000123 using llvm::yaml::IO;
124
125 template <>
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000126 struct MappingTraits<Person> {
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000127 static void mapping(IO &io, Person &info) {
128 io.mapRequired("name", info.name);
129 io.mapOptional("hat-size", info.hatSize);
130 }
131 };
132
133
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000134A YAML sequence is automatically inferred if you data type has begin()/end()
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000135iterators and a push_back() method. Therefore any of the STL containers
136(such as std::vector<>) will automatically translate to YAML sequences.
137
138Once you have defined specializations for your data types, you can
139programmatically use YAML I/O to write a YAML document:
140
141.. code-block:: c++
142
143 using llvm::yaml::Output;
144
145 Person tom;
146 tom.name = "Tom";
147 tom.hatSize = 8;
148 Person dan;
149 dan.name = "Dan";
150 dan.hatSize = 7;
151 std::vector<Person> persons;
152 persons.push_back(tom);
153 persons.push_back(dan);
154
155 Output yout(llvm::outs());
156 yout << persons;
157
158This would write the following:
159
160.. code-block:: yaml
161
162 - name: Tom
163 hat-size: 8
164 - name: Dan
165 hat-size: 7
166
167And you can also read such YAML documents with the following code:
168
169.. code-block:: c++
170
171 using llvm::yaml::Input;
172
173 typedef std::vector<Person> PersonList;
174 std::vector<PersonList> docs;
175
176 Input yin(document.getBuffer());
177 yin >> docs;
178
179 if ( yin.error() )
180 return;
181
182 // Process read document
183 for ( PersonList &pl : docs ) {
184 for ( Person &person : pl ) {
185 cout << "name=" << person.name;
186 }
187 }
188
189One other feature of YAML is the ability to define multiple documents in a
190single file. That is why reading YAML produces a vector of your document type.
191
192
193
194Error Handling
195==============
196
197When parsing a YAML document, if the input does not match your schema (as
198expressed in your XxxTraits<> specializations). YAML I/O
199will print out an error message and your Input object's error() method will
200return true. For instance the following document:
201
202.. code-block:: yaml
203
204 - name: Tom
205 shoe-size: 12
206 - name: Dan
207 hat-size: 7
208
209Has a key (shoe-size) that is not defined in the schema. YAML I/O will
210automatically generate this error:
211
212.. code-block:: yaml
213
214 YAML:2:2: error: unknown key 'shoe-size'
215 shoe-size: 12
216 ^~~~~~~~~
217
218Similar errors are produced for other input not conforming to the schema.
219
220
221Scalars
222=======
223
224YAML scalars are just strings (i.e. not a sequence or mapping). The YAML I/O
225library provides support for translating between YAML scalars and specific
226C++ types.
227
228
229Built-in types
230--------------
231The following types have built-in support in YAML I/O:
232
233* bool
234* float
235* double
236* StringRef
John Thompsonda1ad532013-11-19 17:28:21 +0000237* std::string
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000238* int64_t
239* int32_t
240* int16_t
241* int8_t
242* uint64_t
243* uint32_t
244* uint16_t
245* uint8_t
246
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000247That is, you can use those types in fields of MappingTraits or as element type
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000248in sequence. When reading, YAML I/O will validate that the string found
249is convertible to that type and error out if not.
250
251
252Unique types
253------------
254Given that YAML I/O is trait based, the selection of how to convert your data
255to YAML is based on the type of your data. But in C++ type matching, typedefs
256do not generate unique type names. That means if you have two typedefs of
257unsigned int, to YAML I/O both types look exactly like unsigned int. To
258facilitate make unique type names, YAML I/O provides a macro which is used
259like a typedef on built-in types, but expands to create a class with conversion
260operators to and from the base type. For example:
261
262.. code-block:: c++
263
264 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags)
265 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags)
266
267This generates two classes MyFooFlags and MyBarFlags which you can use in your
268native data structures instead of uint32_t. They are implicitly
269converted to and from uint32_t. The point of creating these unique types
270is that you can now specify traits on them to get different YAML conversions.
