Ayman Musa | cb92739 | 2017-10-08 09:20:32 +0000 | [diff] [blame] | 1 | //===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This tablegen backend is responsible for emitting the memory fold tables of |
| 11 | // the X86 backend instructions. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
Ayman Musa | cb92739 | 2017-10-08 09:20:32 +0000 | [diff] [blame] | 15 | #include "CodeGenTarget.h" |
| 16 | #include "X86RecognizableInstr.h" |
| 17 | #include "llvm/TableGen/Error.h" |
| 18 | #include "llvm/TableGen/TableGenBackend.h" |
| 19 | |
| 20 | using namespace llvm; |
| 21 | |
| 22 | namespace { |
| 23 | |
| 24 | // 3 possible strategies for the unfolding flag (TB_NO_REVERSE) of the |
| 25 | // manual added entries. |
| 26 | enum UnfoldStrategy { |
| 27 | UNFOLD, // Allow unfolding |
| 28 | NO_UNFOLD, // Prevent unfolding |
| 29 | NO_STRATEGY // Make decision according to operands' sizes |
| 30 | }; |
| 31 | |
| 32 | // Represents an entry in the manual mapped instructions set. |
| 33 | struct ManualMapEntry { |
| 34 | const char *RegInstStr; |
| 35 | const char *MemInstStr; |
| 36 | UnfoldStrategy Strategy; |
| 37 | |
| 38 | ManualMapEntry(const char *RegInstStr, const char *MemInstStr, |
| 39 | UnfoldStrategy Strategy = NO_STRATEGY) |
| 40 | : RegInstStr(RegInstStr), MemInstStr(MemInstStr), Strategy(Strategy) {} |
| 41 | }; |
| 42 | |
| 43 | class IsMatch; |
| 44 | |
| 45 | // List of instructions requiring explicitly aligned memory. |
| 46 | const char *ExplicitAlign[] = {"MOVDQA", "MOVAPS", "MOVAPD", "MOVNTPS", |
| 47 | "MOVNTPD", "MOVNTDQ", "MOVNTDQA"}; |
| 48 | |
| 49 | // List of instructions NOT requiring explicit memory alignment. |
Craig Topper | 73b1acb | 2018-06-16 23:25:50 +0000 | [diff] [blame] | 50 | const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD", |
| 51 | "PCMPESTRM", "PCMPESTRI", |
| 52 | "PCMPISTRM", "PCMPISTRI" }; |
Ayman Musa | cb92739 | 2017-10-08 09:20:32 +0000 | [diff] [blame] | 53 | |
| 54 | // For manually mapping instructions that do not match by their encoding. |
| 55 | const ManualMapEntry ManualMapSet[] = { |
| 56 | { "ADD16ri_DB", "ADD16mi", NO_UNFOLD }, |
| 57 | { "ADD16ri8_DB", "ADD16mi8", NO_UNFOLD }, |
| 58 | { "ADD16rr_DB", "ADD16mr", NO_UNFOLD }, |
| 59 | { "ADD32ri_DB", "ADD32mi", NO_UNFOLD }, |
| 60 | { "ADD32ri8_DB", "ADD32mi8", NO_UNFOLD }, |
| 61 | { "ADD32rr_DB", "ADD32mr", NO_UNFOLD }, |
| 62 | { "ADD64ri32_DB", "ADD64mi32", NO_UNFOLD }, |
| 63 | { "ADD64ri8_DB", "ADD64mi8", NO_UNFOLD }, |
| 64 | { "ADD64rr_DB", "ADD64mr", NO_UNFOLD }, |
| 65 | { "ADD16rr_DB", "ADD16rm", NO_UNFOLD }, |
| 66 | { "ADD32rr_DB", "ADD32rm", NO_UNFOLD }, |
| 67 | { "ADD64rr_DB", "ADD64rm", NO_UNFOLD }, |
Craig Topper | 73b1acb | 2018-06-16 23:25:50 +0000 | [diff] [blame] | 68 | { "PUSH16r", "PUSH16rmm", UNFOLD }, |
| 69 | { "PUSH32r", "PUSH32rmm", UNFOLD }, |
| 70 | { "PUSH64r", "PUSH64rmm", UNFOLD }, |
Ayman Musa | cb92739 | 2017-10-08 09:20:32 +0000 | [diff] [blame] | 71 | { "TAILJMPr", "TAILJMPm", UNFOLD }, |
| 72 | { "TAILJMPr64", "TAILJMPm64", UNFOLD }, |
| 73 | { "TAILJMPr64_REX", "TAILJMPm64_REX", UNFOLD }, |
| 74 | }; |
| 75 | |
| 76 | |
| 77 | static bool isExplicitAlign(const CodeGenInstruction *Inst) { |
| 78 | return any_of(ExplicitAlign, [Inst](const char *InstStr) { |
| 79 | return Inst->TheDef->getName().find(InstStr) != StringRef::npos; |
| 80 | }); |
| 81 | } |
| 82 | |
| 83 | static bool isExplicitUnalign(const CodeGenInstruction *Inst) { |
| 84 | return any_of(ExplicitUnalign, [Inst](const char *InstStr) { |
| 85 | return Inst->TheDef->getName().find(InstStr) != StringRef::npos; |
| 86 | }); |
| 87 | } |
| 88 | |
| 89 | class X86FoldTablesEmitter { |
| 90 | RecordKeeper &Records; |
| 91 | CodeGenTarget Target; |
| 92 | |
| 93 | // Represents an entry in the folding table |
