Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1 | //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // The implementation for the loop memory dependence that was originally |
| 11 | // developed for the loop vectorizer. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
Chandler Carruth | c68d25f | 2017-01-11 09:43:56 +0000 | [diff] [blame] | 15 | #include "llvm/Analysis/LoopAccessAnalysis.h" |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 16 | #include "llvm/ADT/APInt.h" |
| 17 | #include "llvm/ADT/DenseMap.h" |
| 18 | #include "llvm/ADT/DepthFirstIterator.h" |
| 19 | #include "llvm/ADT/EquivalenceClasses.h" |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 20 | #include "llvm/ADT/PointerIntPair.h" |
Chandler Carruth | c68d25f | 2017-01-11 09:43:56 +0000 | [diff] [blame] | 21 | #include "llvm/ADT/STLExtras.h" |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 22 | #include "llvm/ADT/SetVector.h" |
| 23 | #include "llvm/ADT/SmallPtrSet.h" |
| 24 | #include "llvm/ADT/SmallSet.h" |
| 25 | #include "llvm/ADT/SmallVector.h" |
Chandler Carruth | c68d25f | 2017-01-11 09:43:56 +0000 | [diff] [blame] | 26 | #include "llvm/ADT/iterator_range.h" |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 27 | #include "llvm/Analysis/AliasAnalysis.h" |
| 28 | #include "llvm/Analysis/AliasSetTracker.h" |
Chandler Carruth | c68d25f | 2017-01-11 09:43:56 +0000 | [diff] [blame] | 29 | #include "llvm/Analysis/LoopAnalysisManager.h" |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 30 | #include "llvm/Analysis/LoopInfo.h" |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 31 | #include "llvm/Analysis/MemoryLocation.h" |
Adam Nemet | 3b8950a | 2017-10-09 23:19:02 +0000 | [diff] [blame] | 32 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 33 | #include "llvm/Analysis/ScalarEvolution.h" |
Adam Nemet | b3189ea | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 34 | #include "llvm/Analysis/ScalarEvolutionExpander.h" |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 35 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
Benjamin Kramer | 1bfcd1f | 2015-03-23 19:32:43 +0000 | [diff] [blame] | 36 | #include "llvm/Analysis/TargetLibraryInfo.h" |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 37 | #include "llvm/Analysis/ValueTracking.h" |
Adam Nemet | 0954e3a | 2016-07-01 00:09:02 +0000 | [diff] [blame] | 38 | #include "llvm/Analysis/VectorUtils.h" |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 39 | #include "llvm/IR/BasicBlock.h" |
| 40 | #include "llvm/IR/Constants.h" |
| 41 | #include "llvm/IR/DataLayout.h" |
| 42 | #include "llvm/IR/DebugLoc.h" |
| 43 | #include "llvm/IR/DerivedTypes.h" |
| 44 | #include "llvm/IR/DiagnosticInfo.h" |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 45 | #include "llvm/IR/Dominators.h" |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 46 | #include "llvm/IR/Function.h" |
Chandler Carruth | c68d25f | 2017-01-11 09:43:56 +0000 | [diff] [blame] | 47 | #include "llvm/IR/IRBuilder.h" |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 48 | #include "llvm/IR/InstrTypes.h" |
| 49 | #include "llvm/IR/Instruction.h" |
| 50 | #include "llvm/IR/Instructions.h" |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 51 | #include "llvm/IR/Operator.h" |
Xinliang David Li | 10b22c8 | 2016-07-02 21:18:40 +0000 | [diff] [blame] | 52 | #include "llvm/IR/PassManager.h" |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 53 | #include "llvm/IR/Type.h" |
| 54 | #include "llvm/IR/Value.h" |
| 55 | #include "llvm/IR/ValueHandle.h" |
| 56 | #include "llvm/Pass.h" |
| 57 | #include "llvm/Support/Casting.h" |
| 58 | #include "llvm/Support/CommandLine.h" |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 59 | #include "llvm/Support/Debug.h" |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 60 | #include "llvm/Support/ErrorHandling.h" |
Benjamin Kramer | 1bfcd1f | 2015-03-23 19:32:43 +0000 | [diff] [blame] | 61 | #include "llvm/Support/raw_ostream.h" |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 62 | #include <algorithm> |
| 63 | #include <cassert> |
| 64 | #include <cstdint> |
| 65 | #include <cstdlib> |
| 66 | #include <iterator> |
| 67 | #include <utility> |
| 68 | #include <vector> |
| 69 | |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 70 | using namespace llvm; |
| 71 | |
Adam Nemet | 9fdb32e | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 72 | #define DEBUG_TYPE "loop-accesses" |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 73 | |
Adam Nemet | 4b86046 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 74 | static cl::opt<unsigned, true> |
| 75 | VectorizationFactor("force-vector-width", cl::Hidden, |
| 76 | cl::desc("Sets the SIMD width. Zero is autoselect."), |
| 77 | cl::location(VectorizerParams::VectorizationFactor)); |
Adam Nemet | 5a51d86 | 2015-02-26 04:39:09 +0000 | [diff] [blame] | 78 | unsigned VectorizerParams::VectorizationFactor; |
Adam Nemet | 4b86046 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 79 | |
| 80 | static cl::opt<unsigned, true> |
| 81 | VectorizationInterleave("force-vector-interleave", cl::Hidden, |
| 82 | cl::desc("Sets the vectorization interleave count. " |
| 83 | "Zero is autoselect."), |
| 84 | cl::location( |
| 85 | VectorizerParams::VectorizationInterleave)); |
Adam Nemet | 5a51d86 | 2015-02-26 04:39:09 +0000 | [diff] [blame] | 86 | unsigned VectorizerParams::VectorizationInterleave; |
Adam Nemet | 4b86046 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 87 | |
Adam Nemet | 5a51d86 | 2015-02-26 04:39:09 +0000 | [diff] [blame] | 88 | static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( |
| 89 | "runtime-memory-check-threshold", cl::Hidden, |
| 90 | cl::desc("When performing memory disambiguation checks at runtime do not " |
| 91 | "generate more than this number of comparisons (default = 8)."), |
| 92 | cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); |
| 93 | unsigned VectorizerParams::RuntimeMemoryCheckThreshold; |
Adam Nemet | 4b86046 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 94 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 95 | /// The maximum iterations used to merge memory checks |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 96 | static cl::opt<unsigned> MemoryCheckMergeThreshold( |
| 97 | "memory-check-merge-threshold", cl::Hidden, |
| 98 | cl::desc("Maximum number of comparisons done when trying to merge " |
| 99 | "runtime memory checks. (default = 100)"), |
| 100 | cl::init(100)); |
| 101 | |
Adam Nemet | 4b86046 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 102 | /// Maximum SIMD width. |
| 103 | const unsigned VectorizerParams::MaxVectorWidth = 64; |
| 104 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 105 | /// We collect dependences up to this threshold. |
Adam Nemet | 7d1e09e | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 106 | static cl::opt<unsigned> |
| 107 | MaxDependences("max-dependences", cl::Hidden, |
| 108 | cl::desc("Maximum number of dependences collected by " |
| 109 | "loop-access analysis (default = 100)"), |
| 110 | cl::init(100)); |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 111 | |
Adam Nemet | b7720e0 | 2016-06-17 22:35:41 +0000 | [diff] [blame] | 112 | /// This enables versioning on the strides of symbolically striding memory |
| 113 | /// accesses in code like the following. |
| 114 | /// for (i = 0; i < N; ++i) |
| 115 | /// A[i * Stride1] += B[i * Stride2] ... |
| 116 | /// |
| 117 | /// Will be roughly translated to |
| 118 | /// if (Stride1 == 1 && Stride2 == 1) { |
| 119 | /// for (i = 0; i < N; i+=4) |
| 120 | /// A[i:i+3] += ... |
| 121 | /// } else |
| 122 | /// ... |
| 123 | static cl::opt<bool> EnableMemAccessVersioning( |
| 124 | "enable-mem-access-versioning", cl::init(true), cl::Hidden, |
| 125 | cl::desc("Enable symbolic stride memory access versioning")); |
| 126 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 127 | /// Enable store-to-load forwarding conflict detection. This option can |
Matthew Simpson | 12427ad | 2016-05-16 17:00:56 +0000 | [diff] [blame] | 128 | /// be disabled for correctness testing. |
| 129 | static cl::opt<bool> EnableForwardingConflictDetection( |
| 130 | "store-to-load-forwarding-conflict-detection", cl::Hidden, |
Matthew Simpson | 5c1f236 | 2016-05-16 14:14:49 +0000 | [diff] [blame] | 131 | cl::desc("Enable conflict detection in loop-access analysis"), |
| 132 | cl::init(true)); |
| 133 | |
Adam Nemet | 4b86046 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 134 | bool VectorizerParams::isInterleaveForced() { |
| 135 | return ::VectorizationInterleave.getNumOccurrences() > 0; |
| 136 | } |
| 137 | |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 138 | Value *llvm::stripIntegerCast(Value *V) { |
David Majnemer | 7615994 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 139 | if (auto *CI = dyn_cast<CastInst>(V)) |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 140 | if (CI->getOperand(0)->getType()->isIntegerTy()) |
| 141 | return CI->getOperand(0); |
| 142 | return V; |
| 143 | } |
| 144 | |
Silviu Baranga | 90f6cd5 | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 145 | const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, |
Adam Nemet | 989a020 | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 146 | const ValueToValueMap &PtrToStride, |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 147 | Value *Ptr, Value *OrigPtr) { |
Silviu Baranga | 90f6cd5 | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 148 | const SCEV *OrigSCEV = PSE.getSCEV(Ptr); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 149 | |
| 150 | // If there is an entry in the map return the SCEV of the pointer with the |
| 151 | // symbolic stride replaced by one. |
Adam Nemet | 989a020 | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 152 | ValueToValueMap::const_iterator SI = |
| 153 | PtrToStride.find(OrigPtr ? OrigPtr : Ptr); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 154 | if (SI != PtrToStride.end()) { |
| 155 | Value *StrideVal = SI->second; |
| 156 | |
| 157 | // Strip casts. |
| 158 | StrideVal = stripIntegerCast(StrideVal); |
| 159 | |
Silviu Baranga | 90f6cd5 | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 160 | ScalarEvolution *SE = PSE.getSE(); |
Silviu Baranga | a0b73c2 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 161 | const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); |
| 162 | const auto *CT = |
| 163 | static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); |
| 164 | |
Silviu Baranga | 90f6cd5 | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 165 | PSE.addPredicate(*SE->getEqualPredicate(U, CT)); |
| 166 | auto *Expr = PSE.getSCEV(Ptr); |
Silviu Baranga | a0b73c2 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 167 | |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 168 | LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV |
| 169 | << " by: " << *Expr << "\n"); |
Silviu Baranga | 90f6cd5 | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 170 | return Expr; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 171 | } |
| 172 | |
| 173 | // Otherwise, just return the SCEV of the original pointer. |
Silviu Baranga | a0b73c2 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 174 | return OrigSCEV; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 175 | } |
| 176 | |
Elena Demikhovsky | 1b2a850 | 2016-08-28 08:53:53 +0000 | [diff] [blame] | 177 | /// Calculate Start and End points of memory access. |
| 178 | /// Let's assume A is the first access and B is a memory access on N-th loop |
Fangrui Song | af7b183 | 2018-07-30 19:41:25 +0000 | [diff] [blame] | 179 | /// iteration. Then B is calculated as: |
| 180 | /// B = A + Step*N . |
Elena Demikhovsky | 1b2a850 | 2016-08-28 08:53:53 +0000 | [diff] [blame] | 181 | /// Step value may be positive or negative. |
| 182 | /// N is a calculated back-edge taken count: |
| 183 | /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 |
| 184 | /// Start and End points are calculated in the following way: |
| 185 | /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, |
| 186 | /// where SizeOfElt is the size of single memory access in bytes. |
| 187 | /// |
| 188 | /// There is no conflict when the intervals are disjoint: |
| 189 | /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) |
Adam Nemet | 944e082 | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 190 | void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, |
| 191 | unsigned DepSetId, unsigned ASId, |
Silviu Baranga | a0b73c2 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 192 | const ValueToValueMap &Strides, |
Silviu Baranga | 90f6cd5 | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 193 | PredicatedScalarEvolution &PSE) { |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 194 | // Get the stride replaced scev. |
Silviu Baranga | 90f6cd5 | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 195 | const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); |
Silviu Baranga | 90f6cd5 | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 196 | ScalarEvolution *SE = PSE.getSE(); |
Silviu Baranga | e4877f2 | 2015-07-16 14:02:58 +0000 | [diff] [blame] | 197 | |
Adam Nemet | 7cacf39 | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 198 | const SCEV *ScStart; |
| 199 | const SCEV *ScEnd; |
Silviu Baranga | e4877f2 | 2015-07-16 14:02:58 +0000 | [diff] [blame] | 200 | |
Adam Nemet | 8b742a0 | 2016-03-24 05:15:24 +0000 | [diff] [blame] | 201 | if (SE->isLoopInvariant(Sc, Lp)) |
Adam Nemet | 7cacf39 | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 202 | ScStart = ScEnd = Sc; |
Adam Nemet | 7cacf39 | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 203 | else { |
| 204 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); |
| 205 | assert(AR && "Invalid addrec expression"); |
Silviu Baranga | d8cc816 | 2016-04-08 14:29:09 +0000 | [diff] [blame] | 206 | const SCEV *Ex = PSE.getBackedgeTakenCount(); |
Adam Nemet | 7cacf39 | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 207 | |
| 208 | ScStart = AR->getStart(); |
| 209 | ScEnd = AR->evaluateAtIteration(Ex, *SE); |
| 210 | const SCEV *Step = AR->getStepRecurrence(*SE); |
| 211 | |
| 212 | // For expressions with negative step, the upper bound is ScStart and the |
| 213 | // lower bound is ScEnd. |
David Majnemer | 7615994 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 214 | if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { |
Adam Nemet | 7cacf39 | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 215 | if (CStep->getValue()->isNegative()) |
| 216 | std::swap(ScStart, ScEnd); |
| 217 | } else { |
Elena Demikhovsky | 1b2a850 | 2016-08-28 08:53:53 +0000 | [diff] [blame] | 218 | // Fallback case: the step is not constant, but we can still |
Adam Nemet | 7cacf39 | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 219 | // get the upper and lower bounds of the interval by using min/max |
| 220 | // expressions. |
| 221 | ScStart = SE->getUMinExpr(ScStart, ScEnd); |
| 222 | ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); |
| 223 | } |
Elena Demikhovsky | 1b2a850 | 2016-08-28 08:53:53 +0000 | [diff] [blame] | 224 | // Add the size of the pointed element to ScEnd. |
| 225 | unsigned EltSize = |
| 226 | Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; |
| 227 | const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); |
| 228 | ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); |
Silviu Baranga | e4877f2 | 2015-07-16 14:02:58 +0000 | [diff] [blame] | 229 | } |
| 230 | |
| 231 | Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 232 | } |
| 233 | |
Adam Nemet | 1829d59 | 2015-07-27 19:38:48 +0000 | [diff] [blame] | 234 | SmallVector<RuntimePointerChecking::PointerCheck, 4> |
Adam Nemet | 85fb628 | 2015-08-09 20:06:06 +0000 | [diff] [blame] | 235 | RuntimePointerChecking::generateChecks() const { |
Adam Nemet | 1829d59 | 2015-07-27 19:38:48 +0000 | [diff] [blame] | 236 | SmallVector<PointerCheck, 4> Checks; |
| 237 | |
Adam Nemet | 150b561 | 2015-07-27 19:38:50 +0000 | [diff] [blame] | 238 | for (unsigned I = 0; I < CheckingGroups.size(); ++I) { |
| 239 | for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { |
| 240 | const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; |
| 241 | const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; |
Adam Nemet | 1829d59 | 2015-07-27 19:38:48 +0000 | [diff] [blame] | 242 | |
Adam Nemet | 85fb628 | 2015-08-09 20:06:06 +0000 | [diff] [blame] | 243 | if (needsChecking(CGI, CGJ)) |
Adam Nemet | 1829d59 | 2015-07-27 19:38:48 +0000 | [diff] [blame] | 244 | Checks.push_back(std::make_pair(&CGI, &CGJ)); |
| 245 | } |
| 246 | } |
| 247 | return Checks; |
| 248 | } |
| 249 | |
Adam Nemet | 32dd246 | 2015-08-07 22:44:15 +0000 | [diff] [blame] | 250 | void RuntimePointerChecking::generateChecks( |
| 251 | MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { |
| 252 | assert(Checks.empty() && "Checks is not empty"); |
| 253 | groupChecks(DepCands, UseDependencies); |
| 254 | Checks = generateChecks(); |
| 255 | } |
| 256 | |
Adam Nemet | 15a7a33 | 2015-08-09 20:06:08 +0000 | [diff] [blame] | 257 | bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, |
| 258 | const CheckingPtrGroup &N) const { |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 259 | for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) |
| 260 | for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) |
Adam Nemet | 15a7a33 | 2015-08-09 20:06:08 +0000 | [diff] [blame] | 261 | if (needsChecking(M.Members[I], N.Members[J])) |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 262 | return true; |
| 263 | return false; |
| 264 | } |
| 265 | |
| 266 | /// Compare \p I and \p J and return the minimum. |
| 267 | /// Return nullptr in case we couldn't find an answer. |
| 268 | static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, |
| 269 | ScalarEvolution *SE) { |
| 270 | const SCEV *Diff = SE->getMinusSCEV(J, I); |
| 271 | const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); |
| 272 | |
| 273 | if (!C) |
| 274 | return nullptr; |
| 275 | if (C->getValue()->isNegative()) |
| 276 | return J; |
| 277 | return I; |
| 278 | } |
| 279 | |
Adam Nemet | 944e082 | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 280 | bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { |
Adam Nemet | 00b675d | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 281 | const SCEV *Start = RtCheck.Pointers[Index].Start; |
| 282 | const SCEV *End = RtCheck.Pointers[Index].End; |
| 283 | |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 284 | // Compare the starts and ends with the known minimum and maximum |
| 285 | // of this set. We need to know how we compare against the min/max |
| 286 | // of the set in order to be able to emit memchecks. |
Adam Nemet | 00b675d | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 287 | const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 288 | if (!Min0) |
| 289 | return false; |
| 290 | |
Adam Nemet | 00b675d | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 291 | const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 292 | if (!Min1) |
| 293 | return false; |
| 294 | |
| 295 | // Update the low bound expression if we've found a new min value. |