271
272Hex types
273---------
274An example use of a unique type is that YAML I/O provides fixed sized unsigned
275integers that are written with YAML I/O as hexadecimal instead of the decimal
276format used by the built-in integer types:
277
278* Hex64
279* Hex32
280* Hex16
281* Hex8
282
283You can use llvm::yaml::Hex32 instead of uint32_t and the only different will
284be that when YAML I/O writes out that type it will be formatted in hexadecimal.
285
286
287ScalarEnumerationTraits
288-----------------------
289YAML I/O supports translating between in-memory enumerations and a set of string
290values in YAML documents. This is done by specializing ScalarEnumerationTraits<>
291on your enumeration type and define a enumeration() method.
292For instance, suppose you had an enumeration of CPUs and a struct with it as
293a field:
294
295.. code-block:: c++
296
297 enum CPUs {
298 cpu_x86_64 = 5,
299 cpu_x86 = 7,
300 cpu_PowerPC = 8
301 };
302
303 struct Info {
304 CPUs cpu;
305 uint32_t flags;
306 };
307
308To support reading and writing of this enumeration, you can define a
309ScalarEnumerationTraits specialization on CPUs, which can then be used
310as a field type:
311
312.. code-block:: c++
313
314 using llvm::yaml::ScalarEnumerationTraits;
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000315 using llvm::yaml::MappingTraits;
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000316 using llvm::yaml::IO;
317
318 template <>
319 struct ScalarEnumerationTraits<CPUs> {
320 static void enumeration(IO &io, CPUs &value) {
321 io.enumCase(value, "x86_64", cpu_x86_64);
322 io.enumCase(value, "x86", cpu_x86);
323 io.enumCase(value, "PowerPC", cpu_PowerPC);
324 }
325 };
326
327 template <>
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000328 struct MappingTraits<Info> {
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000329 static void mapping(IO &io, Info &info) {
330 io.mapRequired("cpu", info.cpu);
331 io.mapOptional("flags", info.flags, 0);
332 }
333 };
334
Ed Masteffc045a2015-04-14 20:52:58 +0000335When reading YAML, if the string found does not match any of the strings
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000336specified by enumCase() methods, an error is automatically generated.
337When writing YAML, if the value being written does not match any of the values
338specified by the enumCase() methods, a runtime assertion is triggered.
339
340
341BitValue
342--------
343Another common data structure in C++ is a field where each bit has a unique
344meaning. This is often used in a "flags" field. YAML I/O has support for
345converting such fields to a flow sequence. For instance suppose you
346had the following bit flags defined:
347
348.. code-block:: c++
349
350 enum {
351 flagsPointy = 1
352 flagsHollow = 2
353 flagsFlat = 4
354 flagsRound = 8
355 };
356
Sean Silvacc5a6cb2013-06-04 23:36:41 +0000357 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFlags)
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000358
359To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<>
360on MyFlags and provide the bit values and their names.
361
362.. code-block:: c++
363
364 using llvm::yaml::ScalarBitSetTraits;
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000365 using llvm::yaml::MappingTraits;
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000366 using llvm::yaml::IO;
367
368 template <>
369 struct ScalarBitSetTraits<MyFlags> {
370 static void bitset(IO &io, MyFlags &value) {
371 io.bitSetCase(value, "hollow", flagHollow);
372 io.bitSetCase(value, "flat", flagFlat);
373 io.bitSetCase(value, "round", flagRound);
374 io.bitSetCase(value, "pointy", flagPointy);
375 }
376 };
377
378 struct Info {
379 StringRef name;
380 MyFlags flags;
381 };
382
383 template <>
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000384 struct MappingTraits<Info> {
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000385 static void mapping(IO &io, Info& info) {
386 io.mapRequired("name", info.name);
387 io.mapRequired("flags", info.flags);
388 }
389 };
390
391With the above, YAML I/O (when writing) will test mask each value in the
392bitset trait against the flags field, and each that matches will
393cause the corresponding string to be added to the flow sequence. The opposite
394is done when reading and any unknown string values will result in a error. With
395the above schema, a same valid YAML document is:
396
397.. code-block:: yaml
398
399 name: Tom
400 flags: [ pointy, flat ]
401
Simon Atanasyan84a0dc32014-05-23 08:07:09 +0000402Sometimes a "flags" field might contains an enumeration part
403defined by a bit-mask.