| 94 | class X86FoldTableEntry { |
| 95 | const CodeGenInstruction *RegInst; |
| 96 | const CodeGenInstruction *MemInst; |
| 97 | |
| 98 | public: |
| 99 | bool CannotUnfold = false; |
| 100 | bool IsLoad = false; |
| 101 | bool IsStore = false; |
| 102 | bool IsAligned = false; |
| 103 | unsigned int Alignment = 0; |
| 104 | |
| 105 | X86FoldTableEntry(const CodeGenInstruction *RegInst, |
| 106 | const CodeGenInstruction *MemInst) |
| 107 | : RegInst(RegInst), MemInst(MemInst) {} |
| 108 | |
| 109 | friend raw_ostream &operator<<(raw_ostream &OS, |
| 110 | const X86FoldTableEntry &E) { |
Simon Pilgrim | 125b8de | 2018-04-11 23:08:30 +0000 | [diff] [blame] | 111 | OS << "{ X86::" << E.RegInst->TheDef->getName() |
| 112 | << ", X86::" << E.MemInst->TheDef->getName() << ", "; |
Ayman Musa | cb92739 | 2017-10-08 09:20:32 +0000 | [diff] [blame] | 113 | |
| 114 | if (E.IsLoad) |
| 115 | OS << "TB_FOLDED_LOAD | "; |
| 116 | if (E.IsStore) |
| 117 | OS << "TB_FOLDED_STORE | "; |
| 118 | if (E.CannotUnfold) |
| 119 | OS << "TB_NO_REVERSE | "; |
| 120 | if (E.IsAligned) |
Eugene Zemtsov | 99cee99 | 2017-10-09 22:43:35 +0000 | [diff] [blame] | 121 | OS << "TB_ALIGN_" << E.Alignment << " | "; |
Ayman Musa | cb92739 | 2017-10-08 09:20:32 +0000 | [diff] [blame] | 122 | |
| 123 | OS << "0 },\n"; |
| 124 | |
| 125 | return OS; |
| 126 | } |
| 127 | }; |
| 128 | |
| 129 | typedef std::vector<X86FoldTableEntry> FoldTable; |
| 130 | // std::vector for each folding table. |
| 131 | // Table2Addr - Holds instructions which their memory form performs load+store |
| 132 | // Table#i - Holds instructions which the their memory form perform a load OR |
| 133 | // a store, and their #i'th operand is folded. |
| 134 | FoldTable Table2Addr; |
| 135 | FoldTable Table0; |
| 136 | FoldTable Table1; |
| 137 | FoldTable Table2; |
| 138 | FoldTable Table3; |
| 139 | FoldTable Table4; |
| 140 | |
| 141 | public: |
| 142 | X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {} |
| 143 | |
| 144 | // run - Generate the 6 X86 memory fold tables. |
| 145 | void run(raw_ostream &OS); |
| 146 | |
| 147 | private: |
| 148 | // Decides to which table to add the entry with the given instructions. |
| 149 | // S sets the strategy of adding the TB_NO_REVERSE flag. |
| 150 | void updateTables(const CodeGenInstruction *RegInstr, |
| 151 | const CodeGenInstruction *MemInstr, |
| 152 | const UnfoldStrategy S = NO_STRATEGY); |
| 153 | |
| 154 | // Generates X86FoldTableEntry with the given instructions and fill it with |
| 155 | // the appropriate flags - then adds it to Table. |
| 156 | void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInstr, |
| 157 | const CodeGenInstruction *MemInstr, |
| 158 | const UnfoldStrategy S, const unsigned int FoldedInd); |
| 159 | |
| 160 | // Print the given table as a static const C++ array of type |
| 161 | // X86MemoryFoldTableEntry. |
Simon Pilgrim | 125b8de | 2018-04-11 23:08:30 +0000 | [diff] [blame] | 162 | void printTable(const FoldTable &Table, StringRef TableName, |
Ayman Musa | cb92739 | 2017-10-08 09:20:32 +0000 | [diff] [blame] | 163 | raw_ostream &OS) { |
| 164 | OS << "static const X86MemoryFoldTableEntry MemoryFold" << TableName |
| 165 | << "[] = {\n"; |
| 166 | |
| 167 | for (const X86FoldTableEntry &E : Table) |
| 168 | OS << E; |
| 169 | |
| 170 | OS << "};\n"; |
| 171 | } |
| 172 | }; |
| 173 | |
| 174 | // Return true if one of the instruction's operands is a RST register class |
| 175 | static bool hasRSTRegClass(const CodeGenInstruction *Inst) { |
| 176 | return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) { |
| 177 | return OpIn.Rec->getName() == "RST"; |
| 178 | }); |
| 179 | } |
| 180 | |
| 181 | // Return true if one of the instruction's operands is a ptr_rc_tailcall |
| 182 | static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) { |