Adam Nemet | 00b675d | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 296 | if (Min0 == Start) |
| 297 | Low = Start; |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 298 | |
| 299 | // Update the high bound expression if we've found a new max value. |
Adam Nemet | 00b675d | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 300 | if (Min1 != End) |
| 301 | High = End; |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 302 | |
| 303 | Members.push_back(Index); |
| 304 | return true; |
| 305 | } |
| 306 | |
Adam Nemet | 944e082 | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 307 | void RuntimePointerChecking::groupChecks( |
| 308 | MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 309 | // We build the groups from dependency candidates equivalence classes |
| 310 | // because: |
| 311 | // - We know that pointers in the same equivalence class share |
| 312 | // the same underlying object and therefore there is a chance |
| 313 | // that we can compare pointers |
| 314 | // - We wouldn't be able to merge two pointers for which we need |
| 315 | // to emit a memcheck. The classes in DepCands are already |
| 316 | // conveniently built such that no two pointers in the same |
| 317 | // class need checking against each other. |
| 318 | |
| 319 | // We use the following (greedy) algorithm to construct the groups |
| 320 | // For every pointer in the equivalence class: |
| 321 | // For each existing group: |
| 322 | // - if the difference between this pointer and the min/max bounds |
| 323 | // of the group is a constant, then make the pointer part of the |
| 324 | // group and update the min/max bounds of that group as required. |
| 325 | |
| 326 | CheckingGroups.clear(); |
| 327 | |
Silviu Baranga | c26dfdf | 2015-07-28 13:44:08 +0000 | [diff] [blame] | 328 | // If we need to check two pointers to the same underlying object |
| 329 | // with a non-constant difference, we shouldn't perform any pointer |
| 330 | // grouping with those pointers. This is because we can easily get |
| 331 | // into cases where the resulting check would return false, even when |
| 332 | // the accesses are safe. |
| 333 | // |
| 334 | // The following example shows this: |
| 335 | // for (i = 0; i < 1000; ++i) |
| 336 | // a[5000 + i * m] = a[i] + a[i + 9000] |
| 337 | // |
| 338 | // Here grouping gives a check of (5000, 5000 + 1000 * m) against |
| 339 | // (0, 10000) which is always false. However, if m is 1, there is no |
| 340 | // dependence. Not grouping the checks for a[i] and a[i + 9000] allows |
| 341 | // us to perform an accurate check in this case. |
| 342 | // |
| 343 | // The above case requires that we have an UnknownDependence between |
| 344 | // accesses to the same underlying object. This cannot happen unless |
Florian Hahn | 2e8e13e | 2018-12-20 18:49:09 +0000 | [diff] [blame] | 345 | // FoundNonConstantDistanceDependence is set, and therefore UseDependencies |
Silviu Baranga | c26dfdf | 2015-07-28 13:44:08 +0000 | [diff] [blame] | 346 | // is also false. In this case we will use the fallback path and create |
| 347 | // separate checking groups for all pointers. |
Mehdi Amini | fe0b6a7 | 2015-11-05 05:49:43 +0000 | [diff] [blame] | 348 | |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 349 | // If we don't have the dependency partitions, construct a new |
Silviu Baranga | c26dfdf | 2015-07-28 13:44:08 +0000 | [diff] [blame] | 350 | // checking pointer group for each pointer. This is also required |
| 351 | // for correctness, because in this case we can have checking between |
| 352 | // pointers to the same underlying object. |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 353 | if (!UseDependencies) { |
| 354 | for (unsigned I = 0; I < Pointers.size(); ++I) |
| 355 | CheckingGroups.push_back(CheckingPtrGroup(I, *this)); |
| 356 | return; |
| 357 | } |
| 358 | |
| 359 | unsigned TotalComparisons = 0; |
| 360 | |
| 361 | DenseMap<Value *, unsigned> PositionMap; |
Adam Nemet | 00b675d | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 362 | for (unsigned Index = 0; Index < Pointers.size(); ++Index) |
| 363 | PositionMap[Pointers[Index].PointerValue] = Index; |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 364 | |
Silviu Baranga | f283cd9 | 2015-07-09 15:18:25 +0000 | [diff] [blame] | 365 | // We need to keep track of what pointers we've already seen so we |
| 366 | // don't process them twice. |
| 367 | SmallSet<unsigned, 2> Seen; |
| 368 | |
Sanjay Patel | 322ee9e | 2015-12-07 19:21:39 +0000 | [diff] [blame] | 369 | // Go through all equivalence classes, get the "pointer check groups" |
Silviu Baranga | f283cd9 | 2015-07-09 15:18:25 +0000 | [diff] [blame] | 370 | // and add them to the overall solution. We use the order in which accesses |
| 371 | // appear in 'Pointers' to enforce determinism. |
| 372 | for (unsigned I = 0; I < Pointers.size(); ++I) { |
| 373 | // We've seen this pointer before, and therefore already processed |
| 374 | // its equivalence class. |
| 375 | if (Seen.count(I)) |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 376 | continue; |
| 377 | |
Adam Nemet | 00b675d | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 378 | MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, |
| 379 | Pointers[I].IsWritePtr); |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 380 | |
Silviu Baranga | f283cd9 | 2015-07-09 15:18:25 +0000 | [diff] [blame] | 381 | SmallVector<CheckingPtrGroup, 2> Groups; |
| 382 | auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); |
| 383 | |
Silviu Baranga | 5b50110 | 2015-07-13 14:48:24 +0000 | [diff] [blame] | 384 | // Because DepCands is constructed by visiting accesses in the order in |
| 385 | // which they appear in alias sets (which is deterministic) and the |
| 386 | // iteration order within an equivalence class member is only dependent on |
| 387 | // the order in which unions and insertions are performed on the |
| 388 | // equivalence class, the iteration order is deterministic. |
Silviu Baranga | f283cd9 | 2015-07-09 15:18:25 +0000 | [diff] [blame] | 389 | for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 390 | MI != ME; ++MI) { |
| 391 | unsigned Pointer = PositionMap[MI->getPointer()]; |
| 392 | bool Merged = false; |
Silviu Baranga | f283cd9 | 2015-07-09 15:18:25 +0000 | [diff] [blame] | 393 | // Mark this pointer as seen. |
| 394 | Seen.insert(Pointer); |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 395 | |
| 396 | // Go through all the existing sets and see if we can find one |
| 397 | // which can include this pointer. |
| 398 | for (CheckingPtrGroup &Group : Groups) { |
| 399 | // Don't perform more than a certain amount of comparisons. |
| 400 | // This should limit the cost of grouping the pointers to something |
| 401 | // reasonable. If we do end up hitting this threshold, the algorithm |
| 402 | // will create separate groups for all remaining pointers. |
| 403 | if (TotalComparisons > MemoryCheckMergeThreshold) |
| 404 | break; |
| 405 | |
| 406 | TotalComparisons++; |
| 407 | |
| 408 | if (Group.addPointer(Pointer)) { |
| 409 | Merged = true; |
| 410 | break; |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | if (!Merged) |
| 415 | // We couldn't add this pointer to any existing set or the threshold |
| 416 | // for the number of comparisons has been reached. Create a new group |
| 417 | // to hold the current pointer. |
| 418 | Groups.push_back(CheckingPtrGroup(Pointer, *this)); |
| 419 | } |
| 420 | |
| 421 | // We've computed the grouped checks for this partition. |
| 422 | // Save the results and continue with the next one. |
Fangrui Song | 53a6224 | 2018-11-17 01:44:25 +0000 | [diff] [blame] | 423 | llvm::copy(Groups, std::back_inserter(CheckingGroups)); |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 424 | } |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 425 | } |
| 426 | |
Adam Nemet | 4564607 | 2015-07-16 02:48:05 +0000 | [diff] [blame] | 427 | bool RuntimePointerChecking::arePointersInSamePartition( |
| 428 | const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, |
| 429 | unsigned PtrIdx2) { |
| 430 | return (PtrToPartition[PtrIdx1] != -1 && |
| 431 | PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); |
| 432 | } |
| 433 | |
Adam Nemet | 15a7a33 | 2015-08-09 20:06:08 +0000 | [diff] [blame] | 434 | bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { |
Adam Nemet | 00b675d | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 435 | const PointerInfo &PointerI = Pointers[I]; |
| 436 | const PointerInfo &PointerJ = Pointers[J]; |
| 437 | |
Adam Nemet | 0cbfb71 | 2015-02-18 03:43:58 +0000 | [diff] [blame] | 438 | // No need to check if two readonly pointers intersect. |
Adam Nemet | 00b675d | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 439 | if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) |
Adam Nemet | 0cbfb71 | 2015-02-18 03:43:58 +0000 | [diff] [blame] | 440 | return false; |
| 441 | |
| 442 | // Only need to check pointers between two different dependency sets. |
Adam Nemet | 00b675d | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 443 | if (PointerI.DependencySetId == PointerJ.DependencySetId) |
Adam Nemet | 0cbfb71 | 2015-02-18 03:43:58 +0000 | [diff] [blame] | 444 | return false; |
| 445 | |
| 446 | // Only need to check pointers in the same alias set. |
Adam Nemet | 00b675d | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 447 | if (PointerI.AliasSetId != PointerJ.AliasSetId) |
Adam Nemet | 0cbfb71 | 2015-02-18 03:43:58 +0000 | [diff] [blame] | 448 | return false; |
| 449 | |
| 450 | return true; |
| 451 | } |
| 452 | |
Adam Nemet | 2261a25 | 2015-07-27 23:54:41 +0000 | [diff] [blame] | 453 | void RuntimePointerChecking::printChecks( |
| 454 | raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, |
| 455 | unsigned Depth) const { |
| 456 | unsigned N = 0; |
| 457 | for (const auto &Check : Checks) { |
| 458 | const auto &First = Check.first->Members, &Second = Check.second->Members; |
| 459 | |
| 460 | OS.indent(Depth) << "Check " << N++ << ":\n"; |
| 461 | |
| 462 | OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; |
| 463 | for (unsigned K = 0; K < First.size(); ++K) |
| 464 | OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; |
| 465 | |
| 466 | OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; |
| 467 | for (unsigned K = 0; K < Second.size(); ++K) |
| 468 | OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; |
| 469 | } |
| 470 | } |
| 471 | |
Adam Nemet | 7ae57e1 | 2015-08-07 19:44:48 +0000 | [diff] [blame] | 472 | void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { |
Adam Nemet | c182ce0 | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 473 | |
| 474 | OS.indent(Depth) << "Run-time memory checks:\n"; |
Adam Nemet | 32dd246 | 2015-08-07 22:44:15 +0000 | [diff] [blame] | 475 | printChecks(OS, Checks, Depth); |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 476 | |
| 477 | OS.indent(Depth) << "Grouped accesses:\n"; |
| 478 | for (unsigned I = 0; I < CheckingGroups.size(); ++I) { |
Adam Nemet | 2261a25 | 2015-07-27 23:54:41 +0000 | [diff] [blame] | 479 | const auto &CG = CheckingGroups[I]; |
| 480 | |
| 481 | OS.indent(Depth + 2) << "Group " << &CG << ":\n"; |
| 482 | OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High |
| 483 | << ")\n"; |
| 484 | for (unsigned J = 0; J < CG.Members.size(); ++J) { |
| 485 | OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 486 | << "\n"; |
| 487 | } |
| 488 | } |
Adam Nemet | c182ce0 | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 489 | } |
| 490 | |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 491 | namespace { |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 492 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 493 | /// Analyses memory accesses in a loop. |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 494 | /// |
| 495 | /// Checks whether run time pointer checks are needed and builds sets for data |
| 496 | /// dependence checking. |
| 497 | class AccessAnalysis { |
| 498 | public: |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 499 | /// Read or write access location. |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 500 | typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; |
Amjad Aboud | 8cd8473 | 2017-03-08 05:09:10 +0000 | [diff] [blame] | 501 | typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 502 | |
Manoj Gupta | c6da686 | 2018-07-09 22:27:23 +0000 | [diff] [blame] | 503 | AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA, |
| 504 | LoopInfo *LI, MemoryDepChecker::DepCandidates &DA, |
Silviu Baranga | 90f6cd5 | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 505 | PredicatedScalarEvolution &PSE) |
Manoj Gupta | c6da686 | 2018-07-09 22:27:23 +0000 | [diff] [blame] | 506 | : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), |
| 507 | IsRTCheckAnalysisNeeded(false), PSE(PSE) {} |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 508 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 509 | /// Register a load and whether it is only read from. |
Chandler Carruth | 4d7ed39 | 2015-06-17 07:18:54 +0000 | [diff] [blame] | 510 | void addLoad(MemoryLocation &Loc, bool IsReadOnly) { |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 511 | Value *Ptr = const_cast<Value*>(Loc.Ptr); |
George Burgess IV | ea46abe | 2018-10-10 21:28:44 +0000 | [diff] [blame] | 512 | AST.add(Ptr, LocationSize::unknown(), Loc.AATags); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 513 | Accesses.insert(MemAccessInfo(Ptr, false)); |
| 514 | if (IsReadOnly) |
| 515 | ReadOnlyPtr.insert(Ptr); |
| 516 | } |
| 517 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 518 | /// Register a store. |
Chandler Carruth | 4d7ed39 | 2015-06-17 07:18:54 +0000 | [diff] [blame] | 519 | void addStore(MemoryLocation &Loc) { |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 520 | Value *Ptr = const_cast<Value*>(Loc.Ptr); |
George Burgess IV | ea46abe | 2018-10-10 21:28:44 +0000 | [diff] [blame] | 521 | AST.add(Ptr, LocationSize::unknown(), Loc.AATags); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 522 | Accesses.insert(MemAccessInfo(Ptr, true)); |
| 523 | } |
| 524 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 525 | /// Check if we can emit a run-time no-alias check for \p Access. |
Silviu Baranga | 1ece28e | 2017-09-12 07:48:22 +0000 | [diff] [blame] | 526 | /// |
| 527 | /// Returns true if we can emit a run-time no alias check for \p Access. |
| 528 | /// If we can check this access, this also adds it to a dependence set and |
| 529 | /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, |
| 530 | /// we will attempt to use additional run-time checks in order to get |
| 531 | /// the bounds of the pointer. |
| 532 | bool createCheckForAccess(RuntimePointerChecking &RtCheck, |
| 533 | MemAccessInfo Access, |
| 534 | const ValueToValueMap &Strides, |
| 535 | DenseMap<Value *, unsigned> &DepSetId, |
| 536 | Loop *TheLoop, unsigned &RunningDepId, |
| 537 | unsigned ASId, bool ShouldCheckStride, |
| 538 | bool Assume); |
| 539 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 540 | /// Check whether we can check the pointers at runtime for |
Adam Nemet | 1c25d37 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 541 | /// non-intersection. |
| 542 | /// |
| 543 | /// Returns true if we need no check or if we do and we can generate them |
| 544 | /// (i.e. the pointers have computable bounds). |
Adam Nemet | 944e082 | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 545 | bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, |
| 546 | Loop *TheLoop, const ValueToValueMap &Strides, |
Andrey Turetskiy | a87b055 | 2016-06-07 14:55:27 +0000 | [diff] [blame] | 547 | bool ShouldCheckWrap = false); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 548 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 549 | /// Goes over all memory accesses, checks whether a RT check is needed |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 550 | /// and builds sets of dependent accesses. |
| 551 | void buildDependenceSets() { |
| 552 | processMemAccesses(); |
| 553 | } |
| 554 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 555 | /// Initial processing of memory accesses determined that we need to |
Adam Nemet | ecb6a37 | 2015-07-09 06:47:18 +0000 | [diff] [blame] | 556 | /// perform dependency checking. |
| 557 | /// |
| 558 | /// Note that this can later be cleared if we retry memcheck analysis without |
Florian Hahn | 2e8e13e | 2018-12-20 18:49:09 +0000 | [diff] [blame] | 559 | /// dependency checking (i.e. FoundNonConstantDistanceDependence). |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 560 | bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } |
Adam Nemet | a4c8c92 | 2015-05-18 15:37:03 +0000 | [diff] [blame] | 561 | |
| 562 | /// We decided that no dependence analysis would be used. Reset the state. |
| 563 | void resetDepChecks(MemoryDepChecker &DepChecker) { |
| 564 | CheckDeps.clear(); |
Adam Nemet | 7d1e09e | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 565 | DepChecker.clearDependences(); |
Adam Nemet | a4c8c92 | 2015-05-18 15:37:03 +0000 | [diff] [blame] | 566 | } |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 567 | |
Amjad Aboud | 8cd8473 | 2017-03-08 05:09:10 +0000 | [diff] [blame] | 568 | MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 569 | |
| 570 | private: |
| 571 | typedef SetVector<MemAccessInfo> PtrAccessSet; |
| 572 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 573 | /// Go over all memory access and check whether runtime pointer checks |
Adam Nemet | f959df6 | 2015-07-09 06:47:21 +0000 | [diff] [blame] | 574 | /// are needed and build sets of dependency check candidates. |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 575 | void processMemAccesses(); |
| 576 | |
| 577 | /// Set of all accesses. |
| 578 | PtrAccessSet Accesses; |
| 579 | |
Mehdi Amini | 529919f | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 580 | const DataLayout &DL; |
| 581 | |
Manoj Gupta | c6da686 | 2018-07-09 22:27:23 +0000 | [diff] [blame] | 582 | /// The loop being checked. |
| 583 | const Loop *TheLoop; |
| 584 | |
Amjad Aboud | 8cd8473 | 2017-03-08 05:09:10 +0000 | [diff] [blame] | 585 | /// List of accesses that need a further dependence check. |
| 586 | MemAccessInfoList CheckDeps; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 587 | |
| 588 | /// Set of pointers that are read only. |
| 589 | SmallPtrSet<Value*, 16> ReadOnlyPtr; |
| 590 | |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 591 | /// An alias set tracker to partition the access set by underlying object and |
| 592 | //intrinsic property (such as TBAA metadata). |
| 593 | AliasSetTracker AST; |
| 594 | |
Adam Nemet | 50b9e7f | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 595 | LoopInfo *LI; |
| 596 | |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 597 | /// Sets of potentially dependent accesses - members of one set share an |
| 598 | /// underlying pointer. The set "CheckDeps" identfies which sets really need a |
| 599 | /// dependence check. |
Adam Nemet | 0ddb48c | 2015-03-10 17:40:34 +0000 | [diff] [blame] | 600 | MemoryDepChecker::DepCandidates &DepCands; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 601 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 602 | /// Initial processing of memory accesses determined that we may need |