404
405.. code-block:: c++
406
407 enum {
408 flagsFeatureA = 1,
409 flagsFeatureB = 2,
410 flagsFeatureC = 4,
411
412 flagsCPUMask = 24,
413
414 flagsCPU1 = 8,
415 flagsCPU2 = 16
416 };
417
418To support reading and writing such fields, you need to use the maskedBitSet()
419method and provide the bit values, their names and the enumeration mask.
420
421.. code-block:: c++
422
423 template <>
424 struct ScalarBitSetTraits<MyFlags> {
425 static void bitset(IO &io, MyFlags &value) {
426 io.bitSetCase(value, "featureA", flagsFeatureA);
427 io.bitSetCase(value, "featureB", flagsFeatureB);
428 io.bitSetCase(value, "featureC", flagsFeatureC);
429 io.maskedBitSetCase(value, "CPU1", flagsCPU1, flagsCPUMask);
430 io.maskedBitSetCase(value, "CPU2", flagsCPU2, flagsCPUMask);
431 }
432 };
433
434YAML I/O (when writing) will apply the enumeration mask to the flags field,
435and compare the result and values from the bitset. As in case of a regular
436bitset, each that matches will cause the corresponding string to be added
437to the flow sequence.
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000438
439Custom Scalar
440-------------
441Sometimes for readability a scalar needs to be formatted in a custom way. For
442instance your internal data structure may use a integer for time (seconds since
443some epoch), but in YAML it would be much nicer to express that integer in
444some time format (e.g. 4-May-2012 10:30pm). YAML I/O has a way to support
445custom formatting and parsing of scalar types by specializing ScalarTraits<> on
446your data type. When writing, YAML I/O will provide the native type and
447your specialization must create a temporary llvm::StringRef. When reading,
Daniel Dunbar13230062013-08-16 23:30:19 +0000448YAML I/O will provide an llvm::StringRef of scalar and your specialization
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000449must convert that to your native data type. An outline of a custom scalar type
450looks like:
451
452.. code-block:: c++
453
454 using llvm::yaml::ScalarTraits;
455 using llvm::yaml::IO;
456
457 template <>
458 struct ScalarTraits<MyCustomType> {
Vedant Kumar2cf81c92016-02-04 20:42:43 +0000459 static void output(const MyCustomType &value, void*,
460 llvm::raw_ostream &out) {
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000461 out << value; // do custom formatting here
462 }
Vedant Kumar2cf81c92016-02-04 20:42:43 +0000463 static StringRef input(StringRef scalar, void*, MyCustomType &value) {
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000464 // do custom parsing here. Return the empty string on success,
465 // or an error message on failure.
David Majnemer87865702014-04-10 07:37:33 +0000466 return StringRef();
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000467 }
David Majnemer87865702014-04-10 07:37:33 +0000468 // Determine if this scalar needs quotes.
Francis Visoiu Mistrih65ad22d2017-12-18 17:38:03 +0000469 static QuotingType mustQuote(StringRef) { return QuotingType::Single; }
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000470 };
Alex Lorenz29a3c1d2015-05-14 23:08:22 +0000471
472Block Scalars
473-------------
474
475YAML block scalars are string literals that are represented in YAML using the
476literal block notation, just like the example shown below:
477
478.. code-block:: yaml
479
480 text: |
481 First line
482 Second line
483
484The YAML I/O library provides support for translating between YAML block scalars
485and specific C++ types by allowing you to specialize BlockScalarTraits<> on
486your data type. The library doesn't provide any built-in support for block
487scalar I/O for types like std::string and llvm::StringRef as they are already
488supported by YAML I/O and use the ordinary scalar notation by default.