| 183 | return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) { |
| 184 | return OpIn.Rec->getName() == "ptr_rc_tailcall"; |
| 185 | }); |
| 186 | } |
| 187 | |
| 188 | // Calculates the integer value representing the BitsInit object |
| 189 | static inline uint64_t getValueFromBitsInit(const BitsInit *B) { |
| 190 | assert(B->getNumBits() <= sizeof(uint64_t) * 8 && "BitInits' too long!"); |
| 191 | |
| 192 | uint64_t Value = 0; |
| 193 | for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) { |
| 194 | BitInit *Bit = cast<BitInit>(B->getBit(i)); |
| 195 | Value |= uint64_t(Bit->getValue()) << i; |
| 196 | } |
| 197 | return Value; |
| 198 | } |
| 199 | |
| 200 | // Returns true if the two given BitsInits represent the same integer value |
| 201 | static inline bool equalBitsInits(const BitsInit *B1, const BitsInit *B2) { |
| 202 | if (B1->getNumBits() != B2->getNumBits()) |
| 203 | PrintFatalError("Comparing two BitsInits with different sizes!"); |
| 204 | |
| 205 | for (unsigned i = 0, e = B1->getNumBits(); i != e; ++i) { |
| 206 | BitInit *Bit1 = cast<BitInit>(B1->getBit(i)); |
| 207 | BitInit *Bit2 = cast<BitInit>(B2->getBit(i)); |
| 208 | if (Bit1->getValue() != Bit2->getValue()) |
| 209 | return false; |
| 210 | } |
| 211 | return true; |
| 212 | } |
| 213 | |
| 214 | // Return the size of the register operand |
| 215 | static inline unsigned int getRegOperandSize(const Record *RegRec) { |
| 216 | if (RegRec->isSubClassOf("RegisterOperand")) |
| 217 | RegRec = RegRec->getValueAsDef("RegClass"); |
| 218 | if (RegRec->isSubClassOf("RegisterClass")) |
| 219 | return RegRec->getValueAsListOfDefs("RegTypes")[0]->getValueAsInt("Size"); |
| 220 | |
| 221 | llvm_unreachable("Register operand's size not known!"); |
| 222 | } |
| 223 | |
| 224 | // Return the size of the memory operand |
| 225 | static inline unsigned int |
| 226 | getMemOperandSize(const Record *MemRec, const bool IntrinsicSensitive = false) { |
| 227 | if (MemRec->isSubClassOf("Operand")) { |
| 228 | // Intrinsic memory instructions use ssmem/sdmem. |
| 229 | if (IntrinsicSensitive && |
| 230 | (MemRec->getName() == "sdmem" || MemRec->getName() == "ssmem")) |
| 231 | return 128; |
| 232 | |
| 233 | StringRef Name = |
| 234 | MemRec->getValueAsDef("ParserMatchClass")->getValueAsString("Name"); |
| 235 | if (Name == "Mem8") |
| 236 | return 8; |
| 237 | if (Name == "Mem16") |
| 238 | return 16; |
| 239 | if (Name == "Mem32") |
| 240 | return 32; |
| 241 | if (Name == "Mem64") |
| 242 | return 64; |
| 243 | if (Name == "Mem80") |
| 244 | return 80; |
| 245 | if (Name == "Mem128") |
| 246 | return 128; |
| 247 | if (Name == "Mem256") |
| 248 | return 256; |
| 249 | if (Name == "Mem512") |
| 250 | return 512; |
| 251 | } |
| 252 | |
| 253 | llvm_unreachable("Memory operand's size not known!"); |
| 254 | } |
| 255 | |
Ayman Musa | cb92739 | 2017-10-08 09:20:32 +0000 | [diff] [blame] | 256 | // Return true if the instruction defined as a register flavor. |
| 257 | static inline bool hasRegisterFormat(const Record *Inst) { |
| 258 | const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits"); |
| 259 | uint64_t FormBitsNum = getValueFromBitsInit(FormBits); |
| 260 | |
| 261 | // Values from X86Local namespace defined in X86RecognizableInstr.cpp |
| 262 | return FormBitsNum >= X86Local::MRMDestReg && FormBitsNum <= X86Local::MRM7r; |
| 263 | } |
| 264 | |
| 265 | // Return true if the instruction defined as a memory flavor. |
| 266 | static inline bool hasMemoryFormat(const Record *Inst) { |
| 267 | const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits"); |
| 268 | uint64_t FormBitsNum = getValueFromBitsInit(FormBits); |
| 269 | |
| 270 | // Values from X86Local namespace defined in X86RecognizableInstr.cpp |