Adam Nemet | ecb6a37 | 2015-07-09 06:47:18 +0000 | [diff] [blame] | 603 | /// to add memchecks. Perform the analysis to determine the necessary checks. |
| 604 | /// |
| 605 | /// Note that, this is different from isDependencyCheckNeeded. When we retry |
| 606 | /// memcheck analysis without dependency checking |
Florian Hahn | 2e8e13e | 2018-12-20 18:49:09 +0000 | [diff] [blame] | 607 | /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is |
| 608 | /// cleared while this remains set if we have potentially dependent accesses. |
Adam Nemet | ecb6a37 | 2015-07-09 06:47:18 +0000 | [diff] [blame] | 609 | bool IsRTCheckAnalysisNeeded; |
Silviu Baranga | a0b73c2 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 610 | |
| 611 | /// The SCEV predicate containing all the SCEV-related assumptions. |
Silviu Baranga | 90f6cd5 | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 612 | PredicatedScalarEvolution &PSE; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 613 | }; |
| 614 | |
| 615 | } // end anonymous namespace |
| 616 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 617 | /// Check whether a pointer can participate in a runtime bounds check. |
Silviu Baranga | 1ece28e | 2017-09-12 07:48:22 +0000 | [diff] [blame] | 618 | /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr |
| 619 | /// by adding run-time checks (overflow checks) if necessary. |
Silviu Baranga | 90f6cd5 | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 620 | static bool hasComputableBounds(PredicatedScalarEvolution &PSE, |
Silviu Baranga | a0b73c2 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 621 | const ValueToValueMap &Strides, Value *Ptr, |
Silviu Baranga | 1ece28e | 2017-09-12 07:48:22 +0000 | [diff] [blame] | 622 | Loop *L, bool Assume) { |
Silviu Baranga | 90f6cd5 | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 623 | const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); |
Adam Nemet | 7cacf39 | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 624 | |
| 625 | // The bounds for loop-invariant pointer is trivial. |
| 626 | if (PSE.getSE()->isLoopInvariant(PtrScev, L)) |
| 627 | return true; |
| 628 | |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 629 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); |
Silviu Baranga | 1ece28e | 2017-09-12 07:48:22 +0000 | [diff] [blame] | 630 | |
| 631 | if (!AR && Assume) |
| 632 | AR = PSE.getAsAddRec(Ptr); |
| 633 | |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 634 | if (!AR) |
| 635 | return false; |
| 636 | |
| 637 | return AR->isAffine(); |
| 638 | } |
| 639 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 640 | /// Check whether a pointer address cannot wrap. |
Andrey Turetskiy | a87b055 | 2016-06-07 14:55:27 +0000 | [diff] [blame] | 641 | static bool isNoWrap(PredicatedScalarEvolution &PSE, |
| 642 | const ValueToValueMap &Strides, Value *Ptr, Loop *L) { |
| 643 | const SCEV *PtrScev = PSE.getSCEV(Ptr); |
| 644 | if (PSE.getSE()->isLoopInvariant(PtrScev, L)) |
| 645 | return true; |
| 646 | |
David Majnemer | a609ccd | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 647 | int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); |
Silviu Baranga | 1ece28e | 2017-09-12 07:48:22 +0000 | [diff] [blame] | 648 | if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) |
| 649 | return true; |
| 650 | |
| 651 | return false; |
Andrey Turetskiy | a87b055 | 2016-06-07 14:55:27 +0000 | [diff] [blame] | 652 | } |
| 653 | |
Silviu Baranga | 1ece28e | 2017-09-12 07:48:22 +0000 | [diff] [blame] | 654 | bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, |
| 655 | MemAccessInfo Access, |
| 656 | const ValueToValueMap &StridesMap, |
| 657 | DenseMap<Value *, unsigned> &DepSetId, |
| 658 | Loop *TheLoop, unsigned &RunningDepId, |
| 659 | unsigned ASId, bool ShouldCheckWrap, |
| 660 | bool Assume) { |
| 661 | Value *Ptr = Access.getPointer(); |
| 662 | |
| 663 | if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) |
| 664 | return false; |
| 665 | |
| 666 | // When we run after a failing dependency check we have to make sure |
| 667 | // we don't have wrapping pointers. |
| 668 | if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { |
| 669 | auto *Expr = PSE.getSCEV(Ptr); |
| 670 | if (!Assume || !isa<SCEVAddRecExpr>(Expr)) |
| 671 | return false; |
| 672 | PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); |
| 673 | } |
| 674 | |
| 675 | // The id of the dependence set. |
| 676 | unsigned DepId; |
| 677 | |
| 678 | if (isDependencyCheckNeeded()) { |
| 679 | Value *Leader = DepCands.getLeaderValue(Access).getPointer(); |
| 680 | unsigned &LeaderId = DepSetId[Leader]; |
| 681 | if (!LeaderId) |
| 682 | LeaderId = RunningDepId++; |
| 683 | DepId = LeaderId; |
| 684 | } else |
| 685 | // Each access has its own dependence set. |
| 686 | DepId = RunningDepId++; |
| 687 | |
| 688 | bool IsWrite = Access.getInt(); |
| 689 | RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 690 | LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); |
Silviu Baranga | 1ece28e | 2017-09-12 07:48:22 +0000 | [diff] [blame] | 691 | |
| 692 | return true; |
| 693 | } |
| 694 | |
Adam Nemet | 944e082 | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 695 | bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, |
| 696 | ScalarEvolution *SE, Loop *TheLoop, |
| 697 | const ValueToValueMap &StridesMap, |
Andrey Turetskiy | a87b055 | 2016-06-07 14:55:27 +0000 | [diff] [blame] | 698 | bool ShouldCheckWrap) { |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 699 | // Find pointers with computable bounds. We are going to use this information |
| 700 | // to place a runtime bound check. |
| 701 | bool CanDoRT = true; |
| 702 | |
Adam Nemet | 1c25d37 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 703 | bool NeedRTCheck = false; |
Adam Nemet | ecb6a37 | 2015-07-09 06:47:18 +0000 | [diff] [blame] | 704 | if (!IsRTCheckAnalysisNeeded) return true; |
Silviu Baranga | a420a14 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 705 | |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 706 | bool IsDepCheckNeeded = isDependencyCheckNeeded(); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 707 | |
| 708 | // We assign a consecutive id to access from different alias sets. |
| 709 | // Accesses between different groups doesn't need to be checked. |
| 710 | unsigned ASId = 1; |
| 711 | for (auto &AS : AST) { |
Adam Nemet | 7a6f545 | 2015-07-08 22:58:48 +0000 | [diff] [blame] | 712 | int NumReadPtrChecks = 0; |
| 713 | int NumWritePtrChecks = 0; |
Silviu Baranga | 1ece28e | 2017-09-12 07:48:22 +0000 | [diff] [blame] | 714 | bool CanDoAliasSetRT = true; |
Adam Nemet | 7a6f545 | 2015-07-08 22:58:48 +0000 | [diff] [blame] | 715 | |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 716 | // We assign consecutive id to access from different dependence sets. |
| 717 | // Accesses within the same set don't need a runtime check. |
| 718 | unsigned RunningDepId = 1; |
| 719 | DenseMap<Value *, unsigned> DepSetId; |
| 720 | |
Silviu Baranga | 1ece28e | 2017-09-12 07:48:22 +0000 | [diff] [blame] | 721 | SmallVector<MemAccessInfo, 4> Retries; |
| 722 | |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 723 | for (auto A : AS) { |
| 724 | Value *Ptr = A.getValue(); |
| 725 | bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); |
| 726 | MemAccessInfo Access(Ptr, IsWrite); |
| 727 | |
Adam Nemet | 7a6f545 | 2015-07-08 22:58:48 +0000 | [diff] [blame] | 728 | if (IsWrite) |
| 729 | ++NumWritePtrChecks; |
| 730 | else |
| 731 | ++NumReadPtrChecks; |
| 732 | |
Silviu Baranga | 1ece28e | 2017-09-12 07:48:22 +0000 | [diff] [blame] | 733 | if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, |
| 734 | RunningDepId, ASId, ShouldCheckWrap, false)) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 735 | LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); |
Silviu Baranga | 1ece28e | 2017-09-12 07:48:22 +0000 | [diff] [blame] | 736 | Retries.push_back(Access); |
| 737 | CanDoAliasSetRT = false; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 738 | } |
| 739 | } |
| 740 | |
Adam Nemet | 7a6f545 | 2015-07-08 22:58:48 +0000 | [diff] [blame] | 741 | // If we have at least two writes or one write and a read then we need to |
| 742 | // check them. But there is no need to checks if there is only one |
| 743 | // dependence set for this alias set. |
| 744 | // |
| 745 | // Note that this function computes CanDoRT and NeedRTCheck independently. |
| 746 | // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer |
| 747 | // for which we couldn't find the bounds but we don't actually need to emit |
| 748 | // any checks so it does not matter. |
Silviu Baranga | 1ece28e | 2017-09-12 07:48:22 +0000 | [diff] [blame] | 749 | bool NeedsAliasSetRTCheck = false; |
| 750 | if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2)) |
| 751 | NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 || |
| 752 | (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1)); |
Adam Nemet | 7a6f545 | 2015-07-08 22:58:48 +0000 | [diff] [blame] | 753 | |
Silviu Baranga | 1ece28e | 2017-09-12 07:48:22 +0000 | [diff] [blame] | 754 | // We need to perform run-time alias checks, but some pointers had bounds |
| 755 | // that couldn't be checked. |
| 756 | if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { |
| 757 | // Reset the CanDoSetRt flag and retry all accesses that have failed. |
| 758 | // We know that we need these checks, so we can now be more aggressive |
| 759 | // and add further checks if required (overflow checks). |
| 760 | CanDoAliasSetRT = true; |
| 761 | for (auto Access : Retries) |
| 762 | if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, |
| 763 | TheLoop, RunningDepId, ASId, |
| 764 | ShouldCheckWrap, /*Assume=*/true)) { |
| 765 | CanDoAliasSetRT = false; |
| 766 | break; |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | CanDoRT &= CanDoAliasSetRT; |
| 771 | NeedRTCheck |= NeedsAliasSetRTCheck; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 772 | ++ASId; |
| 773 | } |
| 774 | |
| 775 | // If the pointers that we would use for the bounds comparison have different |
| 776 | // address spaces, assume the values aren't directly comparable, so we can't |
| 777 | // use them for the runtime check. We also have to assume they could |
| 778 | // overlap. In the future there should be metadata for whether address spaces |
| 779 | // are disjoint. |
| 780 | unsigned NumPointers = RtCheck.Pointers.size(); |
| 781 | for (unsigned i = 0; i < NumPointers; ++i) { |
| 782 | for (unsigned j = i + 1; j < NumPointers; ++j) { |
| 783 | // Only need to check pointers between two different dependency sets. |
Adam Nemet | 00b675d | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 784 | if (RtCheck.Pointers[i].DependencySetId == |
| 785 | RtCheck.Pointers[j].DependencySetId) |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 786 | continue; |
| 787 | // Only need to check pointers in the same alias set. |
Adam Nemet | 00b675d | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 788 | if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 789 | continue; |
| 790 | |
Adam Nemet | 00b675d | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 791 | Value *PtrI = RtCheck.Pointers[i].PointerValue; |
| 792 | Value *PtrJ = RtCheck.Pointers[j].PointerValue; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 793 | |
| 794 | unsigned ASi = PtrI->getType()->getPointerAddressSpace(); |
| 795 | unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); |
| 796 | if (ASi != ASj) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 797 | LLVM_DEBUG( |
| 798 | dbgs() << "LAA: Runtime check would require comparison between" |
| 799 | " different address spaces\n"); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 800 | return false; |
| 801 | } |
| 802 | } |
| 803 | } |
| 804 | |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 805 | if (NeedRTCheck && CanDoRT) |
Adam Nemet | 32dd246 | 2015-08-07 22:44:15 +0000 | [diff] [blame] | 806 | RtCheck.generateChecks(DepCands, IsDepCheckNeeded); |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 807 | |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 808 | LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() |
| 809 | << " pointer comparisons.\n"); |
Adam Nemet | 1c25d37 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 810 | |
| 811 | RtCheck.Need = NeedRTCheck; |
| 812 | |
| 813 | bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; |
| 814 | if (!CanDoRTIfNeeded) |
| 815 | RtCheck.reset(); |
| 816 | return CanDoRTIfNeeded; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 817 | } |
| 818 | |
| 819 | void AccessAnalysis::processMemAccesses() { |
| 820 | // We process the set twice: first we process read-write pointers, last we |
| 821 | // process read-only pointers. This allows us to skip dependence tests for |
| 822 | // read-only pointers. |
| 823 | |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 824 | LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); |
| 825 | LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); |
| 826 | LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); |
| 827 | LLVM_DEBUG({ |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 828 | for (auto A : Accesses) |
| 829 | dbgs() << "\t" << *A.getPointer() << " (" << |
| 830 | (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? |
| 831 | "read-only" : "read")) << ")\n"; |
| 832 | }); |
| 833 | |
| 834 | // The AliasSetTracker has nicely partitioned our pointers by metadata |
| 835 | // compatibility and potential for underlying-object overlap. As a result, we |
| 836 | // only need to check for potential pointer dependencies within each alias |
| 837 | // set. |
| 838 | for (auto &AS : AST) { |
| 839 | // Note that both the alias-set tracker and the alias sets themselves used |
| 840 | // linked lists internally and so the iteration order here is deterministic |
| 841 | // (matching the original instruction order within each set). |
| 842 | |
| 843 | bool SetHasWrite = false; |
| 844 | |
| 845 | // Map of pointers to last access encountered. |
| 846 | typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; |
| 847 | UnderlyingObjToAccessMap ObjToLastAccess; |
| 848 | |
| 849 | // Set of access to check after all writes have been processed. |
| 850 | PtrAccessSet DeferredAccesses; |
| 851 | |
| 852 | // Iterate over each alias set twice, once to process read/write pointers, |
| 853 | // and then to process read-only pointers. |
| 854 | for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { |
| 855 | bool UseDeferred = SetIteration > 0; |
| 856 | PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; |
| 857 | |
| 858 | for (auto AV : AS) { |
| 859 | Value *Ptr = AV.getValue(); |
| 860 | |
| 861 | // For a single memory access in AliasSetTracker, Accesses may contain |
| 862 | // both read and write, and they both need to be handled for CheckDeps. |
| 863 | for (auto AC : S) { |
| 864 | if (AC.getPointer() != Ptr) |
| 865 | continue; |
| 866 | |
| 867 | bool IsWrite = AC.getInt(); |
| 868 | |
| 869 | // If we're using the deferred access set, then it contains only |
| 870 | // reads. |
| 871 | bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; |
| 872 | if (UseDeferred && !IsReadOnlyPtr) |
| 873 | continue; |
| 874 | // Otherwise, the pointer must be in the PtrAccessSet, either as a |
| 875 | // read or a write. |
| 876 | assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || |
| 877 | S.count(MemAccessInfo(Ptr, false))) && |
| 878 | "Alias-set pointer not in the access set?"); |
| 879 | |
| 880 | MemAccessInfo Access(Ptr, IsWrite); |
| 881 | DepCands.insert(Access); |
| 882 | |
| 883 | // Memorize read-only pointers for later processing and skip them in |
| 884 | // the first round (they need to be checked after we have seen all |
| 885 | // write pointers). Note: we also mark pointer that are not |
| 886 | // consecutive as "read-only" pointers (so that we check |
| 887 | // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". |
| 888 | if (!UseDeferred && IsReadOnlyPtr) { |
| 889 | DeferredAccesses.insert(Access); |
| 890 | continue; |
| 891 | } |
| 892 | |
| 893 | // If this is a write - check other reads and writes for conflicts. If |
| 894 | // this is a read only check other writes for conflicts (but only if |
| 895 | // there is no other write to the ptr - this is an optimization to |
| 896 | // catch "a[i] = a[i] + " without having to do a dependence check). |
| 897 | if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { |
Amjad Aboud | 8cd8473 | 2017-03-08 05:09:10 +0000 | [diff] [blame] | 898 | CheckDeps.push_back(Access); |
Adam Nemet | ecb6a37 | 2015-07-09 06:47:18 +0000 | [diff] [blame] | 899 | IsRTCheckAnalysisNeeded = true; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 900 | } |
| 901 | |
| 902 | if (IsWrite) |
| 903 | SetHasWrite = true; |
| 904 | |
| 905 | // Create sets of pointers connected by a shared alias set and |
| 906 | // underlying object. |
| 907 | typedef SmallVector<Value *, 16> ValueVector; |
| 908 | ValueVector TempObjects; |
Adam Nemet | 50b9e7f | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 909 | |
| 910 | GetUnderlyingObjects(Ptr, TempObjects, DL, LI); |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 911 | LLVM_DEBUG(dbgs() |
| 912 | << "Underlying objects for pointer " << *Ptr << "\n"); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 913 | for (Value *UnderlyingObj : TempObjects) { |
Mehdi Amini | fe0b6a7 | 2015-11-05 05:49:43 +0000 | [diff] [blame] | 914 | // nullptr never alias, don't join sets for pointer that have "null" |
| 915 | // in their UnderlyingObjects list. |
Manoj Gupta | c6da686 | 2018-07-09 22:27:23 +0000 | [diff] [blame] | 916 | if (isa<ConstantPointerNull>(UnderlyingObj) && |
| 917 | !NullPointerIsDefined( |
| 918 | TheLoop->getHeader()->getParent(), |
| 919 | UnderlyingObj->getType()->getPointerAddressSpace())) |
Mehdi Amini | fe0b6a7 | 2015-11-05 05:49:43 +0000 | [diff] [blame] | 920 | continue; |
| 921 | |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 922 | UnderlyingObjToAccessMap::iterator Prev = |
| 923 | ObjToLastAccess.find(UnderlyingObj); |
| 924 | if (Prev != ObjToLastAccess.end()) |
| 925 | DepCands.unionSets(Access, Prev->second); |
| 926 | |
| 927 | ObjToLastAccess[UnderlyingObj] = Access; |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 928 | LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 929 | } |
| 930 | } |
| 931 | } |
| 932 | } |
| 933 | } |
| 934 | } |
| 935 | |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 936 | static bool isInBoundsGep(Value *Ptr) { |
| 937 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) |
| 938 | return GEP->isInBounds(); |
| 939 | return false; |
| 940 | } |
| 941 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 942 | /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, |
Adam Nemet | e11d1d2 | 2015-06-26 17:25:43 +0000 | [diff] [blame] | 943 | /// i.e. monotonically increasing/decreasing. |
| 944 | static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, |
Silviu Baranga | e942cf8 | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 945 | PredicatedScalarEvolution &PSE, const Loop *L) { |