489
490BlockScalarTraits specializations are very similar to the
491ScalarTraits specialization - YAML I/O will provide the native type and your
492specialization must create a temporary llvm::StringRef when writing, and
493it will also provide an llvm::StringRef that has the value of that block scalar
494and your specialization must convert that to your native data type when reading.
495An example of a custom type with an appropriate specialization of
496BlockScalarTraits is shown below:
497
498.. code-block:: c++
499
500 using llvm::yaml::BlockScalarTraits;
501 using llvm::yaml::IO;
502
503 struct MyStringType {
504 std::string Str;
505 };
506
507 template <>
508 struct BlockScalarTraits<MyStringType> {
509 static void output(const MyStringType &Value, void *Ctxt,
510 llvm::raw_ostream &OS) {
511 OS << Value.Str;
512 }
513
514 static StringRef input(StringRef Scalar, void *Ctxt,
515 MyStringType &Value) {
516 Value.Str = Scalar.str();
517 return StringRef();
518 }
519 };
520
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000521
522
523Mappings
524========
525
526To be translated to or from a YAML mapping for your type T you must specialize
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000527llvm::yaml::MappingTraits on T and implement the "void mapping(IO &io, T&)"
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000528method. If your native data structures use pointers to a class everywhere,
529you can specialize on the class pointer. Examples:
530
531.. code-block:: c++
532
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000533 using llvm::yaml::MappingTraits;
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000534 using llvm::yaml::IO;
535
536 // Example of struct Foo which is used by value
537 template <>
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000538 struct MappingTraits<Foo> {
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000539 static void mapping(IO &io, Foo &foo) {
540 io.mapOptional("size", foo.size);
541 ...
542 }
543 };
544
545 // Example of struct Bar which is natively always a pointer
546 template <>
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000547 struct MappingTraits<Bar*> {
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000548 static void mapping(IO &io, Bar *&bar) {
549 io.mapOptional("size", bar->size);
550 ...
551 }
552 };
553
554
555No Normalization
556----------------
557
558The mapping() method is responsible, if needed, for normalizing and
559denormalizing. In a simple case where the native data structure requires no
560normalization, the mapping method just uses mapOptional() or mapRequired() to
561bind the struct's fields to YAML key names. For example:
562
563.. code-block:: c++
564
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000565 using llvm::yaml::MappingTraits;
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000566 using llvm::yaml::IO;
567
568 template <>
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000569 struct MappingTraits<Person> {
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000570 static void mapping(IO &io, Person &info) {
571 io.mapRequired("name", info.name);
572 io.mapOptional("hat-size", info.hatSize);
573 }
574 };
575
576
577Normalization
578----------------
579
580When [de]normalization is required, the mapping() method needs a way to access
581normalized values as fields. To help with this, there is
582a template MappingNormalization<> which you can then use to automatically
583do the normalization and denormalization. The template is used to create
584a local variable in your mapping() method which contains the normalized keys.
585
586Suppose you have native data type
587Polar which specifies a position in polar coordinates (distance, angle):
588
589.. code-block:: c++
590
591 struct Polar {
592 float distance;
593 float angle;
594 };
595
596but you've decided the normalized YAML for should be in x,y coordinates. That
597is, you want the yaml to look like:
598
599.. code-block:: yaml
600
601 x: 10.3
602 y: -4.7
603
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000604You can support this by defining a MappingTraits that normalizes the polar
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000605coordinates to x,y coordinates when writing YAML and denormalizes x,y
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000606coordinates into polar when reading YAML.