| 271 | return FormBitsNum >= X86Local::MRMDestMem && FormBitsNum <= X86Local::MRM7m; |
| 272 | } |
| 273 | |
| 274 | static inline bool isNOREXRegClass(const Record *Op) { |
| 275 | return Op->getName().find("_NOREX") != StringRef::npos; |
| 276 | } |
| 277 | |
| 278 | static inline bool isRegisterOperand(const Record *Rec) { |
| 279 | return Rec->isSubClassOf("RegisterClass") || |
| 280 | Rec->isSubClassOf("RegisterOperand") || |
| 281 | Rec->isSubClassOf("PointerLikeRegClass"); |
| 282 | } |
| 283 | |
| 284 | static inline bool isMemoryOperand(const Record *Rec) { |
| 285 | return Rec->isSubClassOf("Operand") && |
| 286 | Rec->getValueAsString("OperandType") == "OPERAND_MEMORY"; |
| 287 | } |
| 288 | |
| 289 | static inline bool isImmediateOperand(const Record *Rec) { |
| 290 | return Rec->isSubClassOf("Operand") && |
| 291 | Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE"; |
| 292 | } |
| 293 | |
| 294 | // Get the alternative instruction pointed by "FoldGenRegForm" field. |
| 295 | static inline const CodeGenInstruction * |
| 296 | getAltRegInst(const CodeGenInstruction *I, const RecordKeeper &Records, |
| 297 | const CodeGenTarget &Target) { |
| 298 | |
| 299 | StringRef AltRegInstStr = I->TheDef->getValueAsString("FoldGenRegForm"); |
| 300 | Record *AltRegInstRec = Records.getDef(AltRegInstStr); |
| 301 | assert(AltRegInstRec && |
| 302 | "Alternative register form instruction def not found"); |
| 303 | CodeGenInstruction &AltRegInst = Target.getInstruction(AltRegInstRec); |
| 304 | return &AltRegInst; |
| 305 | } |
| 306 | |
| 307 | // Function object - Operator() returns true if the given VEX instruction |
| 308 | // matches the EVEX instruction of this object. |
| 309 | class IsMatch { |
| 310 | const CodeGenInstruction *MemInst; |
Ayman Musa | cb92739 | 2017-10-08 09:20:32 +0000 | [diff] [blame] | 311 | |
| 312 | public: |
| 313 | IsMatch(const CodeGenInstruction *Inst, const RecordKeeper &Records) |
NAKAMURA Takumi | 598658d | 2017-11-01 13:47:55 +0000 | [diff] [blame] | 314 | : MemInst(Inst) {} |
Ayman Musa | cb92739 | 2017-10-08 09:20:32 +0000 | [diff] [blame] | 315 | |
| 316 | bool operator()(const CodeGenInstruction *RegInst) { |
| 317 | Record *MemRec = MemInst->TheDef; |
| 318 | Record *RegRec = RegInst->TheDef; |
| 319 | |
| 320 | // Return false if one (at least) of the encoding fields of both |
| 321 | // instructions do not match. |
| 322 | if (RegRec->getValueAsDef("OpEnc") != MemRec->getValueAsDef("OpEnc") || |
| 323 | !equalBitsInits(RegRec->getValueAsBitsInit("Opcode"), |
| 324 | MemRec->getValueAsBitsInit("Opcode")) || |
| 325 | // VEX/EVEX fields |
| 326 | RegRec->getValueAsDef("OpPrefix") != |
| 327 | MemRec->getValueAsDef("OpPrefix") || |
| 328 | RegRec->getValueAsDef("OpMap") != MemRec->getValueAsDef("OpMap") || |
| 329 | RegRec->getValueAsDef("OpSize") != MemRec->getValueAsDef("OpSize") || |
Craig Topper | f7bc6cb | 2018-06-12 04:34:58 +0000 | [diff] [blame] | 330 | RegRec->getValueAsDef("AdSize") != MemRec->getValueAsDef("AdSize") || |
Ayman Musa | cb92739 | 2017-10-08 09:20:32 +0000 | [diff] [blame] | 331 | RegRec->getValueAsBit("hasVEX_4V") != |
| 332 | MemRec->getValueAsBit("hasVEX_4V") || |
| 333 | RegRec->getValueAsBit("hasEVEX_K") != |
| 334 | MemRec->getValueAsBit("hasEVEX_K") || |
| 335 | RegRec->getValueAsBit("hasEVEX_Z") != |
| 336 | MemRec->getValueAsBit("hasEVEX_Z") || |
Craig Topper | a325c91 | 2018-01-07 06:24:28 +0000 | [diff] [blame] | 337 | // EVEX_B means different things for memory and register forms. |
| 338 | RegRec->getValueAsBit("hasEVEX_B") != 0 || |
| 339 | MemRec->getValueAsBit("hasEVEX_B") != 0 || |
Ayman Musa | cb92739 | 2017-10-08 09:20:32 +0000 | [diff] [blame] | 340 | RegRec->getValueAsBit("hasEVEX_RC") != |
| 341 | MemRec->getValueAsBit("hasEVEX_RC") || |