Adam Nemet | e11d1d2 | 2015-06-26 17:25:43 +0000 | [diff] [blame] | 946 | // FIXME: This should probably only return true for NUW. |
| 947 | if (AR->getNoWrapFlags(SCEV::NoWrapMask)) |
| 948 | return true; |
| 949 | |
| 950 | // Scalar evolution does not propagate the non-wrapping flags to values that |
| 951 | // are derived from a non-wrapping induction variable because non-wrapping |
| 952 | // could be flow-sensitive. |
| 953 | // |
| 954 | // Look through the potentially overflowing instruction to try to prove |
| 955 | // non-wrapping for the *specific* value of Ptr. |
| 956 | |
| 957 | // The arithmetic implied by an inbounds GEP can't overflow. |
| 958 | auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); |
| 959 | if (!GEP || !GEP->isInBounds()) |
| 960 | return false; |
| 961 | |
| 962 | // Make sure there is only one non-const index and analyze that. |
| 963 | Value *NonConstIndex = nullptr; |
David Majnemer | 7615994 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 964 | for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) |
| 965 | if (!isa<ConstantInt>(Index)) { |
Adam Nemet | e11d1d2 | 2015-06-26 17:25:43 +0000 | [diff] [blame] | 966 | if (NonConstIndex) |
| 967 | return false; |
David Majnemer | 7615994 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 968 | NonConstIndex = Index; |
Adam Nemet | e11d1d2 | 2015-06-26 17:25:43 +0000 | [diff] [blame] | 969 | } |
| 970 | if (!NonConstIndex) |
| 971 | // The recurrence is on the pointer, ignore for now. |
| 972 | return false; |
| 973 | |
| 974 | // The index in GEP is signed. It is non-wrapping if it's derived from a NSW |
| 975 | // AddRec using a NSW operation. |
| 976 | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) |
| 977 | if (OBO->hasNoSignedWrap() && |
| 978 | // Assume constant for other the operand so that the AddRec can be |
| 979 | // easily found. |
| 980 | isa<ConstantInt>(OBO->getOperand(1))) { |
Silviu Baranga | e942cf8 | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 981 | auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); |
Adam Nemet | e11d1d2 | 2015-06-26 17:25:43 +0000 | [diff] [blame] | 982 | |
| 983 | if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) |
| 984 | return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); |
| 985 | } |
| 986 | |
| 987 | return false; |
| 988 | } |
| 989 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 990 | /// Check whether the access through \p Ptr has a constant stride. |
David Majnemer | a609ccd | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 991 | int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, |
| 992 | const Loop *Lp, const ValueToValueMap &StridesMap, |
Elena Demikhovsky | 305b3f3 | 2016-09-18 13:56:08 +0000 | [diff] [blame] | 993 | bool Assume, bool ShouldCheckWrap) { |
Craig Topper | 84bbcfe | 2015-08-01 22:20:21 +0000 | [diff] [blame] | 994 | Type *Ty = Ptr->getType(); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 995 | assert(Ty->isPointerTy() && "Unexpected non-ptr"); |
| 996 | |
| 997 | // Make sure that the pointer does not point to aggregate types. |
Craig Topper | 84bbcfe | 2015-08-01 22:20:21 +0000 | [diff] [blame] | 998 | auto *PtrTy = cast<PointerType>(Ty); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 999 | if (PtrTy->getElementType()->isAggregateType()) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1000 | LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" |
| 1001 | << *Ptr << "\n"); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1002 | return 0; |
| 1003 | } |
| 1004 | |
Silviu Baranga | 90f6cd5 | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 1005 | const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1006 | |
| 1007 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); |
Silviu Baranga | e942cf8 | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 1008 | if (Assume && !AR) |
Silviu Baranga | 0905413 | 2016-03-23 15:29:30 +0000 | [diff] [blame] | 1009 | AR = PSE.getAsAddRec(Ptr); |
Silviu Baranga | e942cf8 | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 1010 | |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1011 | if (!AR) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1012 | LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr |
| 1013 | << " SCEV: " << *PtrScev << "\n"); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1014 | return 0; |
| 1015 | } |
| 1016 | |
| 1017 | // The accesss function must stride over the innermost loop. |
| 1018 | if (Lp != AR->getLoop()) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1019 | LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " |
| 1020 | << *Ptr << " SCEV: " << *AR << "\n"); |
Kyle Butt | 505bc50 | 2016-01-08 01:55:13 +0000 | [diff] [blame] | 1021 | return 0; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1022 | } |
| 1023 | |
| 1024 | // The address calculation must not wrap. Otherwise, a dependence could be |
| 1025 | // inverted. |
| 1026 | // An inbounds getelementptr that is a AddRec with a unit stride |
| 1027 | // cannot wrap per definition. The unit stride requirement is checked later. |
| 1028 | // An getelementptr without an inbounds attribute and unit stride would have |
| 1029 | // to access the pointer value "0" which is undefined behavior in address |
| 1030 | // space 0, therefore we can also vectorize this case. |
| 1031 | bool IsInBoundsGEP = isInBoundsGep(Ptr); |
Elena Demikhovsky | 305b3f3 | 2016-09-18 13:56:08 +0000 | [diff] [blame] | 1032 | bool IsNoWrapAddRec = !ShouldCheckWrap || |
| 1033 | PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || |
| 1034 | isNoWrapAddRec(Ptr, AR, PSE, Lp); |
Manoj Gupta | c6da686 | 2018-07-09 22:27:23 +0000 | [diff] [blame] | 1035 | if (!IsNoWrapAddRec && !IsInBoundsGEP && |
| 1036 | NullPointerIsDefined(Lp->getHeader()->getParent(), |
| 1037 | PtrTy->getAddressSpace())) { |
Silviu Baranga | e942cf8 | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 1038 | if (Assume) { |
| 1039 | PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); |
| 1040 | IsNoWrapAddRec = true; |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1041 | LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" |
| 1042 | << "LAA: Pointer: " << *Ptr << "\n" |
| 1043 | << "LAA: SCEV: " << *AR << "\n" |
| 1044 | << "LAA: Added an overflow assumption\n"); |
Silviu Baranga | e942cf8 | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 1045 | } else { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1046 | LLVM_DEBUG( |
| 1047 | dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " |
| 1048 | << *Ptr << " SCEV: " << *AR << "\n"); |
Silviu Baranga | e942cf8 | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 1049 | return 0; |
| 1050 | } |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1051 | } |
| 1052 | |
| 1053 | // Check the step is constant. |
Silviu Baranga | 90f6cd5 | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 1054 | const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1055 | |
Adam Nemet | f7f4697 | 2015-07-09 00:03:22 +0000 | [diff] [blame] | 1056 | // Calculate the pointer stride and check if it is constant. |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1057 | const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); |
| 1058 | if (!C) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1059 | LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr |
| 1060 | << " SCEV: " << *AR << "\n"); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1061 | return 0; |
| 1062 | } |
| 1063 | |
Mehdi Amini | 529919f | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1064 | auto &DL = Lp->getHeader()->getModule()->getDataLayout(); |
| 1065 | int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); |
Sanjoy Das | 4b89241 | 2015-12-17 20:28:46 +0000 | [diff] [blame] | 1066 | const APInt &APStepVal = C->getAPInt(); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1067 | |
| 1068 | // Huge step value - give up. |
| 1069 | if (APStepVal.getBitWidth() > 64) |
| 1070 | return 0; |
| 1071 | |
| 1072 | int64_t StepVal = APStepVal.getSExtValue(); |
| 1073 | |
| 1074 | // Strided access. |
| 1075 | int64_t Stride = StepVal / Size; |
| 1076 | int64_t Rem = StepVal % Size; |
| 1077 | if (Rem) |
| 1078 | return 0; |
| 1079 | |
| 1080 | // If the SCEV could wrap but we have an inbounds gep with a unit stride we |
| 1081 | // know we can't "wrap around the address space". In case of address space |
| 1082 | // zero we know that this won't happen without triggering undefined behavior. |
Manoj Gupta | c6da686 | 2018-07-09 22:27:23 +0000 | [diff] [blame] | 1083 | if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && |
| 1084 | (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), |
| 1085 | PtrTy->getAddressSpace()))) { |
Silviu Baranga | e942cf8 | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 1086 | if (Assume) { |
| 1087 | // We can avoid this case by adding a run-time check. |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1088 | LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " |
| 1089 | << "inbouds or in address space 0 may wrap:\n" |
| 1090 | << "LAA: Pointer: " << *Ptr << "\n" |
| 1091 | << "LAA: SCEV: " << *AR << "\n" |
| 1092 | << "LAA: Added an overflow assumption\n"); |
Silviu Baranga | e942cf8 | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 1093 | PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); |
| 1094 | } else |
| 1095 | return 0; |
| 1096 | } |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1097 | |
| 1098 | return Stride; |
| 1099 | } |
| 1100 | |
Alexey Bataev | 91811bc | 2018-04-03 17:14:47 +0000 | [diff] [blame] | 1101 | bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL, |
| 1102 | ScalarEvolution &SE, |
| 1103 | SmallVectorImpl<unsigned> &SortedIndices) { |
| 1104 | assert(llvm::all_of( |
| 1105 | VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && |
| 1106 | "Expected list of pointer operands."); |
| 1107 | SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs; |
| 1108 | OffValPairs.reserve(VL.size()); |
| 1109 | |
| 1110 | // Walk over the pointers, and map each of them to an offset relative to |
| 1111 | // first pointer in the array. |
| 1112 | Value *Ptr0 = VL[0]; |
| 1113 | const SCEV *Scev0 = SE.getSCEV(Ptr0); |
| 1114 | Value *Obj0 = GetUnderlyingObject(Ptr0, DL); |
| 1115 | |
| 1116 | llvm::SmallSet<int64_t, 4> Offsets; |
| 1117 | for (auto *Ptr : VL) { |
| 1118 | // TODO: Outline this code as a special, more time consuming, version of |
| 1119 | // computeConstantDifference() function. |
| 1120 | if (Ptr->getType()->getPointerAddressSpace() != |
| 1121 | Ptr0->getType()->getPointerAddressSpace()) |
| 1122 | return false; |
| 1123 | // If a pointer refers to a different underlying object, bail - the |
| 1124 | // pointers are by definition incomparable. |
| 1125 | Value *CurrObj = GetUnderlyingObject(Ptr, DL); |
| 1126 | if (CurrObj != Obj0) |
| 1127 | return false; |
| 1128 | |
| 1129 | const SCEV *Scev = SE.getSCEV(Ptr); |
| 1130 | const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0)); |
| 1131 | // The pointers may not have a constant offset from each other, or SCEV |
| 1132 | // may just not be smart enough to figure out they do. Regardless, |
| 1133 | // there's nothing we can do. |
| 1134 | if (!Diff) |
| 1135 | return false; |
| 1136 | |
| 1137 | // Check if the pointer with the same offset is found. |
| 1138 | int64_t Offset = Diff->getAPInt().getSExtValue(); |
| 1139 | if (!Offsets.insert(Offset).second) |
| 1140 | return false; |
| 1141 | OffValPairs.emplace_back(Offset, Ptr); |
| 1142 | } |
| 1143 | SortedIndices.clear(); |
| 1144 | SortedIndices.resize(VL.size()); |
| 1145 | std::iota(SortedIndices.begin(), SortedIndices.end(), 0); |
| 1146 | |
| 1147 | // Sort the memory accesses and keep the order of their uses in UseOrder. |
| 1148 | std::stable_sort(SortedIndices.begin(), SortedIndices.end(), |
| 1149 | [&OffValPairs](unsigned Left, unsigned Right) { |
| 1150 | return OffValPairs[Left].first < OffValPairs[Right].first; |
| 1151 | }); |
| 1152 | |
| 1153 | // Check if the order is consecutive already. |
| 1154 | if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) { |
| 1155 | return I == SortedIndices[I]; |
| 1156 | })) |
| 1157 | SortedIndices.clear(); |
| 1158 | |
| 1159 | return true; |
| 1160 | } |
| 1161 | |
Haicheng Wu | 33a530f | 2016-01-26 02:27:47 +0000 | [diff] [blame] | 1162 | /// Take the address space operand from the Load/Store instruction. |
| 1163 | /// Returns -1 if this is not a valid Load/Store instruction. |
| 1164 | static unsigned getAddressSpaceOperand(Value *I) { |
| 1165 | if (LoadInst *L = dyn_cast<LoadInst>(I)) |
| 1166 | return L->getPointerAddressSpace(); |
| 1167 | if (StoreInst *S = dyn_cast<StoreInst>(I)) |
| 1168 | return S->getPointerAddressSpace(); |
| 1169 | return -1; |
| 1170 | } |
| 1171 | |
| 1172 | /// Returns true if the memory operations \p A and \p B are consecutive. |
| 1173 | bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, |
| 1174 | ScalarEvolution &SE, bool CheckType) { |
Renato Golin | 6587343 | 2018-03-09 21:05:58 +0000 | [diff] [blame] | 1175 | Value *PtrA = getLoadStorePointerOperand(A); |
| 1176 | Value *PtrB = getLoadStorePointerOperand(B); |
Haicheng Wu | 33a530f | 2016-01-26 02:27:47 +0000 | [diff] [blame] | 1177 | unsigned ASA = getAddressSpaceOperand(A); |
| 1178 | unsigned ASB = getAddressSpaceOperand(B); |
| 1179 | |
| 1180 | // Check that the address spaces match and that the pointers are valid. |
| 1181 | if (!PtrA || !PtrB || (ASA != ASB)) |
| 1182 | return false; |
| 1183 | |
| 1184 | // Make sure that A and B are different pointers. |
| 1185 | if (PtrA == PtrB) |
| 1186 | return false; |
| 1187 | |
| 1188 | // Make sure that A and B have the same type if required. |
Chad Rosier | cfe0cf0 | 2016-08-31 18:37:52 +0000 | [diff] [blame] | 1189 | if (CheckType && PtrA->getType() != PtrB->getType()) |
| 1190 | return false; |
Haicheng Wu | 33a530f | 2016-01-26 02:27:47 +0000 | [diff] [blame] | 1191 | |
Elena Demikhovsky | 8e229ec | 2018-02-14 06:58:08 +0000 | [diff] [blame] | 1192 | unsigned IdxWidth = DL.getIndexSizeInBits(ASA); |
Haicheng Wu | 33a530f | 2016-01-26 02:27:47 +0000 | [diff] [blame] | 1193 | Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); |
Elena Demikhovsky | 8e229ec | 2018-02-14 06:58:08 +0000 | [diff] [blame] | 1194 | APInt Size(IdxWidth, DL.getTypeStoreSize(Ty)); |
Haicheng Wu | 33a530f | 2016-01-26 02:27:47 +0000 | [diff] [blame] | 1195 | |
Elena Demikhovsky | 8e229ec | 2018-02-14 06:58:08 +0000 | [diff] [blame] | 1196 | APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); |
Haicheng Wu | 33a530f | 2016-01-26 02:27:47 +0000 | [diff] [blame] | 1197 | PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); |
| 1198 | PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); |
| 1199 | |
| 1200 | // OffsetDelta = OffsetB - OffsetA; |
| 1201 | const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); |
| 1202 | const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); |
| 1203 | const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); |
| 1204 | const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); |
| 1205 | const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); |
| 1206 | // Check if they are based on the same pointer. That makes the offsets |
| 1207 | // sufficient. |
| 1208 | if (PtrA == PtrB) |
| 1209 | return OffsetDelta == Size; |
| 1210 | |
| 1211 | // Compute the necessary base pointer delta to have the necessary final delta |
| 1212 | // equal to the size. |
| 1213 | // BaseDelta = Size - OffsetDelta; |
| 1214 | const SCEV *SizeSCEV = SE.getConstant(Size); |
| 1215 | const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); |
| 1216 | |
| 1217 | // Otherwise compute the distance with SCEV between the base pointers. |
| 1218 | const SCEV *PtrSCEVA = SE.getSCEV(PtrA); |
| 1219 | const SCEV *PtrSCEVB = SE.getSCEV(PtrB); |
| 1220 | const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); |
| 1221 | return X == PtrSCEVB; |
| 1222 | } |
| 1223 | |
Florian Hahn | efdc433 | 2018-12-18 22:25:11 +0000 | [diff] [blame] | 1224 | MemoryDepChecker::VectorizationSafetyStatus |
| 1225 | MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1226 | switch (Type) { |
| 1227 | case NoDep: |
| 1228 | case Forward: |
| 1229 | case BackwardVectorizable: |
Florian Hahn | efdc433 | 2018-12-18 22:25:11 +0000 | [diff] [blame] | 1230 | return VectorizationSafetyStatus::Safe; |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1231 | |
| 1232 | case Unknown: |
Florian Hahn | 2e8e13e | 2018-12-20 18:49:09 +0000 | [diff] [blame] | 1233 | return VectorizationSafetyStatus::PossiblySafeWithRtChecks; |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1234 | case ForwardButPreventsForwarding: |
| 1235 | case Backward: |
| 1236 | case BackwardVectorizableButPreventsForwarding: |
Florian Hahn | efdc433 | 2018-12-18 22:25:11 +0000 | [diff] [blame] | 1237 | return VectorizationSafetyStatus::Unsafe; |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1238 | } |
David Majnemer | 3e616ba | 2015-03-10 20:23:29 +0000 | [diff] [blame] | 1239 | llvm_unreachable("unexpected DepType!"); |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1240 | } |
| 1241 | |
Adam Nemet | 3410689 | 2015-11-03 23:50:03 +0000 | [diff] [blame] | 1242 | bool MemoryDepChecker::Dependence::isBackward() const { |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1243 | switch (Type) { |
| 1244 | case NoDep: |
| 1245 | case Forward: |
| 1246 | case ForwardButPreventsForwarding: |
Adam Nemet | 3410689 | 2015-11-03 23:50:03 +0000 | [diff] [blame] | 1247 | case Unknown: |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1248 | return false; |
| 1249 | |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1250 | case BackwardVectorizable: |
| 1251 | case Backward: |
| 1252 | case BackwardVectorizableButPreventsForwarding: |
| 1253 | return true; |
| 1254 | } |
David Majnemer | 3e616ba | 2015-03-10 20:23:29 +0000 | [diff] [blame] | 1255 | llvm_unreachable("unexpected DepType!"); |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1256 | } |
| 1257 | |
Adam Nemet | 3410689 | 2015-11-03 23:50:03 +0000 | [diff] [blame] | 1258 | bool MemoryDepChecker::Dependence::isPossiblyBackward() const { |
| 1259 | return isBackward() || Type == Unknown; |
| 1260 | } |
| 1261 | |
| 1262 | bool MemoryDepChecker::Dependence::isForward() const { |
| 1263 | switch (Type) { |
| 1264 | case Forward: |
| 1265 | case ForwardButPreventsForwarding: |
| 1266 | return true; |
| 1267 | |
| 1268 | case NoDep: |
| 1269 | case Unknown: |
| 1270 | case BackwardVectorizable: |
| 1271 | case Backward: |
| 1272 | case BackwardVectorizableButPreventsForwarding: |
| 1273 | return false; |
| 1274 | } |
| 1275 | llvm_unreachable("unexpected DepType!"); |
| 1276 | } |
| 1277 | |
David Majnemer | a609ccd | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1278 | bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, |
| 1279 | uint64_t TypeByteSize) { |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1280 | // If loads occur at a distance that is not a multiple of a feasible vector |
| 1281 | // factor store-load forwarding does not take place. |
| 1282 | // Positive dependences might cause troubles because vectorizing them might |