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000607
608.. code-block:: c++
609
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000610 using llvm::yaml::MappingTraits;
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000611 using llvm::yaml::IO;
612
613 template <>
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000614 struct MappingTraits<Polar> {
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000615
616 class NormalizedPolar {
617 public:
618 NormalizedPolar(IO &io)
619 : x(0.0), y(0.0) {
620 }
621 NormalizedPolar(IO &, Polar &polar)
622 : x(polar.distance * cos(polar.angle)),
623 y(polar.distance * sin(polar.angle)) {
624 }
625 Polar denormalize(IO &) {
Daniel Dunbarff2515e2013-05-20 22:39:48 +0000626 return Polar(sqrt(x*x+y*y), arctan(x,y));
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000627 }
628
629 float x;
630 float y;
631 };
632
633 static void mapping(IO &io, Polar &polar) {
634 MappingNormalization<NormalizedPolar, Polar> keys(io, polar);
635
636 io.mapRequired("x", keys->x);
637 io.mapRequired("y", keys->y);
638 }
639 };
640
641When writing YAML, the local variable "keys" will be a stack allocated
Rui Ueyamafd532142013-09-11 05:22:01 +0000642instance of NormalizedPolar, constructed from the supplied polar object which
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000643initializes it x and y fields. The mapRequired() methods then write out the x
644and y values as key/value pairs.
645
646When reading YAML, the local variable "keys" will be a stack allocated instance
647of NormalizedPolar, constructed by the empty constructor. The mapRequired
648methods will find the matching key in the YAML document and fill in the x and y
649fields of the NormalizedPolar object keys. At the end of the mapping() method
650when the local keys variable goes out of scope, the denormalize() method will
651automatically be called to convert the read values back to polar coordinates,
652and then assigned back to the second parameter to mapping().
653
654In some cases, the normalized class may be a subclass of the native type and
655could be returned by the denormalize() method, except that the temporary
656normalized instance is stack allocated. In these cases, the utility template
657MappingNormalizationHeap<> can be used instead. It just like
658MappingNormalization<> except that it heap allocates the normalized object
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000659when reading YAML. It never destroys the normalized object. The denormalize()
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000660method can this return "this".
661
662
663Default values
664--------------
665Within a mapping() method, calls to io.mapRequired() mean that that key is
666required to exist when parsing YAML documents, otherwise YAML I/O will issue an
667error.
668
669On the other hand, keys registered with io.mapOptional() are allowed to not
670exist in the YAML document being read. So what value is put in the field
671for those optional keys?
672There are two steps to how those optional fields are filled in. First, the
673second parameter to the mapping() method is a reference to a native class. That
674native class must have a default constructor. Whatever value the default
675constructor initially sets for an optional field will be that field's value.
676Second, the mapOptional() method has an optional third parameter. If provided
677it is the value that mapOptional() should set that field to if the YAML document
678does not have that key.
679
680There is one important difference between those two ways (default constructor
681and third parameter to mapOptional). When YAML I/O generates a YAML document,
682if the mapOptional() third parameter is used, if the actual value being written
683is the same as (using ==) the default value, then that key/value is not written.
684
685
686Order of Keys
687--------------
688
689When writing out a YAML document, the keys are written in the order that the
690calls to mapRequired()/mapOptional() are made in the mapping() method. This
691gives you a chance to write the fields in an order that a human reader of
692the YAML document would find natural. This may be different that the order
693of the fields in the native class.
694
695When reading in a YAML document, the keys in the document can be in any order,
696but they are processed in the order that the calls to mapRequired()/mapOptional()
697are made in the mapping() method. That enables some interesting
698functionality. For instance, if the first field bound is the cpu and the second
699field bound is flags, and the flags are cpu specific, you can programmatically
700switch how the flags are converted to and from YAML based on the cpu.