| 342 | RegRec->getValueAsBit("hasREX_WPrefix") != |
| 343 | MemRec->getValueAsBit("hasREX_WPrefix") || |
| 344 | RegRec->getValueAsBit("hasLockPrefix") != |
| 345 | MemRec->getValueAsBit("hasLockPrefix") || |
Oren Ben Simhon | 10c992c | 2018-03-17 13:29:46 +0000 | [diff] [blame] | 346 | RegRec->getValueAsBit("hasNoTrackPrefix") != |
| 347 | MemRec->getValueAsBit("hasNoTrackPrefix") || |
Ayman Musa | cb92739 | 2017-10-08 09:20:32 +0000 | [diff] [blame] | 348 | !equalBitsInits(RegRec->getValueAsBitsInit("EVEX_LL"), |
| 349 | MemRec->getValueAsBitsInit("EVEX_LL")) || |
| 350 | !equalBitsInits(RegRec->getValueAsBitsInit("VEX_WPrefix"), |
| 351 | MemRec->getValueAsBitsInit("VEX_WPrefix")) || |
| 352 | // Instruction's format - The register form's "Form" field should be |
| 353 | // the opposite of the memory form's "Form" field. |
| 354 | !areOppositeForms(RegRec->getValueAsBitsInit("FormBits"), |
| 355 | MemRec->getValueAsBitsInit("FormBits")) || |
| 356 | RegRec->getValueAsBit("isAsmParserOnly") != |
| 357 | MemRec->getValueAsBit("isAsmParserOnly")) |
| 358 | return false; |
| 359 | |
| 360 | // Make sure the sizes of the operands of both instructions suit each other. |
| 361 | // This is needed for instructions with intrinsic version (_Int). |
| 362 | // Where the only difference is the size of the operands. |
| 363 | // For example: VUCOMISDZrm and Int_VUCOMISDrm |
| 364 | // Also for instructions that their EVEX version was upgraded to work with |
| 365 | // k-registers. For example VPCMPEQBrm (xmm output register) and |
| 366 | // VPCMPEQBZ128rm (k register output register). |
| 367 | bool ArgFolded = false; |
| 368 | unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs(); |
| 369 | unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs(); |
| 370 | unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs(); |
| 371 | unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs(); |
| 372 | |
| 373 | // Instructions with one output in their memory form use the memory folded |
| 374 | // operand as source and destination (Read-Modify-Write). |
| 375 | unsigned RegStartIdx = |
| 376 | (MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0; |
| 377 | |
| 378 | for (unsigned i = 0, e = MemInst->Operands.size(); i < e; i++) { |
| 379 | Record *MemOpRec = MemInst->Operands[i].Rec; |
| 380 | Record *RegOpRec = RegInst->Operands[i + RegStartIdx].Rec; |
| 381 | |
| 382 | if (MemOpRec == RegOpRec) |
| 383 | continue; |
| 384 | |
| 385 | if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec)) { |
| 386 | if (getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec) || |
| 387 | isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec)) |
| 388 | return false; |
| 389 | } else if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec)) { |
| 390 | if (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec)) |
| 391 | return false; |
| 392 | } else if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec)) { |
| 393 | if (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type")) |
| 394 | return false; |
| 395 | } else { |
| 396 | // Only one operand can be folded. |
| 397 | if (ArgFolded) |
| 398 | return false; |
| 399 | |
| 400 | assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)); |
| 401 | ArgFolded = true; |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | return true; |
| 406 | } |
| 407 | |
| 408 | private: |
| 409 | // Return true of the 2 given forms are the opposite of each other. |
| 410 | bool areOppositeForms(const BitsInit *RegFormBits, |
| 411 | const BitsInit *MemFormBits) { |
| 412 | uint64_t MemFormNum = getValueFromBitsInit(MemFormBits); |
| 413 | uint64_t RegFormNum = getValueFromBitsInit(RegFormBits); |
| 414 | |
| 415 | if ((MemFormNum == X86Local::MRM0m && RegFormNum == X86Local::MRM0r) || |