| 1283 | // prevent store-load forwarding making vectorized code run a lot slower. |
| 1284 | // a[i] = a[i-3] ^ a[i-8]; |
| 1285 | // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and |
| 1286 | // hence on your typical architecture store-load forwarding does not take |
| 1287 | // place. Vectorizing in such cases does not make sense. |
| 1288 | // Store-load forwarding distance. |
Adam Nemet | 095bb7d | 2016-05-16 16:57:47 +0000 | [diff] [blame] | 1289 | |
| 1290 | // After this many iterations store-to-load forwarding conflicts should not |
| 1291 | // cause any slowdowns. |
David Majnemer | a609ccd | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1292 | const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1293 | // Maximum vector factor. |
David Majnemer | a609ccd | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1294 | uint64_t MaxVFWithoutSLForwardIssues = std::min( |
Adam Nemet | a3a9c7e | 2016-05-12 21:41:53 +0000 | [diff] [blame] | 1295 | VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1296 | |
Adam Nemet | 095bb7d | 2016-05-16 16:57:47 +0000 | [diff] [blame] | 1297 | // Compute the smallest VF at which the store and load would be misaligned. |
David Majnemer | a609ccd | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1298 | for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; |
Adam Nemet | 24331f2 | 2016-05-16 16:57:42 +0000 | [diff] [blame] | 1299 | VF *= 2) { |
Adam Nemet | 095bb7d | 2016-05-16 16:57:47 +0000 | [diff] [blame] | 1300 | // If the number of vector iteration between the store and the load are |
| 1301 | // small we could incur conflicts. |
| 1302 | if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { |
Adam Nemet | 24331f2 | 2016-05-16 16:57:42 +0000 | [diff] [blame] | 1303 | MaxVFWithoutSLForwardIssues = (VF >>= 1); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1304 | break; |
| 1305 | } |
| 1306 | } |
| 1307 | |
Adam Nemet | 24331f2 | 2016-05-16 16:57:42 +0000 | [diff] [blame] | 1308 | if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1309 | LLVM_DEBUG( |
| 1310 | dbgs() << "LAA: Distance " << Distance |
| 1311 | << " that could cause a store-load forwarding conflict\n"); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1312 | return true; |
| 1313 | } |
| 1314 | |
| 1315 | if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && |
Adam Nemet | 4b86046 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 1316 | MaxVFWithoutSLForwardIssues != |
Adam Nemet | 24331f2 | 2016-05-16 16:57:42 +0000 | [diff] [blame] | 1317 | VectorizerParams::MaxVectorWidth * TypeByteSize) |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1318 | MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; |
| 1319 | return false; |
| 1320 | } |
| 1321 | |
Florian Hahn | efdc433 | 2018-12-18 22:25:11 +0000 | [diff] [blame] | 1322 | void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { |
| 1323 | if (Status < S) |
| 1324 | Status = S; |
| 1325 | } |
| 1326 | |
Fangrui Song | af7b183 | 2018-07-30 19:41:25 +0000 | [diff] [blame] | 1327 | /// Given a non-constant (unknown) dependence-distance \p Dist between two |
Dorit Nuzman | 7078fa3 | 2017-02-12 09:32:53 +0000 | [diff] [blame] | 1328 | /// memory accesses, that have the same stride whose absolute value is given |
| 1329 | /// in \p Stride, and that have the same type size \p TypeByteSize, |
| 1330 | /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is |
| 1331 | /// possible to prove statically that the dependence distance is larger |
| 1332 | /// than the range that the accesses will travel through the execution of |
| 1333 | /// the loop. If so, return true; false otherwise. This is useful for |
| 1334 | /// example in loops such as the following (PR31098): |
| 1335 | /// for (i = 0; i < D; ++i) { |
| 1336 | /// = out[i]; |
| 1337 | /// out[i+D] = |
| 1338 | /// } |
| 1339 | static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, |
| 1340 | const SCEV &BackedgeTakenCount, |
| 1341 | const SCEV &Dist, uint64_t Stride, |
| 1342 | uint64_t TypeByteSize) { |
| 1343 | |
| 1344 | // If we can prove that |
| 1345 | // (**) |Dist| > BackedgeTakenCount * Step |
Fangrui Song | af7b183 | 2018-07-30 19:41:25 +0000 | [diff] [blame] | 1346 | // where Step is the absolute stride of the memory accesses in bytes, |
Dorit Nuzman | 7078fa3 | 2017-02-12 09:32:53 +0000 | [diff] [blame] | 1347 | // then there is no dependence. |
| 1348 | // |
Fangrui Song | af7b183 | 2018-07-30 19:41:25 +0000 | [diff] [blame] | 1349 | // Ratioanle: |
| 1350 | // We basically want to check if the absolute distance (|Dist/Step|) |
| 1351 | // is >= the loop iteration count (or > BackedgeTakenCount). |
| 1352 | // This is equivalent to the Strong SIV Test (Practical Dependence Testing, |
| 1353 | // Section 4.2.1); Note, that for vectorization it is sufficient to prove |
Dorit Nuzman | 7078fa3 | 2017-02-12 09:32:53 +0000 | [diff] [blame] | 1354 | // that the dependence distance is >= VF; This is checked elsewhere. |
Fangrui Song | af7b183 | 2018-07-30 19:41:25 +0000 | [diff] [blame] | 1355 | // But in some cases we can prune unknown dependence distances early, and |
| 1356 | // even before selecting the VF, and without a runtime test, by comparing |
| 1357 | // the distance against the loop iteration count. Since the vectorized code |
| 1358 | // will be executed only if LoopCount >= VF, proving distance >= LoopCount |
Dorit Nuzman | 7078fa3 | 2017-02-12 09:32:53 +0000 | [diff] [blame] | 1359 | // also guarantees that distance >= VF. |
| 1360 | // |
| 1361 | const uint64_t ByteStride = Stride * TypeByteSize; |
| 1362 | const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); |
| 1363 | const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); |
| 1364 | |
| 1365 | const SCEV *CastedDist = &Dist; |
| 1366 | const SCEV *CastedProduct = Product; |
| 1367 | uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); |
| 1368 | uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); |
| 1369 | |
Fangrui Song | af7b183 | 2018-07-30 19:41:25 +0000 | [diff] [blame] | 1370 | // The dependence distance can be positive/negative, so we sign extend Dist; |
| 1371 | // The multiplication of the absolute stride in bytes and the |
Dorit Nuzman | 7078fa3 | 2017-02-12 09:32:53 +0000 | [diff] [blame] | 1372 | // backdgeTakenCount is non-negative, so we zero extend Product. |
| 1373 | if (DistTypeSize > ProductTypeSize) |
| 1374 | CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); |
| 1375 | else |
| 1376 | CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); |
| 1377 | |
| 1378 | // Is Dist - (BackedgeTakenCount * Step) > 0 ? |
| 1379 | // (If so, then we have proven (**) because |Dist| >= Dist) |
| 1380 | const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); |
| 1381 | if (SE.isKnownPositive(Minus)) |
| 1382 | return true; |
| 1383 | |
| 1384 | // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? |
| 1385 | // (If so, then we have proven (**) because |Dist| >= -1*Dist) |
| 1386 | const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); |
| 1387 | Minus = SE.getMinusSCEV(NegDist, CastedProduct); |
| 1388 | if (SE.isKnownPositive(Minus)) |
| 1389 | return true; |
| 1390 | |
| 1391 | return false; |
| 1392 | } |
| 1393 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 1394 | /// Check the dependence for two accesses with the same stride \p Stride. |
Hao Liu | f60ff6b | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1395 | /// \p Distance is the positive distance and \p TypeByteSize is type size in |
| 1396 | /// bytes. |
| 1397 | /// |
| 1398 | /// \returns true if they are independent. |
David Majnemer | a609ccd | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1399 | static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, |
| 1400 | uint64_t TypeByteSize) { |
Hao Liu | f60ff6b | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1401 | assert(Stride > 1 && "The stride must be greater than 1"); |
| 1402 | assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); |
| 1403 | assert(Distance > 0 && "The distance must be non-zero"); |
| 1404 | |
| 1405 | // Skip if the distance is not multiple of type byte size. |
| 1406 | if (Distance % TypeByteSize) |
| 1407 | return false; |
| 1408 | |
David Majnemer | a609ccd | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1409 | uint64_t ScaledDist = Distance / TypeByteSize; |
Hao Liu | f60ff6b | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1410 | |
| 1411 | // No dependence if the scaled distance is not multiple of the stride. |
| 1412 | // E.g. |
| 1413 | // for (i = 0; i < 1024 ; i += 4) |
| 1414 | // A[i+2] = A[i] + 1; |
| 1415 | // |
| 1416 | // Two accesses in memory (scaled distance is 2, stride is 4): |
| 1417 | // | A[0] | | | | A[4] | | | | |
| 1418 | // | | | A[2] | | | | A[6] | | |
| 1419 | // |
| 1420 | // E.g. |
| 1421 | // for (i = 0; i < 1024 ; i += 3) |
| 1422 | // A[i+4] = A[i] + 1; |
| 1423 | // |
| 1424 | // Two accesses in memory (scaled distance is 4, stride is 3): |
| 1425 | // | A[0] | | | A[3] | | | A[6] | | | |
| 1426 | // | | | | | A[4] | | | A[7] | | |
| 1427 | return ScaledDist % Stride; |
| 1428 | } |
| 1429 | |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1430 | MemoryDepChecker::Dependence::DepType |
| 1431 | MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, |
| 1432 | const MemAccessInfo &B, unsigned BIdx, |
| 1433 | const ValueToValueMap &Strides) { |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1434 | assert (AIdx < BIdx && "Must pass arguments in program order"); |
| 1435 | |
| 1436 | Value *APtr = A.getPointer(); |
| 1437 | Value *BPtr = B.getPointer(); |
| 1438 | bool AIsWrite = A.getInt(); |
| 1439 | bool BIsWrite = B.getInt(); |
| 1440 | |
| 1441 | // Two reads are independent. |
| 1442 | if (!AIsWrite && !BIsWrite) |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1443 | return Dependence::NoDep; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1444 | |
| 1445 | // We cannot check pointers in different address spaces. |
| 1446 | if (APtr->getType()->getPointerAddressSpace() != |
| 1447 | BPtr->getType()->getPointerAddressSpace()) |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1448 | return Dependence::Unknown; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1449 | |
David Majnemer | a609ccd | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1450 | int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); |
| 1451 | int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1452 | |
Silviu Baranga | c5b59c2 | 2016-05-10 12:28:49 +0000 | [diff] [blame] | 1453 | const SCEV *Src = PSE.getSCEV(APtr); |
| 1454 | const SCEV *Sink = PSE.getSCEV(BPtr); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1455 | |
| 1456 | // If the induction step is negative we have to invert source and sink of the |
| 1457 | // dependence. |
| 1458 | if (StrideAPtr < 0) { |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1459 | std::swap(APtr, BPtr); |
| 1460 | std::swap(Src, Sink); |
| 1461 | std::swap(AIsWrite, BIsWrite); |
| 1462 | std::swap(AIdx, BIdx); |
| 1463 | std::swap(StrideAPtr, StrideBPtr); |
| 1464 | } |
| 1465 | |
Silviu Baranga | 90f6cd5 | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 1466 | const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1467 | |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1468 | LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink |
| 1469 | << "(Induction step: " << StrideAPtr << ")\n"); |
| 1470 | LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " |
| 1471 | << *InstMap[BIdx] << ": " << *Dist << "\n"); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1472 | |
Adam Nemet | f7f4697 | 2015-07-09 00:03:22 +0000 | [diff] [blame] | 1473 | // Need accesses with constant stride. We don't want to vectorize |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1474 | // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in |
| 1475 | // the address space. |
| 1476 | if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1477 | LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1478 | return Dependence::Unknown; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1479 | } |
| 1480 | |
Dorit Nuzman | 7078fa3 | 2017-02-12 09:32:53 +0000 | [diff] [blame] | 1481 | Type *ATy = APtr->getType()->getPointerElementType(); |
| 1482 | Type *BTy = BPtr->getType()->getPointerElementType(); |
| 1483 | auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); |
| 1484 | uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); |
| 1485 | uint64_t Stride = std::abs(StrideAPtr); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1486 | const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); |
| 1487 | if (!C) { |
Dorit Nuzman | 7078fa3 | 2017-02-12 09:32:53 +0000 | [diff] [blame] | 1488 | if (TypeByteSize == DL.getTypeAllocSize(BTy) && |
| 1489 | isSafeDependenceDistance(DL, *(PSE.getSE()), |
| 1490 | *(PSE.getBackedgeTakenCount()), *Dist, Stride, |
| 1491 | TypeByteSize)) |
| 1492 | return Dependence::NoDep; |
| 1493 | |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1494 | LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); |
Florian Hahn | 2e8e13e | 2018-12-20 18:49:09 +0000 | [diff] [blame] | 1495 | FoundNonConstantDistanceDependence = true; |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1496 | return Dependence::Unknown; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1497 | } |
| 1498 | |
Sanjoy Das | 4b89241 | 2015-12-17 20:28:46 +0000 | [diff] [blame] | 1499 | const APInt &Val = C->getAPInt(); |
Matthew Simpson | 204e320 | 2016-05-19 15:37:19 +0000 | [diff] [blame] | 1500 | int64_t Distance = Val.getSExtValue(); |
Matthew Simpson | 204e320 | 2016-05-19 15:37:19 +0000 | [diff] [blame] | 1501 | |
| 1502 | // Attempt to prove strided accesses independent. |
| 1503 | if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && |
| 1504 | areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1505 | LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); |
Matthew Simpson | 204e320 | 2016-05-19 15:37:19 +0000 | [diff] [blame] | 1506 | return Dependence::NoDep; |
| 1507 | } |
| 1508 | |
| 1509 | // Negative distances are not plausible dependencies. |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1510 | if (Val.isNegative()) { |
| 1511 | bool IsTrueDataDependence = (AIsWrite && !BIsWrite); |
Matthew Simpson | 12427ad | 2016-05-16 17:00:56 +0000 | [diff] [blame] | 1512 | if (IsTrueDataDependence && EnableForwardingConflictDetection && |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1513 | (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || |
Adam Nemet | a2e4d15 | 2016-03-01 00:50:08 +0000 | [diff] [blame] | 1514 | ATy != BTy)) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1515 | LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1516 | return Dependence::ForwardButPreventsForwarding; |
Adam Nemet | a2e4d15 | 2016-03-01 00:50:08 +0000 | [diff] [blame] | 1517 | } |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1518 | |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1519 | LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1520 | return Dependence::Forward; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1521 | } |
| 1522 | |
| 1523 | // Write to the same location with the same size. |
| 1524 | // Could be improved to assert type sizes are the same (i32 == float, etc). |
| 1525 | if (Val == 0) { |
| 1526 | if (ATy == BTy) |
Adam Nemet | 07bcdf3 | 2015-11-03 20:13:43 +0000 | [diff] [blame] | 1527 | return Dependence::Forward; |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1528 | LLVM_DEBUG( |
| 1529 | dbgs() << "LAA: Zero dependence difference but different types\n"); |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1530 | return Dependence::Unknown; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1531 | } |
| 1532 | |
| 1533 | assert(Val.isStrictlyPositive() && "Expect a positive value"); |
| 1534 | |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1535 | if (ATy != BTy) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1536 | LLVM_DEBUG( |
| 1537 | dbgs() |
| 1538 | << "LAA: ReadWrite-Write positive dependency with different types\n"); |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1539 | return Dependence::Unknown; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1540 | } |
| 1541 | |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1542 | // Bail out early if passed-in parameters make vectorization not feasible. |
Adam Nemet | 4b86046 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 1543 | unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? |
| 1544 | VectorizerParams::VectorizationFactor : 1); |
| 1545 | unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? |
| 1546 | VectorizerParams::VectorizationInterleave : 1); |
Hao Liu | f60ff6b | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1547 | // The minimum number of iterations for a vectorized/unrolled version. |
| 1548 | unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1549 | |
Hao Liu | f60ff6b | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1550 | // It's not vectorizable if the distance is smaller than the minimum distance |
| 1551 | // needed for a vectroized/unrolled version. Vectorizing one iteration in |
| 1552 | // front needs TypeByteSize * Stride. Vectorizing the last iteration needs |
| 1553 | // TypeByteSize (No need to plus the last gap distance). |
| 1554 | // |
| 1555 | // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. |
| 1556 | // foo(int *A) { |
| 1557 | // int *B = (int *)((char *)A + 14); |
| 1558 | // for (i = 0 ; i < 1024 ; i += 2) |
| 1559 | // B[i] = A[i] + 1; |
| 1560 | // } |
| 1561 | // |
| 1562 | // Two accesses in memory (stride is 2): |
| 1563 | // | A[0] | | A[2] | | A[4] | | A[6] | | |
| 1564 | // | B[0] | | B[2] | | B[4] | |
| 1565 | // |
| 1566 | // Distance needs for vectorizing iterations except the last iteration: |
| 1567 | // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. |
| 1568 | // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. |
| 1569 | // |
| 1570 | // If MinNumIter is 2, it is vectorizable as the minimum distance needed is |
| 1571 | // 12, which is less than distance. |
| 1572 | // |
| 1573 | // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), |
| 1574 | // the minimum distance needed is 28, which is greater than distance. It is |
| 1575 | // not safe to do vectorization. |
David Majnemer | a609ccd | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1576 | uint64_t MinDistanceNeeded = |
Hao Liu | f60ff6b | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1577 | TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; |
David Majnemer | a609ccd | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1578 | if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1579 | LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " |
| 1580 | << Distance << '\n'); |
Hao Liu | f60ff6b | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1581 | return Dependence::Backward; |
| 1582 | } |
| 1583 | |
| 1584 | // Unsafe if the minimum distance needed is greater than max safe distance. |
| 1585 | if (MinDistanceNeeded > MaxSafeDepDistBytes) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1586 | LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " |
| 1587 | << MinDistanceNeeded << " size in bytes"); |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1588 | return Dependence::Backward; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1589 | } |
| 1590 | |
Adam Nemet | e382bb9 | 2015-02-26 17:58:48 +0000 | [diff] [blame] | 1591 | // Positive distance bigger than max vectorization factor. |
Hao Liu | f60ff6b | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1592 | // FIXME: Should use max factor instead of max distance in bytes, which could |
| 1593 | // not handle different types. |
| 1594 | // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. |
| 1595 | // void foo (int *A, char *B) { |
| 1596 | // for (unsigned i = 0; i < 1024; i++) { |
| 1597 | // A[i+2] = A[i] + 1; |
| 1598 | // B[i+2] = B[i] + 1; |
| 1599 | // } |
| 1600 | // } |
| 1601 | // |
| 1602 | // This case is currently unsafe according to the max safe distance. If we |
| 1603 | // analyze the two accesses on array B, the max safe dependence distance |
| 1604 | // is 2. Then we analyze the accesses on array A, the minimum distance needed |
| 1605 | // is 8, which is less than 2 and forbidden vectorization, But actually |
| 1606 | // both A and B could be vectorized by 2 iterations. |
| 1607 | MaxSafeDepDistBytes = |
David Majnemer | a609ccd | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1608 | std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1609 | |
| 1610 | bool IsTrueDataDependence = (!AIsWrite && BIsWrite); |
Matthew Simpson | 12427ad | 2016-05-16 17:00:56 +0000 | [diff] [blame] | 1611 | if (IsTrueDataDependence && EnableForwardingConflictDetection && |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1612 | couldPreventStoreLoadForward(Distance, TypeByteSize)) |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1613 | return Dependence::BackwardVectorizableButPreventsForwarding; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1614 | |
Alon Kom | dde48e1 | 2017-09-14 07:40:02 +0000 | [diff] [blame] | 1615 | uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1616 | LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() |
| 1617 | << " with max VF = " << MaxVF << '\n'); |
Alon Kom | dde48e1 | 2017-09-14 07:40:02 +0000 | [diff] [blame] | 1618 | uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; |
| 1619 | MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits); |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1620 | return Dependence::BackwardVectorizable; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1621 | } |
| 1622 | |
Adam Nemet | 0ddb48c | 2015-03-10 17:40:34 +0000 | [diff] [blame] | 1623 | bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, |
Amjad Aboud | 8cd8473 | 2017-03-08 05:09:10 +0000 | [diff] [blame] | 1624 | MemAccessInfoList &CheckDeps, |
Adam Nemet | 989a020 | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 1625 | const ValueToValueMap &Strides) { |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1626 | |
David Majnemer | a609ccd | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 1627 | MaxSafeDepDistBytes = -1; |
Amjad Aboud | 8cd8473 | 2017-03-08 05:09:10 +0000 | [diff] [blame] | 1628 | SmallPtrSet<MemAccessInfo, 8> Visited; |
| 1629 | for (MemAccessInfo CurAccess : CheckDeps) { |
| 1630 | if (Visited.count(CurAccess)) |
| 1631 | continue; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1632 | |
| 1633 | // Get the relevant memory access set. |
| 1634 | EquivalenceClasses<MemAccessInfo>::iterator I = |
| 1635 | AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); |
| 1636 | |
| 1637 | // Check accesses within this set. |
Richard Trieu | 1b96cbe | 2016-02-18 22:09:30 +0000 | [diff] [blame] | 1638 | EquivalenceClasses<MemAccessInfo>::member_iterator AI = |
| 1639 | AccessSets.member_begin(I); |
| 1640 | EquivalenceClasses<MemAccessInfo>::member_iterator AE = |
| 1641 | AccessSets.member_end(); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1642 | |
| 1643 | // Check every access pair. |
| 1644 | while (AI != AE) { |
Amjad Aboud | 8cd8473 | 2017-03-08 05:09:10 +0000 | [diff] [blame] | 1645 | Visited.insert(*AI); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1646 | EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); |
| 1647 | while (OI != AE) { |
| 1648 | // Check every accessing instruction pair in program order. |
| 1649 | for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), |
| 1650 | I1E = Accesses[*AI].end(); I1 != I1E; ++I1) |
| 1651 | for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), |
| 1652 | I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1653 | auto A = std::make_pair(&*AI, *I1); |
| 1654 | auto B = std::make_pair(&*OI, *I2); |
| 1655 | |
| 1656 | assert(*I1 != *I2); |
| 1657 | if (*I1 > *I2) |
| 1658 | std::swap(A, B); |
| 1659 | |
| 1660 | Dependence::DepType Type = |
| 1661 | isDependent(*A.first, A.second, *B.first, B.second, Strides); |
Florian Hahn | efdc433 | 2018-12-18 22:25:11 +0000 | [diff] [blame] | 1662 | mergeInStatus(Dependence::isSafeForVectorization(Type)); |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1663 | |
Adam Nemet | 7d1e09e | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 1664 | // Gather dependences unless we accumulated MaxDependences |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1665 | // dependences. In that case return as soon as we find the first |
| 1666 | // unsafe dependence. This puts a limit on this quadratic |
| 1667 | // algorithm. |
Adam Nemet | 7d1e09e | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 1668 | if (RecordDependences) { |
| 1669 | if (Type != Dependence::NoDep) |
| 1670 | Dependences.push_back(Dependence(A.second, B.second, Type)); |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1671 | |
Adam Nemet | 7d1e09e | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 1672 | if (Dependences.size() >= MaxDependences) { |
| 1673 | RecordDependences = false; |
| 1674 | Dependences.clear(); |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1675 | LLVM_DEBUG(dbgs() |
| 1676 | << "Too many dependences, stopped recording\n"); |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1677 | } |
| 1678 | } |
Florian Hahn | efdc433 | 2018-12-18 22:25:11 +0000 | [diff] [blame] | 1679 | if (!RecordDependences && !isSafeForVectorization()) |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1680 | return false; |
| 1681 | } |
| 1682 | ++OI; |
| 1683 | } |
| 1684 | AI++; |
| 1685 | } |
| 1686 | } |
Adam Nemet | 7063c7e | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1687 | |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1688 | LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); |
Florian Hahn | efdc433 | 2018-12-18 22:25:11 +0000 | [diff] [blame] | 1689 | return isSafeForVectorization(); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1690 | } |
| 1691 | |
Adam Nemet | 86dbc2b | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 1692 | SmallVector<Instruction *, 4> |
| 1693 | MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { |
| 1694 | MemAccessInfo Access(Ptr, isWrite); |
| 1695 | auto &IndexVector = Accesses.find(Access)->second; |
| 1696 | |
| 1697 | SmallVector<Instruction *, 4> Insts; |
David Majnemer | ac0eb3d | 2016-08-12 04:32:42 +0000 | [diff] [blame] | 1698 | transform(IndexVector, |
Adam Nemet | 86dbc2b | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 1699 | std::back_inserter(Insts), |
| 1700 | [&](unsigned Idx) { return this->InstMap[Idx]; }); |
| 1701 | return Insts; |
| 1702 | } |
| 1703 | |
Adam Nemet | 8e7d56f | 2015-03-10 17:40:43 +0000 | [diff] [blame] | 1704 | const char *MemoryDepChecker::Dependence::DepName[] = { |
| 1705 | "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", |
| 1706 | "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; |
| 1707 | |
| 1708 | void MemoryDepChecker::Dependence::print( |
| 1709 | raw_ostream &OS, unsigned Depth, |
| 1710 | const SmallVectorImpl<Instruction *> &Instrs) const { |
| 1711 | OS.indent(Depth) << DepName[Type] << ":\n"; |
| 1712 | OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; |
| 1713 | OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; |
| 1714 | } |
| 1715 | |
Adam Nemet | 5c4c262 | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1716 | bool LoopAccessInfo::canAnalyzeLoop() { |
Adam Nemet | ee5f9c6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1717 | // We need to have a loop header. |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1718 | LLVM_DEBUG(dbgs() << "LAA: Found a loop in " |
| 1719 | << TheLoop->getHeader()->getParent()->getName() << ": " |
| 1720 | << TheLoop->getHeader()->getName() << '\n'); |
Adam Nemet | ee5f9c6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1721 | |
Adam Nemet | 7281652 | 2016-01-18 21:16:33 +0000 | [diff] [blame] | 1722 | // We can only analyze innermost loops. |
Adam Nemet | 5c4c262 | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1723 | if (!TheLoop->empty()) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1724 | LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); |
Adam Nemet | 858cc93 | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1725 | recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; |
Adam Nemet | 5c4c262 | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1726 | return false; |
| 1727 | } |
| 1728 | |
| 1729 | // We must have a single backedge. |
| 1730 | if (TheLoop->getNumBackEdges() != 1) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1731 | LLVM_DEBUG( |
| 1732 | dbgs() << "LAA: loop control flow is not understood by analyzer\n"); |
Adam Nemet | 858cc93 | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1733 | recordAnalysis("CFGNotUnderstood") |
| 1734 | << "loop control flow is not understood by analyzer"; |
Adam Nemet | 5c4c262 | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1735 | return false; |
| 1736 | } |
| 1737 | |
| 1738 | // We must have a single exiting block. |
| 1739 | if (!TheLoop->getExitingBlock()) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1740 | LLVM_DEBUG( |
| 1741 | dbgs() << "LAA: loop control flow is not understood by analyzer\n"); |
Adam Nemet | 858cc93 | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1742 | recordAnalysis("CFGNotUnderstood") |
| 1743 | << "loop control flow is not understood by analyzer"; |
Adam Nemet | 5c4c262 | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1744 | return false; |
| 1745 | } |
| 1746 | |
| 1747 | // We only handle bottom-tested loops, i.e. loop in which the condition is |
| 1748 | // checked at the end of each iteration. With that we can assume that all |
| 1749 | // instructions in the loop are executed the same number of times. |
| 1750 | if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1751 | LLVM_DEBUG( |
| 1752 | dbgs() << "LAA: loop control flow is not understood by analyzer\n"); |
Adam Nemet | 858cc93 | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1753 | recordAnalysis("CFGNotUnderstood") |
| 1754 | << "loop control flow is not understood by analyzer"; |
Adam Nemet | 5c4c262 | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1755 | return false; |
| 1756 | } |
| 1757 | |
Adam Nemet | 5c4c262 | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1758 | // ScalarEvolution needs to be able to find the exit count. |
Xinliang David Li | 6adce08 | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 1759 | const SCEV *ExitCount = PSE->getBackedgeTakenCount(); |
| 1760 | if (ExitCount == PSE->getSE()->getCouldNotCompute()) { |
Adam Nemet | 858cc93 | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1761 | recordAnalysis("CantComputeNumberOfIterations") |
| 1762 | << "could not determine number of loop iterations"; |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1763 | LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); |
Adam Nemet | 5c4c262 | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1764 | return false; |
| 1765 | } |
| 1766 | |
| 1767 | return true; |
| 1768 | } |
| 1769 | |
Adam Nemet | e12bf89 | 2016-07-13 22:36:27 +0000 | [diff] [blame] | 1770 | void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, |
Adam Nemet | 81c98a7 | 2016-07-13 22:36:35 +0000 | [diff] [blame] | 1771 | const TargetLibraryInfo *TLI, |
| 1772 | DominatorTree *DT) { |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1773 | typedef SmallPtrSet<Value*, 16> ValueSet; |
| 1774 | |
Matthew Simpson | 683b746 | 2016-06-06 14:15:41 +0000 | [diff] [blame] | 1775 | // Holds the Load and Store instructions. |
| 1776 | SmallVector<LoadInst *, 16> Loads; |
| 1777 | SmallVector<StoreInst *, 16> Stores; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1778 | |
| 1779 | // Holds all the different accesses in the loop. |
| 1780 | unsigned NumReads = 0; |
| 1781 | unsigned NumReadWrites = 0; |
| 1782 | |
Xinliang David Li | 42fe7e4 | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1783 | PtrRtChecking->Pointers.clear(); |
| 1784 | PtrRtChecking->Need = false; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1785 | |
| 1786 | const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1787 | |
| 1788 | // For each block. |
David Majnemer | 7615994 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 1789 | for (BasicBlock *BB : TheLoop->blocks()) { |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1790 | // Scan the BB and collect legal loads and stores. |
David Majnemer | 7615994 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 1791 | for (Instruction &I : *BB) { |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1792 | // If this is a load, save it. If this instruction can read from memory |
| 1793 | // but is not a load, then we quit. Notice that we don't handle function |
| 1794 | // calls that read or write. |
David Majnemer | 7615994 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 1795 | if (I.mayReadFromMemory()) { |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1796 | // Many math library functions read the rounding mode. We will only |
| 1797 | // vectorize a loop if it contains known function calls that don't set |
| 1798 | // the flag. Therefore, it is safe to ignore this read from memory. |
David Majnemer | 7615994 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 1799 | auto *Call = dyn_cast<CallInst>(&I); |
David Majnemer | 7f0d15f | 2016-04-19 19:10:21 +0000 | [diff] [blame] | 1800 | if (Call && getVectorIntrinsicIDForCall(Call, TLI)) |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1801 | continue; |
| 1802 | |
Michael Zolotukhin | 0f311db | 2015-03-17 19:46:50 +0000 | [diff] [blame] | 1803 | // If the function has an explicit vectorized counterpart, we can safely |
| 1804 | // assume that it can be vectorized. |
| 1805 | if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && |
| 1806 | TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) |
| 1807 | continue; |
| 1808 | |
David Majnemer | 7615994 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 1809 | auto *Ld = dyn_cast<LoadInst>(&I); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1810 | if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { |
Adam Nemet | 858cc93 | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1811 | recordAnalysis("NonSimpleLoad", Ld) |
| 1812 | << "read with atomic ordering or volatile read"; |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1813 | LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); |
Adam Nemet | 093a04b | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1814 | CanVecMem = false; |
| 1815 | return; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1816 | } |
| 1817 | NumLoads++; |
| 1818 | Loads.push_back(Ld); |
Xinliang David Li | 42fe7e4 | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1819 | DepChecker->addAccess(Ld); |
Adam Nemet | b7720e0 | 2016-06-17 22:35:41 +0000 | [diff] [blame] | 1820 | if (EnableMemAccessVersioning) |
Adam Nemet | d448b5e | 2016-06-16 22:57:55 +0000 | [diff] [blame] | 1821 | collectStridedAccess(Ld); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1822 | continue; |
| 1823 | } |
| 1824 | |
| 1825 | // Save 'store' instructions. Abort if other instructions write to memory. |
David Majnemer | 7615994 | 2016-07-12 20:31:46 +0000 | [diff] [blame] | 1826 | if (I.mayWriteToMemory()) { |
| 1827 | auto *St = dyn_cast<StoreInst>(&I); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1828 | if (!St) { |
Adam Nemet | 858cc93 | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1829 | recordAnalysis("CantVectorizeInstruction", St) |
| 1830 | << "instruction cannot be vectorized"; |
Adam Nemet | 093a04b | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1831 | CanVecMem = false; |
| 1832 | return; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1833 | } |
| 1834 | if (!St->isSimple() && !IsAnnotatedParallel) { |
Adam Nemet | 858cc93 | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1835 | recordAnalysis("NonSimpleStore", St) |
| 1836 | << "write with atomic ordering or volatile write"; |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1837 | LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); |
Adam Nemet | 093a04b | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1838 | CanVecMem = false; |
| 1839 | return; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1840 | } |
| 1841 | NumStores++; |
| 1842 | Stores.push_back(St); |
Xinliang David Li | 42fe7e4 | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1843 | DepChecker->addAccess(St); |
Adam Nemet | b7720e0 | 2016-06-17 22:35:41 +0000 | [diff] [blame] | 1844 | if (EnableMemAccessVersioning) |
Adam Nemet | d448b5e | 2016-06-16 22:57:55 +0000 | [diff] [blame] | 1845 | collectStridedAccess(St); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1846 | } |
| 1847 | } // Next instr. |
| 1848 | } // Next block. |
| 1849 | |
| 1850 | // Now we have two lists that hold the loads and the stores. |
| 1851 | // Next, we find the pointers that they use. |
| 1852 | |
| 1853 | // Check if we see any stores. If there are no stores, then we don't |
| 1854 | // care if the pointers are *restrict*. |
| 1855 | if (!Stores.size()) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1856 | LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); |
Adam Nemet | 093a04b | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1857 | CanVecMem = true; |
| 1858 | return; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1859 | } |
| 1860 | |
Adam Nemet | 0ddb48c | 2015-03-10 17:40:34 +0000 | [diff] [blame] | 1861 | MemoryDepChecker::DepCandidates DependentAccesses; |
Mehdi Amini | 529919f | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1862 | AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), |
Manoj Gupta | c6da686 | 2018-07-09 22:27:23 +0000 | [diff] [blame] | 1863 | TheLoop, AA, LI, DependentAccesses, *PSE); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1864 | |
| 1865 | // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects |
| 1866 | // multiple times on the same object. If the ptr is accessed twice, once |
| 1867 | // for read and once for write, it will only appear once (on the write |
| 1868 | // list). This is okay, since we are going to check for conflicts between |
| 1869 | // writes and between reads and writes, but not between reads and reads. |
| 1870 | ValueSet Seen; |
| 1871 | |
Anna Thomas | edafc38 | 2018-09-25 20:57:20 +0000 | [diff] [blame] | 1872 | // Record uniform store addresses to identify if we have multiple stores |