701This works for both reading and writing. For example:
702
703.. code-block:: c++
704
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000705 using llvm::yaml::MappingTraits;
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000706 using llvm::yaml::IO;
707
708 struct Info {
709 CPUs cpu;
710 uint32_t flags;
711 };
712
713 template <>
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000714 struct MappingTraits<Info> {
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000715 static void mapping(IO &io, Info &info) {
716 io.mapRequired("cpu", info.cpu);
717 // flags must come after cpu for this to work when reading yaml
718 if ( info.cpu == cpu_x86_64 )
719 io.mapRequired("flags", *(My86_64Flags*)info.flags);
720 else
721 io.mapRequired("flags", *(My86Flags*)info.flags);
722 }
723 };
724
725
Nick Kledzik4e7c22a2013-11-14 00:59:59 +0000726Tags
727----
728
729The YAML syntax supports tags as a way to specify the type of a node before
730it is parsed. This allows dynamic types of nodes. But the YAML I/O model uses
731static typing, so there are limits to how you can use tags with the YAML I/O
732model. Recently, we added support to YAML I/O for checking/setting the optional
Alp Tokerbaf8c082013-12-20 00:33:39 +0000733tag on a map. Using this functionality it is even possbile to support different
Sylvestre Ledru1d6becb2017-01-14 11:37:01 +0000734mappings, as long as they are convertible.
Nick Kledzik4e7c22a2013-11-14 00:59:59 +0000735
736To check a tag, inside your mapping() method you can use io.mapTag() to specify
737what the tag should be. This will also add that tag when writing yaml.
738
Nick Kledzik9fd74162013-11-21 00:28:07 +0000739Validation
740----------
741
742Sometimes in a yaml map, each key/value pair is valid, but the combination is
743not. This is similar to something having no syntax errors, but still having
744semantic errors. To support semantic level checking, YAML I/O allows
745an optional ``validate()`` method in a MappingTraits template specialization.
746
747When parsing yaml, the ``validate()`` method is call *after* all key/values in
748the map have been processed. Any error message returned by the ``validate()``
749method during input will be printed just a like a syntax error would be printed.
750When writing yaml, the ``validate()`` method is called *before* the yaml
751key/values are written. Any error during output will trigger an ``assert()``
752because it is a programming error to have invalid struct values.
753
754
755.. code-block:: c++
756
757 using llvm::yaml::MappingTraits;
758 using llvm::yaml::IO;
759
760 struct Stuff {
761 ...
762 };
763
764 template <>
765 struct MappingTraits<Stuff> {
766 static void mapping(IO &io, Stuff &stuff) {
767 ...
768 }
769 static StringRef validate(IO &io, Stuff &stuff) {
770 // Look at all fields in 'stuff' and if there
771 // are any bad values return a string describing
772 // the error. Otherwise return an empty string.
773 return StringRef();
774 }
775 };
776
Alex Lorenzc41c3a42015-05-04 20:11:40 +0000777Flow Mapping
778------------
779A YAML "flow mapping" is a mapping that uses the inline notation
780(e.g { x: 1, y: 0 } ) when written to YAML. To specify that a type should be
781written in YAML using flow mapping, your MappingTraits specialization should
782add "static const bool flow = true;". For instance:
783
784.. code-block:: c++
785
786 using llvm::yaml::MappingTraits;
787 using llvm::yaml::IO;
788
789 struct Stuff {
790 ...
791 };
792
793 template <>
794 struct MappingTraits<Stuff> {
795 static void mapping(IO &io, Stuff &stuff) {
796 ...
797 }
798
799 static const bool flow = true;
800 }
801
Frederic Riss9282af92015-05-29 17:56:28 +0000802Flow mappings are subject to line wrapping according to the Output object
803configuration.
Nick Kledzik4e7c22a2013-11-14 00:59:59 +0000804
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000805Sequence
806========
807
808To be translated to or from a YAML sequence for your type T you must specialize
809llvm::yaml::SequenceTraits on T and implement two methods:
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000810``size_t size(IO &io, T&)`` and
811``T::value_type& element(IO &io, T&, size_t indx)``. For example:
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000812
813.. code-block:: c++
814
815 template <>
816 struct SequenceTraits<MySeq> {
817 static size_t size(IO &io, MySeq &list) { ... }
Rui Ueyama8f2f86f2013-09-12 01:43:21 +0000818 static MySeqEl &element(IO &io, MySeq &list, size_t index) { ... }
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000819 };
820
821The size() method returns how many elements are currently in your sequence.