| 416 | (MemFormNum == X86Local::MRM1m && RegFormNum == X86Local::MRM1r) || |
| 417 | (MemFormNum == X86Local::MRM2m && RegFormNum == X86Local::MRM2r) || |
| 418 | (MemFormNum == X86Local::MRM3m && RegFormNum == X86Local::MRM3r) || |
| 419 | (MemFormNum == X86Local::MRM4m && RegFormNum == X86Local::MRM4r) || |
| 420 | (MemFormNum == X86Local::MRM5m && RegFormNum == X86Local::MRM5r) || |
| 421 | (MemFormNum == X86Local::MRM6m && RegFormNum == X86Local::MRM6r) || |
| 422 | (MemFormNum == X86Local::MRM7m && RegFormNum == X86Local::MRM7r) || |
| 423 | (MemFormNum == X86Local::MRMXm && RegFormNum == X86Local::MRMXr) || |
| 424 | (MemFormNum == X86Local::MRMDestMem && |
| 425 | RegFormNum == X86Local::MRMDestReg) || |
| 426 | (MemFormNum == X86Local::MRMSrcMem && |
| 427 | RegFormNum == X86Local::MRMSrcReg) || |
| 428 | (MemFormNum == X86Local::MRMSrcMem4VOp3 && |
| 429 | RegFormNum == X86Local::MRMSrcReg4VOp3) || |
| 430 | (MemFormNum == X86Local::MRMSrcMemOp4 && |
| 431 | RegFormNum == X86Local::MRMSrcRegOp4)) |
| 432 | return true; |
| 433 | |
| 434 | return false; |
| 435 | } |
| 436 | }; |
| 437 | |
| 438 | } // end anonymous namespace |
| 439 | |
| 440 | void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table, |
| 441 | const CodeGenInstruction *RegInstr, |
| 442 | const CodeGenInstruction *MemInstr, |
| 443 | const UnfoldStrategy S, |
| 444 | const unsigned int FoldedInd) { |
| 445 | |
| 446 | X86FoldTableEntry Result = X86FoldTableEntry(RegInstr, MemInstr); |
| 447 | Record *RegRec = RegInstr->TheDef; |
| 448 | Record *MemRec = MemInstr->TheDef; |
| 449 | |
| 450 | // Only table0 entries should explicitly specify a load or store flag. |
| 451 | if (&Table == &Table0) { |
| 452 | unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs(); |
| 453 | unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs(); |
| 454 | // If the instruction writes to the folded operand, it will appear as an |
| 455 | // output in the register form instruction and as an input in the memory |
| 456 | // form instruction. |
| 457 | // If the instruction reads from the folded operand, it well appear as in |
| 458 | // input in both forms. |
| 459 | if (MemInOpsNum == RegInOpsNum) |
| 460 | Result.IsLoad = true; |
| 461 | else |
| 462 | Result.IsStore = true; |
| 463 | } |
| 464 | |
| 465 | Record *RegOpRec = RegInstr->Operands[FoldedInd].Rec; |
| 466 | Record *MemOpRec = MemInstr->Operands[FoldedInd].Rec; |
| 467 | |
| 468 | // Unfolding code generates a load/store instruction according to the size of |
| 469 | // the register in the register form instruction. |
| 470 | // If the register's size is greater than the memory's operand size, do not |
| 471 | // allow unfolding. |
| 472 | if (S == UNFOLD) |
| 473 | Result.CannotUnfold = false; |
| 474 | else if (S == NO_UNFOLD) |
| 475 | Result.CannotUnfold = true; |
| 476 | else if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec)) |
| 477 | Result.CannotUnfold = true; // S == NO_STRATEGY |
| 478 | |
| 479 | uint64_t Enc = getValueFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits")); |
| 480 | if (isExplicitAlign(RegInstr)) { |
| 481 | // The instruction require explicitly aligned memory. |
| 482 | BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize"); |
| 483 | uint64_t Value = getValueFromBitsInit(VectSize); |
| 484 | Result.IsAligned = true; |
| 485 | Result.Alignment = Value; |
| 486 | } else if (Enc != X86Local::XOP && Enc != X86Local::VEX && |
| 487 | Enc != X86Local::EVEX) { |
| 488 | // Instructions with VEX encoding do not require alignment. |
| 489 | if (!isExplicitUnalign(RegInstr) && getMemOperandSize(MemOpRec) > 64) { |
| 490 | // SSE packed vector instructions require a 16 byte alignment. |
| 491 | Result.IsAligned = true; |
| 492 | Result.Alignment = 16; |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | Table.push_back(Result); |