| 1873 | // to the same address. |
| 1874 | ValueSet UniformStores; |
| 1875 | |
Matthew Simpson | 683b746 | 2016-06-06 14:15:41 +0000 | [diff] [blame] | 1876 | for (StoreInst *ST : Stores) { |
| 1877 | Value *Ptr = ST->getPointerOperand(); |
Anna Thomas | edafc38 | 2018-09-25 20:57:20 +0000 | [diff] [blame] | 1878 | |
Anna Thomas | c287410 | 2018-10-16 15:46:26 +0000 | [diff] [blame] | 1879 | if (isUniform(Ptr)) |
Anna Thomas | 0048f91 | 2018-11-19 15:39:59 +0000 | [diff] [blame] | 1880 | HasDependenceInvolvingLoopInvariantAddress |= |
Anna Thomas | c287410 | 2018-10-16 15:46:26 +0000 | [diff] [blame] | 1881 | !UniformStores.insert(Ptr).second; |
Anna Thomas | edafc38 | 2018-09-25 20:57:20 +0000 | [diff] [blame] | 1882 | |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1883 | // If we did *not* see this pointer before, insert it to the read-write |
| 1884 | // list. At this phase it is only a 'write' list. |
| 1885 | if (Seen.insert(Ptr).second) { |
| 1886 | ++NumReadWrites; |
| 1887 | |
Chandler Carruth | 4d7ed39 | 2015-06-17 07:18:54 +0000 | [diff] [blame] | 1888 | MemoryLocation Loc = MemoryLocation::get(ST); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1889 | // The TBAA metadata could have a control dependency on the predication |
| 1890 | // condition, so we cannot rely on it when determining whether or not we |
| 1891 | // need runtime pointer checks. |
Adam Nemet | 0d1e8dd | 2015-02-18 03:43:19 +0000 | [diff] [blame] | 1892 | if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1893 | Loc.AATags.TBAA = nullptr; |
| 1894 | |
| 1895 | Accesses.addStore(Loc); |
| 1896 | } |
| 1897 | } |
| 1898 | |
| 1899 | if (IsAnnotatedParallel) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1900 | LLVM_DEBUG( |
| 1901 | dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " |
| 1902 | << "checks.\n"); |
Adam Nemet | 093a04b | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1903 | CanVecMem = true; |
| 1904 | return; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1905 | } |
| 1906 | |
Matthew Simpson | 683b746 | 2016-06-06 14:15:41 +0000 | [diff] [blame] | 1907 | for (LoadInst *LD : Loads) { |
| 1908 | Value *Ptr = LD->getPointerOperand(); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1909 | // If we did *not* see this pointer before, insert it to the |
| 1910 | // read list. If we *did* see it before, then it is already in |
| 1911 | // the read-write list. This allows us to vectorize expressions |
| 1912 | // such as A[i] += x; Because the address of A[i] is a read-write |
| 1913 | // pointer. This only works if the index of A[i] is consecutive. |
| 1914 | // If the address of i is unknown (for example A[B[i]]) then we may |
| 1915 | // read a few words, modify, and write a few words, and some of the |
| 1916 | // words may be written to the same address. |
| 1917 | bool IsReadOnlyPtr = false; |
Adam Nemet | 2e5ed34 | 2016-06-16 08:27:03 +0000 | [diff] [blame] | 1918 | if (Seen.insert(Ptr).second || |
Xinliang David Li | 6adce08 | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 1919 | !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1920 | ++NumReads; |
| 1921 | IsReadOnlyPtr = true; |
| 1922 | } |
| 1923 | |
Anna Thomas | 0048f91 | 2018-11-19 15:39:59 +0000 | [diff] [blame] | 1924 | // See if there is an unsafe dependency between a load to a uniform address and |
| 1925 | // store to the same uniform address. |
| 1926 | if (UniformStores.count(Ptr)) { |
| 1927 | LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " |
| 1928 | "load and uniform store to the same address!\n"); |
| 1929 | HasDependenceInvolvingLoopInvariantAddress = true; |
| 1930 | } |
| 1931 | |
Chandler Carruth | 4d7ed39 | 2015-06-17 07:18:54 +0000 | [diff] [blame] | 1932 | MemoryLocation Loc = MemoryLocation::get(LD); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1933 | // The TBAA metadata could have a control dependency on the predication |
| 1934 | // condition, so we cannot rely on it when determining whether or not we |
| 1935 | // need runtime pointer checks. |
Adam Nemet | 0d1e8dd | 2015-02-18 03:43:19 +0000 | [diff] [blame] | 1936 | if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1937 | Loc.AATags.TBAA = nullptr; |
| 1938 | |
| 1939 | Accesses.addLoad(Loc, IsReadOnlyPtr); |
| 1940 | } |
| 1941 | |
| 1942 | // If we write (or read-write) to a single destination and there are no |
| 1943 | // other reads in this loop then is it safe to vectorize. |
| 1944 | if (NumReadWrites == 1 && NumReads == 0) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1945 | LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); |
Adam Nemet | 093a04b | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1946 | CanVecMem = true; |
| 1947 | return; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1948 | } |
| 1949 | |
| 1950 | // Build dependence sets and check whether we need a runtime pointer bounds |
| 1951 | // check. |
| 1952 | Accesses.buildDependenceSets(); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1953 | |
| 1954 | // Find pointers with computable bounds. We are going to use this information |
| 1955 | // to place a runtime bound check. |
Xinliang David Li | 6adce08 | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 1956 | bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), |
Adam Nemet | 2e5ed34 | 2016-06-16 08:27:03 +0000 | [diff] [blame] | 1957 | TheLoop, SymbolicStrides); |
Adam Nemet | 1c25d37 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 1958 | if (!CanDoRTIfNeeded) { |
Adam Nemet | 858cc93 | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1959 | recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1960 | LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " |
| 1961 | << "the array bounds.\n"); |
Adam Nemet | 093a04b | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1962 | CanVecMem = false; |
| 1963 | return; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1964 | } |
| 1965 | |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1966 | LLVM_DEBUG( |
| 1967 | dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1968 | |
Adam Nemet | 093a04b | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1969 | CanVecMem = true; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1970 | if (Accesses.isDependencyCheckNeeded()) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1971 | LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); |
Xinliang David Li | 42fe7e4 | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1972 | CanVecMem = DepChecker->areDepsSafe( |
Adam Nemet | 2e5ed34 | 2016-06-16 08:27:03 +0000 | [diff] [blame] | 1973 | DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); |
Xinliang David Li | 42fe7e4 | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1974 | MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1975 | |
Xinliang David Li | 42fe7e4 | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1976 | if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1977 | LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1978 | |
| 1979 | // Clear the dependency checks. We assume they are not needed. |
Xinliang David Li | 42fe7e4 | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1980 | Accesses.resetDepChecks(*DepChecker); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1981 | |
Xinliang David Li | 42fe7e4 | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1982 | PtrRtChecking->reset(); |
| 1983 | PtrRtChecking->Need = true; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1984 | |
Xinliang David Li | 6adce08 | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 1985 | auto *SE = PSE->getSE(); |
Xinliang David Li | 42fe7e4 | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 1986 | CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, |
Adam Nemet | 2e5ed34 | 2016-06-16 08:27:03 +0000 | [diff] [blame] | 1987 | SymbolicStrides, true); |
Silviu Baranga | a420a14 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 1988 | |
Adam Nemet | 73dff35 | 2015-03-10 19:12:41 +0000 | [diff] [blame] | 1989 | // Check that we found the bounds for the pointer. |
Adam Nemet | 1c25d37 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 1990 | if (!CanDoRTIfNeeded) { |
Adam Nemet | 858cc93 | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 1991 | recordAnalysis("CantCheckMemDepsAtRunTime") |
| 1992 | << "cannot check memory dependencies at runtime"; |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1993 | LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); |
Adam Nemet | 17c9aca | 2015-03-10 18:54:19 +0000 | [diff] [blame] | 1994 | CanVecMem = false; |
| 1995 | return; |
| 1996 | } |
| 1997 | |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1998 | CanVecMem = true; |
| 1999 | } |
| 2000 | } |
| 2001 | |
Adam Nemet | 31f1cc5 | 2015-03-10 21:47:39 +0000 | [diff] [blame] | 2002 | if (CanVecMem) |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2003 | LLVM_DEBUG( |
| 2004 | dbgs() << "LAA: No unsafe dependent memory operations in loop. We" |
| 2005 | << (PtrRtChecking->Need ? "" : " don't") |
| 2006 | << " need runtime memory checks.\n"); |
Adam Nemet | 31f1cc5 | 2015-03-10 21:47:39 +0000 | [diff] [blame] | 2007 | else { |
Adam Nemet | 858cc93 | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 2008 | recordAnalysis("UnsafeMemDep") |
Adam Nemet | 1b5ab63 | 2016-05-09 23:03:44 +0000 | [diff] [blame] | 2009 | << "unsafe dependent memory operations in loop. Use " |
| 2010 | "#pragma loop distribute(enable) to allow loop distribution " |
| 2011 | "to attempt to isolate the offending operations into a separate " |
Adam Nemet | 858cc93 | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 2012 | "loop"; |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2013 | LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); |
Adam Nemet | 31f1cc5 | 2015-03-10 21:47:39 +0000 | [diff] [blame] | 2014 | } |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 2015 | } |
| 2016 | |
Adam Nemet | 0d1e8dd | 2015-02-18 03:43:19 +0000 | [diff] [blame] | 2017 | bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, |
| 2018 | DominatorTree *DT) { |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 2019 | assert(TheLoop->contains(BB) && "Unknown block used"); |
| 2020 | |
| 2021 | // Blocks that do not dominate the latch need predication. |
| 2022 | BasicBlock* Latch = TheLoop->getLoopLatch(); |
| 2023 | return !DT->dominates(BB, Latch); |
| 2024 | } |
| 2025 | |
Adam Nemet | 858cc93 | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 2026 | OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, |
| 2027 | Instruction *I) { |
Adam Nemet | 7b507eb | 2015-02-19 19:14:56 +0000 | [diff] [blame] | 2028 | assert(!Report && "Multiple reports generated"); |
Adam Nemet | 858cc93 | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 2029 | |
| 2030 | Value *CodeRegion = TheLoop->getHeader(); |
| 2031 | DebugLoc DL = TheLoop->getStartLoc(); |
| 2032 | |
| 2033 | if (I) { |
| 2034 | CodeRegion = I->getParent(); |
| 2035 | // If there is no debug location attached to the instruction, revert back to |
| 2036 | // using the loop's. |
| 2037 | if (I->getDebugLoc()) |
| 2038 | DL = I->getDebugLoc(); |
| 2039 | } |
| 2040 | |
| 2041 | Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, |
| 2042 | CodeRegion); |
| 2043 | return *Report; |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 2044 | } |
| 2045 | |
Adam Nemet | b7e0193 | 2015-02-19 19:15:21 +0000 | [diff] [blame] | 2046 | bool LoopAccessInfo::isUniform(Value *V) const { |
Michael Kuperstein | e788186 | 2016-08-04 22:48:03 +0000 | [diff] [blame] | 2047 | auto *SE = PSE->getSE(); |
| 2048 | // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is |
| 2049 | // never considered uniform. |
| 2050 | // TODO: Is this really what we want? Even without FP SCEV, we may want some |
| 2051 | // trivially loop-invariant FP values to be considered uniform. |
| 2052 | if (!SE->isSCEVable(V->getType())) |
| 2053 | return false; |
| 2054 | return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); |
Adam Nemet | 2000a7c | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 2055 | } |
Adam Nemet | b3189ea | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2056 | |
| 2057 | // FIXME: this function is currently a duplicate of the one in |
| 2058 | // LoopVectorize.cpp. |
| 2059 | static Instruction *getFirstInst(Instruction *FirstInst, Value *V, |
| 2060 | Instruction *Loc) { |
| 2061 | if (FirstInst) |
| 2062 | return FirstInst; |
| 2063 | if (Instruction *I = dyn_cast<Instruction>(V)) |
| 2064 | return I->getParent() == Loc->getParent() ? I : nullptr; |
| 2065 | return nullptr; |
| 2066 | } |
| 2067 | |
Benjamin Kramer | 52482cc | 2015-10-28 13:54:36 +0000 | [diff] [blame] | 2068 | namespace { |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 2069 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 2070 | /// IR Values for the lower and upper bounds of a pointer evolution. We |
Adam Nemet | d4fd5e5 | 2015-08-21 23:19:57 +0000 | [diff] [blame] | 2071 | /// need to use value-handles because SCEV expansion can invalidate previously |
| 2072 | /// expanded values. Thus expansion of a pointer can invalidate the bounds for |
| 2073 | /// a previous one. |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2074 | struct PointerBounds { |
Adam Nemet | d4fd5e5 | 2015-08-21 23:19:57 +0000 | [diff] [blame] | 2075 | TrackingVH<Value> Start; |
| 2076 | TrackingVH<Value> End; |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2077 | }; |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 2078 | |
Benjamin Kramer | 52482cc | 2015-10-28 13:54:36 +0000 | [diff] [blame] | 2079 | } // end anonymous namespace |
Adam Nemet | b3189ea | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2080 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 2081 | /// Expand code for the lower and upper bound of the pointer group \p CG |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2082 | /// in \p TheLoop. \return the values for the bounds. |
| 2083 | static PointerBounds |
| 2084 | expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, |
| 2085 | Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, |
| 2086 | const RuntimePointerChecking &PtrRtChecking) { |
| 2087 | Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; |
| 2088 | const SCEV *Sc = SE->getSCEV(Ptr); |
| 2089 | |
Keno Fischer | 99ca522 | 2016-12-05 21:25:03 +0000 | [diff] [blame] | 2090 | unsigned AS = Ptr->getType()->getPointerAddressSpace(); |
| 2091 | LLVMContext &Ctx = Loc->getContext(); |
| 2092 | |
| 2093 | // Use this type for pointer arithmetic. |
| 2094 | Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); |
| 2095 | |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2096 | if (SE->isLoopInvariant(Sc, TheLoop)) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2097 | LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" |
| 2098 | << *Ptr << "\n"); |
Keno Fischer | 99ca522 | 2016-12-05 21:25:03 +0000 | [diff] [blame] | 2099 | // Ptr could be in the loop body. If so, expand a new one at the correct |
| 2100 | // location. |
| 2101 | Instruction *Inst = dyn_cast<Instruction>(Ptr); |
| 2102 | Value *NewPtr = (Inst && TheLoop->contains(Inst)) |
| 2103 | ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) |
| 2104 | : Ptr; |
James Molloy | 3a16856 | 2017-04-05 09:24:26 +0000 | [diff] [blame] | 2105 | // We must return a half-open range, which means incrementing Sc. |
| 2106 | const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); |
| 2107 | Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); |
| 2108 | return {NewPtr, NewPtrPlusOne}; |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2109 | } else { |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2110 | Value *Start = nullptr, *End = nullptr; |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2111 | LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2112 | Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); |
| 2113 | End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2114 | LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High |
| 2115 | << "\n"); |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2116 | return {Start, End}; |
| 2117 | } |
| 2118 | } |
| 2119 | |
Adrian Prantl | 26b584c | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 2120 | /// Turns a collection of checks into a collection of expanded upper and |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2121 | /// lower bounds for both pointers in the check. |
| 2122 | static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( |
| 2123 | const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, |
| 2124 | Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, |
| 2125 | const RuntimePointerChecking &PtrRtChecking) { |
| 2126 | SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; |
| 2127 | |
| 2128 | // Here we're relying on the SCEV Expander's cache to only emit code for the |
| 2129 | // same bounds once. |
David Majnemer | ac0eb3d | 2016-08-12 04:32:42 +0000 | [diff] [blame] | 2130 | transform( |
| 2131 | PointerChecks, std::back_inserter(ChecksWithBounds), |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2132 | [&](const RuntimePointerChecking::PointerCheck &Check) { |
NAKAMURA Takumi | 845a30e | 2015-07-27 01:35:30 +0000 | [diff] [blame] | 2133 | PointerBounds |
| 2134 | First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), |
| 2135 | Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); |
| 2136 | return std::make_pair(First, Second); |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2137 | }); |
| 2138 | |
| 2139 | return ChecksWithBounds; |
| 2140 | } |
| 2141 | |
Adam Nemet | 5bcbae6 | 2015-08-11 00:09:37 +0000 | [diff] [blame] | 2142 | std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2143 | Instruction *Loc, |
| 2144 | const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) |
| 2145 | const { |
Adam Nemet | f5d4047 | 2016-07-13 22:18:51 +0000 | [diff] [blame] | 2146 | const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); |
Xinliang David Li | 6adce08 | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 2147 | auto *SE = PSE->getSE(); |
Adam Nemet | f5d4047 | 2016-07-13 22:18:51 +0000 | [diff] [blame] | 2148 | SCEVExpander Exp(*SE, DL, "induction"); |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2149 | auto ExpandedChecks = |
Xinliang David Li | 42fe7e4 | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 2150 | expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); |
Adam Nemet | b3189ea | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2151 | |
| 2152 | LLVMContext &Ctx = Loc->getContext(); |
Adam Nemet | b3189ea | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2153 | Instruction *FirstInst = nullptr; |
Adam Nemet | b3189ea | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2154 | IRBuilder<> ChkBuilder(Loc); |
| 2155 | // Our instructions might fold to a constant. |
| 2156 | Value *MemoryRuntimeCheck = nullptr; |
Silviu Baranga | 8bde857 | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 2157 | |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2158 | for (const auto &Check : ExpandedChecks) { |
| 2159 | const PointerBounds &A = Check.first, &B = Check.second; |