822The element() method returns a reference to the i'th element in the sequence.
823When parsing YAML, the element() method may be called with an index one bigger
824than the current size. Your element() method should allocate space for one
825more element (using default constructor if element is a C++ object) and returns
826a reference to that new allocated space.
827
828
829Flow Sequence
830-------------
831A YAML "flow sequence" is a sequence that when written to YAML it uses the
832inline notation (e.g [ foo, bar ] ). To specify that a sequence type should
833be written in YAML as a flow sequence, your SequenceTraits specialization should
834add "static const bool flow = true;". For instance:
835
836.. code-block:: c++
837
838 template <>
839 struct SequenceTraits<MyList> {
840 static size_t size(IO &io, MyList &list) { ... }
Rui Ueyama8f2f86f2013-09-12 01:43:21 +0000841 static MyListEl &element(IO &io, MyList &list, size_t index) { ... }
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000842
843 // The existence of this member causes YAML I/O to use a flow sequence
844 static const bool flow = true;
845 };
846
847With the above, if you used MyList as the data type in your native data
Ed Masteffc045a2015-04-14 20:52:58 +0000848structures, then when converted to YAML, a flow sequence of integers
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000849will be used (e.g. [ 10, -3, 4 ]).
850
Frederic Riss9282af92015-05-29 17:56:28 +0000851Flow sequences are subject to line wrapping according to the Output object
852configuration.
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000853
854Utility Macros
855--------------
Alex Rosenbergbecdd3a2013-02-18 02:44:09 +0000856Since a common source of sequences is std::vector<>, YAML I/O provides macros:
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000857LLVM_YAML_IS_SEQUENCE_VECTOR() and LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR() which
858can be used to easily specify SequenceTraits<> on a std::vector type. YAML
859I/O does not partial specialize SequenceTraits on std::vector<> because that
860would force all vectors to be sequences. An example use of the macros:
861
862.. code-block:: c++
863
864 std::vector<MyType1>;
865 std::vector<MyType2>;
866 LLVM_YAML_IS_SEQUENCE_VECTOR(MyType1)
867 LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyType2)
868
869
870
871Document List
872=============
873
874YAML allows you to define multiple "documents" in a single YAML file. Each
875new document starts with a left aligned "---" token. The end of all documents
876is denoted with a left aligned "..." token. Many users of YAML will never
877have need for multiple documents. The top level node in their YAML schema
878will be a mapping or sequence. For those cases, the following is not needed.
879But for cases where you do want multiple documents, you can specify a
880trait for you document list type. The trait has the same methods as
881SequenceTraits but is named DocumentListTraits. For example:
882
883.. code-block:: c++
884
885 template <>
886 struct DocumentListTraits<MyDocList> {
887 static size_t size(IO &io, MyDocList &list) { ... }
888 static MyDocType element(IO &io, MyDocList &list, size_t index) { ... }
889 };
890
891
892User Context Data
893=================
894When an llvm::yaml::Input or llvm::yaml::Output object is created their
895constructors take an optional "context" parameter. This is a pointer to
896whatever state information you might need.
897
898For instance, in a previous example we showed how the conversion type for a
899flags field could be determined at runtime based on the value of another field
900in the mapping. But what if an inner mapping needs to know some field value
901of an outer mapping? That is where the "context" parameter comes in. You
902can set values in the context in the outer map's mapping() method and
903retrieve those values in the inner map's mapping() method.
904
905The context value is just a void*. All your traits which use the context
906and operate on your native data types, need to agree what the context value
907actually is. It could be a pointer to an object or struct which your various
908traits use to shared context sensitive information.