| 497 | } |
| 498 | |
| 499 | void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInstr, |
| 500 | const CodeGenInstruction *MemInstr, |
| 501 | const UnfoldStrategy S) { |
| 502 | |
| 503 | Record *RegRec = RegInstr->TheDef; |
| 504 | Record *MemRec = MemInstr->TheDef; |
| 505 | unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs(); |
| 506 | unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs(); |
| 507 | unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs(); |
| 508 | unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs(); |
| 509 | |
Craig Topper | dae4c99 | 2018-06-13 00:04:08 +0000 | [diff] [blame] | 510 | // Instructions which Read-Modify-Write should be added to Table2Addr. |
| 511 | if (MemOutSize != RegOutSize && MemInSize == RegInSize) { |
Ayman Musa | cb92739 | 2017-10-08 09:20:32 +0000 | [diff] [blame] | 512 | addEntryWithFlags(Table2Addr, RegInstr, MemInstr, S, 0); |
| 513 | return; |
| 514 | } |
| 515 | |
| 516 | if (MemInSize == RegInSize && MemOutSize == RegOutSize) { |
| 517 | // Load-Folding cases. |
| 518 | // If the i'th register form operand is a register and the i'th memory form |
| 519 | // operand is a memory operand, add instructions to Table#i. |
| 520 | for (unsigned i = RegOutSize, e = RegInstr->Operands.size(); i < e; i++) { |
| 521 | Record *RegOpRec = RegInstr->Operands[i].Rec; |
| 522 | Record *MemOpRec = MemInstr->Operands[i].Rec; |
| 523 | if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)) { |
| 524 | switch (i) { |
| 525 | case 0: |
| 526 | addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0); |
| 527 | return; |
| 528 | case 1: |
| 529 | addEntryWithFlags(Table1, RegInstr, MemInstr, S, 1); |
| 530 | return; |
| 531 | case 2: |
| 532 | addEntryWithFlags(Table2, RegInstr, MemInstr, S, 2); |
| 533 | return; |
| 534 | case 3: |
| 535 | addEntryWithFlags(Table3, RegInstr, MemInstr, S, 3); |
| 536 | return; |
| 537 | case 4: |
| 538 | addEntryWithFlags(Table4, RegInstr, MemInstr, S, 4); |
| 539 | return; |
| 540 | } |
| 541 | } |
| 542 | } |
| 543 | } else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) { |
| 544 | // Store-Folding cases. |
Fangrui Song | 73d8dbf | 2018-03-30 22:22:31 +0000 | [diff] [blame] | 545 | // If the memory form instruction performs a store, the *output* |
Ayman Musa | cb92739 | 2017-10-08 09:20:32 +0000 | [diff] [blame] | 546 | // register of the register form instructions disappear and instead a |
| 547 | // memory *input* operand appears in the memory form instruction. |
| 548 | // For example: |
| 549 | // MOVAPSrr => (outs VR128:$dst), (ins VR128:$src) |
| 550 | // MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src) |
| 551 | Record *RegOpRec = RegInstr->Operands[RegOutSize - 1].Rec; |
| 552 | Record *MemOpRec = MemInstr->Operands[RegOutSize - 1].Rec; |
Craig Topper | 36aef6e | 2018-06-12 07:32:18 +0000 | [diff] [blame] | 553 | if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) && |
| 554 | getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec)) |
Ayman Musa | cb92739 | 2017-10-08 09:20:32 +0000 | [diff] [blame] | 555 | addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0); |
| 556 | } |
| 557 | |
| 558 | return; |
| 559 | } |
| 560 | |
| 561 | void X86FoldTablesEmitter::run(raw_ostream &OS) { |
| 562 | emitSourceFileHeader("X86 fold tables", OS); |
| 563 | |
| 564 | // Holds all memory instructions |
| 565 | std::vector<const CodeGenInstruction *> MemInsts; |
| 566 | // Holds all register instructions - divided according to opcode. |
| 567 | std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts; |
| 568 | |
| 569 | ArrayRef<const CodeGenInstruction *> NumberedInstructions = |
| 570 | Target.getInstructionsByEnumValue(); |
| 571 | |