Adam Nemet | fc5268d | 2015-08-19 17:24:36 +0000 | [diff] [blame] | 2160 | // Check if two pointers (A and B) conflict where conflict is computed as: |
| 2161 | // start(A) <= end(B) && start(B) <= end(A) |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2162 | unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); |
| 2163 | unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); |
Adam Nemet | b3189ea | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2164 | |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2165 | assert((AS0 == B.End->getType()->getPointerAddressSpace()) && |
| 2166 | (AS1 == A.End->getType()->getPointerAddressSpace()) && |
| 2167 | "Trying to bounds check pointers with different address spaces"); |
Adam Nemet | b3189ea | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2168 | |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2169 | Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); |
| 2170 | Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); |
Adam Nemet | b3189ea | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2171 | |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2172 | Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); |
| 2173 | Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); |
| 2174 | Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); |
| 2175 | Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); |
Adam Nemet | b3189ea | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2176 | |
Elena Demikhovsky | 1b2a850 | 2016-08-28 08:53:53 +0000 | [diff] [blame] | 2177 | // [A|B].Start points to the first accessed byte under base [A|B]. |
| 2178 | // [A|B].End points to the last accessed byte, plus one. |
| 2179 | // There is no conflict when the intervals are disjoint: |
| 2180 | // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) |
| 2181 | // |
| 2182 | // bound0 = (B.Start < A.End) |
| 2183 | // bound1 = (A.Start < B.End) |
| 2184 | // IsConflict = bound0 & bound1 |
| 2185 | Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2186 | FirstInst = getFirstInst(FirstInst, Cmp0, Loc); |
Elena Demikhovsky | 1b2a850 | 2016-08-28 08:53:53 +0000 | [diff] [blame] | 2187 | Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2188 | FirstInst = getFirstInst(FirstInst, Cmp1, Loc); |
| 2189 | Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); |
| 2190 | FirstInst = getFirstInst(FirstInst, IsConflict, Loc); |
| 2191 | if (MemoryRuntimeCheck) { |
| 2192 | IsConflict = |
| 2193 | ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); |
Adam Nemet | b3189ea | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2194 | FirstInst = getFirstInst(FirstInst, IsConflict, Loc); |
Adam Nemet | b3189ea | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2195 | } |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2196 | MemoryRuntimeCheck = IsConflict; |
Adam Nemet | b3189ea | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2197 | } |
| 2198 | |
Adam Nemet | e1aa33fb | 2015-04-02 17:51:57 +0000 | [diff] [blame] | 2199 | if (!MemoryRuntimeCheck) |
| 2200 | return std::make_pair(nullptr, nullptr); |
| 2201 | |
Adam Nemet | b3189ea | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 2202 | // We have to do this trickery because the IRBuilder might fold the check to a |
| 2203 | // constant expression in which case there is no Instruction anchored in a |
| 2204 | // the block. |
| 2205 | Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, |
| 2206 | ConstantInt::getTrue(Ctx)); |
| 2207 | ChkBuilder.Insert(Check, "memcheck.conflict"); |
| 2208 | FirstInst = getFirstInst(FirstInst, Check, Loc); |
| 2209 | return std::make_pair(FirstInst, Check); |
| 2210 | } |
Adam Nemet | 0ea25c2 | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2211 | |
Adam Nemet | 5bcbae6 | 2015-08-11 00:09:37 +0000 | [diff] [blame] | 2212 | std::pair<Instruction *, Instruction *> |
| 2213 | LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { |
Xinliang David Li | 42fe7e4 | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 2214 | if (!PtrRtChecking->Need) |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2215 | return std::make_pair(nullptr, nullptr); |
| 2216 | |
Xinliang David Li | 42fe7e4 | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 2217 | return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); |
Adam Nemet | 09fa5a5 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 2218 | } |
| 2219 | |
Adam Nemet | d448b5e | 2016-06-16 22:57:55 +0000 | [diff] [blame] | 2220 | void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { |
| 2221 | Value *Ptr = nullptr; |
| 2222 | if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) |
| 2223 | Ptr = LI->getPointerOperand(); |
| 2224 | else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) |
| 2225 | Ptr = SI->getPointerOperand(); |
| 2226 | else |
| 2227 | return; |
| 2228 | |
Xinliang David Li | 6adce08 | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 2229 | Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); |
Adam Nemet | d448b5e | 2016-06-16 22:57:55 +0000 | [diff] [blame] | 2230 | if (!Stride) |
| 2231 | return; |
| 2232 | |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2233 | LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " |
| 2234 | "versioning:"); |
| 2235 | LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); |
Dorit Nuzman | ee5e318 | 2017-11-05 16:53:15 +0000 | [diff] [blame] | 2236 | |
Fangrui Song | af7b183 | 2018-07-30 19:41:25 +0000 | [diff] [blame] | 2237 | // Avoid adding the "Stride == 1" predicate when we know that |
Dorit Nuzman | ee5e318 | 2017-11-05 16:53:15 +0000 | [diff] [blame] | 2238 | // Stride >= Trip-Count. Such a predicate will effectively optimize a single |
| 2239 | // or zero iteration loop, as Trip-Count <= Stride == 1. |
Fangrui Song | af7b183 | 2018-07-30 19:41:25 +0000 | [diff] [blame] | 2240 | // |
Dorit Nuzman | ee5e318 | 2017-11-05 16:53:15 +0000 | [diff] [blame] | 2241 | // TODO: We are currently not making a very informed decision on when it is |
| 2242 | // beneficial to apply stride versioning. It might make more sense that the |
Fangrui Song | af7b183 | 2018-07-30 19:41:25 +0000 | [diff] [blame] | 2243 | // users of this analysis (such as the vectorizer) will trigger it, based on |
| 2244 | // their specific cost considerations; For example, in cases where stride |
Dorit Nuzman | ee5e318 | 2017-11-05 16:53:15 +0000 | [diff] [blame] | 2245 | // versioning does not help resolving memory accesses/dependences, the |
Fangrui Song | af7b183 | 2018-07-30 19:41:25 +0000 | [diff] [blame] | 2246 | // vectorizer should evaluate the cost of the runtime test, and the benefit |
| 2247 | // of various possible stride specializations, considering the alternatives |
| 2248 | // of using gather/scatters (if available). |
| 2249 | |
Dorit Nuzman | ee5e318 | 2017-11-05 16:53:15 +0000 | [diff] [blame] | 2250 | const SCEV *StrideExpr = PSE->getSCEV(Stride); |
Fangrui Song | af7b183 | 2018-07-30 19:41:25 +0000 | [diff] [blame] | 2251 | const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); |
Dorit Nuzman | ee5e318 | 2017-11-05 16:53:15 +0000 | [diff] [blame] | 2252 | |
| 2253 | // Match the types so we can compare the stride and the BETakenCount. |
Fangrui Song | af7b183 | 2018-07-30 19:41:25 +0000 | [diff] [blame] | 2254 | // The Stride can be positive/negative, so we sign extend Stride; |
Dorit Nuzman | ee5e318 | 2017-11-05 16:53:15 +0000 | [diff] [blame] | 2255 | // The backdgeTakenCount is non-negative, so we zero extend BETakenCount. |
| 2256 | const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); |
| 2257 | uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); |
| 2258 | uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); |
| 2259 | const SCEV *CastedStride = StrideExpr; |
| 2260 | const SCEV *CastedBECount = BETakenCount; |
| 2261 | ScalarEvolution *SE = PSE->getSE(); |
| 2262 | if (BETypeSize >= StrideTypeSize) |
| 2263 | CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); |
| 2264 | else |
| 2265 | CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); |
| 2266 | const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); |
| 2267 | // Since TripCount == BackEdgeTakenCount + 1, checking: |
Fangrui Song | af7b183 | 2018-07-30 19:41:25 +0000 | [diff] [blame] | 2268 | // "Stride >= TripCount" is equivalent to checking: |
Dorit Nuzman | ee5e318 | 2017-11-05 16:53:15 +0000 | [diff] [blame] | 2269 | // Stride - BETakenCount > 0 |
| 2270 | if (SE->isKnownPositive(StrideMinusBETaken)) { |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2271 | LLVM_DEBUG( |
| 2272 | dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " |
| 2273 | "Stride==1 predicate will imply that the loop executes " |
| 2274 | "at most once.\n"); |
Dorit Nuzman | ee5e318 | 2017-11-05 16:53:15 +0000 | [diff] [blame] | 2275 | return; |
Nicola Zaghen | 0818e78 | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2276 | } |
| 2277 | LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); |
Dorit Nuzman | ee5e318 | 2017-11-05 16:53:15 +0000 | [diff] [blame] | 2278 | |
Adam Nemet | d448b5e | 2016-06-16 22:57:55 +0000 | [diff] [blame] | 2279 | SymbolicStrides[Ptr] = Stride; |
| 2280 | StrideSet.insert(Stride); |
| 2281 | } |
| 2282 | |
Adam Nemet | 0ea25c2 | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2283 | LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, |
Adam Nemet | 0ea25c2 | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2284 | const TargetLibraryInfo *TLI, AliasAnalysis *AA, |
Adam Nemet | b7720e0 | 2016-06-17 22:35:41 +0000 | [diff] [blame] | 2285 | DominatorTree *DT, LoopInfo *LI) |
Xinliang David Li | 6adce08 | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 2286 | : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), |
Xinliang David Li | 42fe7e4 | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 2287 | PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), |
Xinliang David Li | 6adce08 | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 2288 | DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), |
Adam Nemet | 81c98a7 | 2016-07-13 22:36:35 +0000 | [diff] [blame] | 2289 | NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), |
Anna Thomas | 0048f91 | 2018-11-19 15:39:59 +0000 | [diff] [blame] | 2290 | HasDependenceInvolvingLoopInvariantAddress(false) { |
Adam Nemet | 5c4c262 | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 2291 | if (canAnalyzeLoop()) |
Adam Nemet | 81c98a7 | 2016-07-13 22:36:35 +0000 | [diff] [blame] | 2292 | analyzeLoop(AA, LI, TLI, DT); |
Adam Nemet | 0ea25c2 | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2293 | } |
| 2294 | |
Adam Nemet | c182ce0 | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2295 | void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { |
| 2296 | if (CanVecMem) { |
Adam Nemet | 1903559 | 2016-05-13 22:49:09 +0000 | [diff] [blame] | 2297 | OS.indent(Depth) << "Memory dependences are safe"; |
David Majnemer | a609ccd | 2016-07-07 06:24:36 +0000 | [diff] [blame] | 2298 | if (MaxSafeDepDistBytes != -1ULL) |
Adam Nemet | 27aef50 | 2016-05-13 22:49:13 +0000 | [diff] [blame] | 2299 | OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes |
| 2300 | << " bytes"; |
Xinliang David Li | 42fe7e4 | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 2301 | if (PtrRtChecking->Need) |
Adam Nemet | 1903559 | 2016-05-13 22:49:09 +0000 | [diff] [blame] | 2302 | OS << " with run-time checks"; |
| 2303 | OS << "\n"; |
Adam Nemet | c182ce0 | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2304 | } |
| 2305 | |
| 2306 | if (Report) |
Adam Nemet | 858cc93 | 2016-09-30 00:01:30 +0000 | [diff] [blame] | 2307 | OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; |
Adam Nemet | c182ce0 | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2308 | |
Xinliang David Li | 42fe7e4 | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 2309 | if (auto *Dependences = DepChecker->getDependences()) { |
Adam Nemet | 7d1e09e | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 2310 | OS.indent(Depth) << "Dependences:\n"; |
| 2311 | for (auto &Dep : *Dependences) { |
Xinliang David Li | 42fe7e4 | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 2312 | Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); |
Adam Nemet | 8e7d56f | 2015-03-10 17:40:43 +0000 | [diff] [blame] | 2313 | OS << "\n"; |
| 2314 | } |
| 2315 | } else |
Adam Nemet | 7d1e09e | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 2316 | OS.indent(Depth) << "Too many dependences, not recorded\n"; |
Adam Nemet | c182ce0 | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2317 | |
| 2318 | // List the pair of accesses need run-time checks to prove independence. |
Xinliang David Li | 42fe7e4 | 2016-06-22 23:20:59 +0000 | [diff] [blame] | 2319 | PtrRtChecking->print(OS, Depth); |
Adam Nemet | c182ce0 | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2320 | OS << "\n"; |
Adam Nemet | 2f2bbe4 | 2015-05-18 15:36:57 +0000 | [diff] [blame] | 2321 | |
Anna Thomas | 0048f91 | 2018-11-19 15:39:59 +0000 | [diff] [blame] | 2322 | OS.indent(Depth) << "Non vectorizable stores to invariant address were " |
| 2323 | << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") |
Adam Nemet | 2f2bbe4 | 2015-05-18 15:36:57 +0000 | [diff] [blame] | 2324 | << "found in loop.\n"; |
Silviu Baranga | a0b73c2 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 2325 | |
| 2326 | OS.indent(Depth) << "SCEV assumptions:\n"; |
Xinliang David Li | 6adce08 | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 2327 | PSE->getUnionPredicate().print(OS, Depth); |
Silviu Baranga | 5cb657f | 2016-04-14 16:08:45 +0000 | [diff] [blame] | 2328 | |
| 2329 | OS << "\n"; |
| 2330 | |
| 2331 | OS.indent(Depth) << "Expressions re-written:\n"; |
Xinliang David Li | 6adce08 | 2016-07-01 05:59:55 +0000 | [diff] [blame] | 2332 | PSE->print(OS, Depth); |
Adam Nemet | c182ce0 | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2333 | } |
| 2334 | |
Xinliang David Li | e042fe5 | 2016-07-08 20:55:26 +0000 | [diff] [blame] | 2335 | const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { |
Adam Nemet | 0ea25c2 | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2336 | auto &LAI = LoopAccessInfoMap[L]; |
| 2337 | |
Adam Nemet | f5d4047 | 2016-07-13 22:18:51 +0000 | [diff] [blame] | 2338 | if (!LAI) |
| 2339 | LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); |
| 2340 | |
Adam Nemet | 0ea25c2 | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2341 | return *LAI.get(); |
| 2342 | } |
| 2343 | |
Xinliang David Li | e042fe5 | 2016-07-08 20:55:26 +0000 | [diff] [blame] | 2344 | void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { |
| 2345 | LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); |
Xinliang David Li | 035a5a9 | 2016-06-09 03:22:39 +0000 | [diff] [blame] | 2346 | |
Adam Nemet | c182ce0 | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2347 | for (Loop *TopLevelLoop : *LI) |
| 2348 | for (Loop *L : depth_first(TopLevelLoop)) { |
| 2349 | OS.indent(2) << L->getHeader()->getName() << ":\n"; |
Adam Nemet | 08e6f75 | 2016-06-16 08:26:56 +0000 | [diff] [blame] | 2350 | auto &LAI = LAA.getInfo(L); |
Adam Nemet | c182ce0 | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2351 | LAI.print(OS, 4); |
| 2352 | } |
| 2353 | } |
| 2354 | |
Xinliang David Li | e042fe5 | 2016-07-08 20:55:26 +0000 | [diff] [blame] | 2355 | bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { |
Xinliang David Li | 035a5a9 | 2016-06-09 03:22:39 +0000 | [diff] [blame] | 2356 | SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
Adam Nemet | 0ea25c2 | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2357 | auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); |
Xinliang David Li | 035a5a9 | 2016-06-09 03:22:39 +0000 | [diff] [blame] | 2358 | TLI = TLIP ? &TLIP->getTLI() : nullptr; |
| 2359 | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| 2360 | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 2361 | LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
Adam Nemet | 0ea25c2 | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2362 | |
| 2363 | return false; |
| 2364 | } |
| 2365 | |
Xinliang David Li | e042fe5 | 2016-07-08 20:55:26 +0000 | [diff] [blame] | 2366 | void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { |
Chandler Carruth | bfe1f1c | 2015-08-17 02:08:17 +0000 | [diff] [blame] | 2367 | AU.addRequired<ScalarEvolutionWrapperPass>(); |
Chandler Carruth | 9146833 | 2015-09-09 17:55:00 +0000 | [diff] [blame] | 2368 | AU.addRequired<AAResultsWrapperPass>(); |
Adam Nemet | 0ea25c2 | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2369 | AU.addRequired<DominatorTreeWrapperPass>(); |
Adam Nemet | c182ce0 | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2370 | AU.addRequired<LoopInfoWrapperPass>(); |
Adam Nemet | 0ea25c2 | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2371 | |
| 2372 | AU.setPreservesAll(); |
| 2373 | } |
| 2374 | |
Xinliang David Li | e042fe5 | 2016-07-08 20:55:26 +0000 | [diff] [blame] | 2375 | char LoopAccessLegacyAnalysis::ID = 0; |
Adam Nemet | 0ea25c2 | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2376 | static const char laa_name[] = "Loop Access Analysis"; |
| 2377 | #define LAA_NAME "loop-accesses" |
| 2378 | |
Xinliang David Li | e042fe5 | 2016-07-08 20:55:26 +0000 | [diff] [blame] | 2379 | INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) |
Chandler Carruth | 9146833 | 2015-09-09 17:55:00 +0000 | [diff] [blame] | 2380 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
Chandler Carruth | bfe1f1c | 2015-08-17 02:08:17 +0000 | [diff] [blame] | 2381 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
Adam Nemet | 0ea25c2 | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2382 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
Adam Nemet | c182ce0 | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 2383 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
Xinliang David Li | e042fe5 | 2016-07-08 20:55:26 +0000 | [diff] [blame] | 2384 | INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) |
Adam Nemet | 0ea25c2 | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2385 | |
Chandler Carruth | 33d5681 | 2016-11-23 17:53:26 +0000 | [diff] [blame] | 2386 | AnalysisKey LoopAccessAnalysis::Key; |
Xinliang David Li | 10b22c8 | 2016-07-02 21:18:40 +0000 | [diff] [blame] | 2387 | |
Chandler Carruth | d27a39a | 2017-01-11 06:23:21 +0000 | [diff] [blame] | 2388 | LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, |
| 2389 | LoopStandardAnalysisResults &AR) { |
| 2390 | return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); |
Xinliang David Li | 10b22c8 | 2016-07-02 21:18:40 +0000 | [diff] [blame] | 2391 | } |
| 2392 | |
Adam Nemet | 0ea25c2 | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2393 | namespace llvm { |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 2394 | |
Adam Nemet | 0ea25c2 | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2395 | Pass *createLAAPass() { |
Xinliang David Li | e042fe5 | 2016-07-08 20:55:26 +0000 | [diff] [blame] | 2396 | return new LoopAccessLegacyAnalysis(); |
Adam Nemet | 0ea25c2 | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 2397 | } |
Eugene Zelenko | c02caf5 | 2016-11-30 17:48:10 +0000 | [diff] [blame] | 2398 | |
| 2399 | } // end namespace llvm |