909
910
911Output
912======
913
914The llvm::yaml::Output class is used to generate a YAML document from your
915in-memory data structures, using traits defined on your data types.
Frederic Riss9282af92015-05-29 17:56:28 +0000916To instantiate an Output object you need an llvm::raw_ostream, an optional
917context pointer and an optional wrapping column:
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000918
919.. code-block:: c++
920
921 class Output : public IO {
922 public:
Frederic Riss9282af92015-05-29 17:56:28 +0000923 Output(llvm::raw_ostream &, void *context = NULL, int WrapColumn = 70);
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000924
925Once you have an Output object, you can use the C++ stream operator on it
926to write your native data as YAML. One thing to recall is that a YAML file
927can contain multiple "documents". If the top level data structure you are
928streaming as YAML is a mapping, scalar, or sequence, then Output assumes you
929are generating one document and wraps the mapping output
930with "``---``" and trailing "``...``".
931
Frederic Riss9282af92015-05-29 17:56:28 +0000932The WrapColumn parameter will cause the flow mappings and sequences to
933line-wrap when they go over the supplied column. Pass 0 to completely
934suppress the wrapping.
935
Nick Kledzik8ceb8b72012-12-12 20:46:15 +0000936.. code-block:: c++
937
938 using llvm::yaml::Output;
939
940 void dumpMyMapDoc(const MyMapType &info) {
941 Output yout(llvm::outs());
942 yout << info;
943 }
944
945The above could produce output like:
946
947.. code-block:: yaml
948
949 ---
950 name: Tom
951 hat-size: 7
952 ...
953
954On the other hand, if the top level data structure you are streaming as YAML
955has a DocumentListTraits specialization, then Output walks through each element
956of your DocumentList and generates a "---" before the start of each element
957and ends with a "...".
958
959.. code-block:: c++
960
961 using llvm::yaml::Output;
962
963 void dumpMyMapDoc(const MyDocListType &docList) {
964 Output yout(llvm::outs());
965 yout << docList;
966 }
967
968The above could produce output like:
969
970.. code-block:: yaml
971
972 ---
973 name: Tom
974 hat-size: 7
975 ---
976 name: Tom
977 shoe-size: 11
978 ...
979
980Input
981=====
982
983The llvm::yaml::Input class is used to parse YAML document(s) into your native
984data structures. To instantiate an Input
985object you need a StringRef to the entire YAML file, and optionally a context
986pointer:
987
988.. code-block:: c++
989
990 class Input : public IO {
991 public:
992 Input(StringRef inputContent, void *context=NULL);
993
994Once you have an Input object, you can use the C++ stream operator to read
995the document(s). If you expect there might be multiple YAML documents in
996one file, you'll need to specialize DocumentListTraits on a list of your
997document type and stream in that document list type. Otherwise you can
998just stream in the document type. Also, you can check if there was
999any syntax errors in the YAML be calling the error() method on the Input
1000object. For example:
1001
1002.. code-block:: c++
1003
1004 // Reading a single document
1005 using llvm::yaml::Input;
1006
1007 Input yin(mb.getBuffer());
1008
1009 // Parse the YAML file
1010 MyDocType theDoc;
1011 yin >> theDoc;
1012
1013 // Check for error
1014 if ( yin.error() )
1015 return;
1016
1017
1018.. code-block:: c++
1019
1020 // Reading multiple documents in one file
1021 using llvm::yaml::Input;
1022
Jonas Devliegheree1487412018-07-23 14:17:43 +00001023 LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(MyDocType)
Nick Kledzik8ceb8b72012-12-12 20:46:15 +00001024
1025 Input yin(mb.getBuffer());
1026
1027 // Parse the YAML file
1028 std::vector<MyDocType> theDocList;
1029 yin >> theDocList;
1030
1031 // Check for error
1032 if ( yin.error() )
1033 return;
1034
1035