| 572 | for (const CodeGenInstruction *Inst : NumberedInstructions) { |
| 573 | if (!Inst->TheDef->getNameInit() || !Inst->TheDef->isSubClassOf("X86Inst")) |
| 574 | continue; |
| 575 | |
| 576 | const Record *Rec = Inst->TheDef; |
| 577 | |
| 578 | // - Do not proceed if the instruction is marked as notMemoryFoldable. |
| 579 | // - Instructions including RST register class operands are not relevant |
| 580 | // for memory folding (for further details check the explanation in |
| 581 | // lib/Target/X86/X86InstrFPStack.td file). |
| 582 | // - Some instructions (listed in the manual map above) use the register |
| 583 | // class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure |
| 584 | // safe mapping of these instruction we manually map them and exclude |
| 585 | // them from the automation. |
| 586 | if (Rec->getValueAsBit("isMemoryFoldable") == false || |
| 587 | hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst)) |
| 588 | continue; |
| 589 | |
| 590 | // Add all the memory form instructions to MemInsts, and all the register |
| 591 | // form instructions to RegInsts[Opc], where Opc in the opcode of each |
| 592 | // instructions. this helps reducing the runtime of the backend. |
| 593 | if (hasMemoryFormat(Rec)) |
| 594 | MemInsts.push_back(Inst); |
| 595 | else if (hasRegisterFormat(Rec)) { |
| 596 | uint8_t Opc = getValueFromBitsInit(Rec->getValueAsBitsInit("Opcode")); |
| 597 | RegInsts[Opc].push_back(Inst); |
| 598 | } |
| 599 | } |
| 600 | |
| 601 | // For each memory form instruction, try to find its register form |
| 602 | // instruction. |
| 603 | for (const CodeGenInstruction *MemInst : MemInsts) { |
| 604 | uint8_t Opc = |
| 605 | getValueFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode")); |
| 606 | |
| 607 | if (RegInsts.count(Opc) == 0) |
| 608 | continue; |
| 609 | |
| 610 | // Two forms (memory & register) of the same instruction must have the same |
| 611 | // opcode. try matching only with register form instructions with the same |
| 612 | // opcode. |
| 613 | std::vector<const CodeGenInstruction *> &OpcRegInsts = |
| 614 | RegInsts.find(Opc)->second; |
| 615 | |
| 616 | auto Match = find_if(OpcRegInsts, IsMatch(MemInst, Records)); |
| 617 | if (Match != OpcRegInsts.end()) { |
| 618 | const CodeGenInstruction *RegInst = *Match; |
| 619 | // If the matched instruction has it's "FoldGenRegForm" set, map the |
| 620 | // memory form instruction to the register form instruction pointed by |
| 621 | // this field |
| 622 | if (RegInst->TheDef->isValueUnset("FoldGenRegForm")) { |
| 623 | updateTables(RegInst, MemInst); |
| 624 | } else { |
| 625 | const CodeGenInstruction *AltRegInst = |
| 626 | getAltRegInst(RegInst, Records, Target); |
| 627 | updateTables(AltRegInst, MemInst); |
| 628 | } |
| 629 | OpcRegInsts.erase(Match); |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | // Add the manually mapped instructions listed above. |
| 634 | for (const ManualMapEntry &Entry : ManualMapSet) { |
| 635 | Record *RegInstIter = Records.getDef(Entry.RegInstStr); |
| 636 | Record *MemInstIter = Records.getDef(Entry.MemInstStr); |
| 637 | |
| 638 | updateTables(&(Target.getInstruction(RegInstIter)), |
| 639 | &(Target.getInstruction(MemInstIter)), Entry.Strategy); |
| 640 | } |
| 641 | |
| 642 | // Print all tables to raw_ostream OS. |
| 643 | printTable(Table2Addr, "Table2Addr", OS); |
| 644 | printTable(Table0, "Table0", OS); |
| 645 | printTable(Table1, "Table1", OS); |
| 646 | printTable(Table2, "Table2", OS); |
| 647 | printTable(Table3, "Table3", OS); |
| 648 | printTable(Table4, "Table4", OS); |
| 649 | } |
| 650 | |
| 651 | namespace llvm { |
| 652 | |
| 653 | void EmitX86FoldTables(RecordKeeper &RK, raw_ostream &OS) { |
| 654 | X86FoldTablesEmitter(RK).run(OS); |
| 655 | } |
| 656 | } // namespace llvm |