Martin Elshuber | 5e067bb | 2018-11-19 14:26:10 +0000 | [diff] [blame] | 1 | //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // \file |
| 11 | // |
| 12 | // This file defines the interleaved-load-combine pass. The pass searches for |
| 13 | // ShuffleVectorInstruction that execute interleaving loads. If a matching |
| 14 | // pattern is found, it adds a combined load and further instructions in a |
| 15 | // pattern that is detectable by InterleavedAccesPass. The old instructions are |
| 16 | // left dead to be removed later. The pass is specifically designed to be |
| 17 | // executed just before InterleavedAccesPass to find any left-over instances |
| 18 | // that are not detected within former passes. |
| 19 | // |
| 20 | //===----------------------------------------------------------------------===// |
| 21 | |
| 22 | #include "llvm/ADT/Statistic.h" |
| 23 | #include "llvm/Analysis/MemoryLocation.h" |
| 24 | #include "llvm/Analysis/MemorySSA.h" |
| 25 | #include "llvm/Analysis/MemorySSAUpdater.h" |
| 26 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 27 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 28 | #include "llvm/CodeGen/Passes.h" |
| 29 | #include "llvm/CodeGen/TargetLowering.h" |
| 30 | #include "llvm/CodeGen/TargetPassConfig.h" |
| 31 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 32 | #include "llvm/IR/DataLayout.h" |
| 33 | #include "llvm/IR/Dominators.h" |
| 34 | #include "llvm/IR/Function.h" |
| 35 | #include "llvm/IR/Instructions.h" |
| 36 | #include "llvm/IR/LegacyPassManager.h" |
| 37 | #include "llvm/IR/Module.h" |
| 38 | #include "llvm/Pass.h" |
| 39 | #include "llvm/Support/Debug.h" |
| 40 | #include "llvm/Support/ErrorHandling.h" |
| 41 | #include "llvm/Support/raw_ostream.h" |
| 42 | #include "llvm/Target/TargetMachine.h" |
Martin Elshuber | 5e067bb | 2018-11-19 14:26:10 +0000 | [diff] [blame] | 43 | |
| 44 | #include <algorithm> |
| 45 | #include <cassert> |
| 46 | #include <list> |
| 47 | |
| 48 | using namespace llvm; |
| 49 | |
| 50 | #define DEBUG_TYPE "interleaved-load-combine" |
| 51 | |
| 52 | namespace { |
| 53 | |
| 54 | /// Statistic counter |
| 55 | STATISTIC(NumInterleavedLoadCombine, "Number of combined loads"); |
| 56 | |
| 57 | /// Option to disable the pass |
| 58 | static cl::opt<bool> DisableInterleavedLoadCombine( |
| 59 | "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden, |
| 60 | cl::desc("Disable combining of interleaved loads")); |
| 61 | |
| 62 | struct VectorInfo; |
| 63 | |
| 64 | struct InterleavedLoadCombineImpl { |
| 65 | public: |
| 66 | InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA, |
| 67 | TargetMachine &TM) |
| 68 | : F(F), DT(DT), MSSA(MSSA), |
| 69 | TLI(*TM.getSubtargetImpl(F)->getTargetLowering()), |
| 70 | TTI(TM.getTargetTransformInfo(F)) {} |
| 71 | |
| 72 | /// Scan the function for interleaved load candidates and execute the |
| 73 | /// replacement if applicable. |
| 74 | bool run(); |
| 75 | |
| 76 | private: |
| 77 | /// Function this pass is working on |
| 78 | Function &F; |
| 79 | |
| 80 | /// Dominator Tree Analysis |
| 81 | DominatorTree &DT; |
| 82 | |
| 83 | /// Memory Alias Analyses |
| 84 | MemorySSA &MSSA; |
| 85 | |
| 86 | /// Target Lowering Information |
| 87 | const TargetLowering &TLI; |
| 88 | |
| 89 | /// Target Transform Information |
| 90 | const TargetTransformInfo TTI; |
| 91 | |
| 92 | /// Find the instruction in sets LIs that dominates all others, return nullptr |
| 93 | /// if there is none. |
| 94 | LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs); |
| 95 | |
| 96 | /// Replace interleaved load candidates. It does additional |
| 97 | /// analyses if this makes sense. Returns true on success and false |
| 98 | /// of nothing has been changed. |
| 99 | bool combine(std::list<VectorInfo> &InterleavedLoad, |
| 100 | OptimizationRemarkEmitter &ORE); |
| 101 | |
| 102 | /// Given a set of VectorInfo containing candidates for a given interleave |
| 103 | /// factor, find a set that represents a 'factor' interleaved load. |
| 104 | bool findPattern(std::list<VectorInfo> &Candidates, |
| 105 | std::list<VectorInfo> &InterleavedLoad, unsigned Factor, |
| 106 | const DataLayout &DL); |
| 107 | }; // InterleavedLoadCombine |
| 108 | |
| 109 | /// First Order Polynomial on an n-Bit Integer Value |
| 110 | /// |
| 111 | /// Polynomial(Value) = Value * B + A + E*2^(n-e) |
| 112 | /// |
| 113 | /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most |
| 114 | /// significant bits. It is introduced if an exact computation cannot be proven |
| 115 | /// (e.q. division by 2). |
| 116 | /// |
| 117 | /// As part of this optimization multiple loads will be combined. It necessary |
| 118 | /// to prove that loads are within some relative offset to each other. This |
| 119 | /// class is used to prove relative offsets of values loaded from memory. |
| 120 | /// |
| 121 | /// Representing an integer in this form is sound since addition in two's |
| 122 | /// complement is associative (trivial) and multiplication distributes over the |
| 123 | /// addition (see Proof(1) in Polynomial::mul). Further, both operations |
| 124 | /// commute. |
| 125 | // |
| 126 | // Example: |
| 127 | // declare @fn(i64 %IDX, <4 x float>* %PTR) { |
| 128 | // %Pa1 = add i64 %IDX, 2 |
| 129 | // %Pa2 = lshr i64 %Pa1, 1 |
| 130 | // %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2 |
| 131 | // %Va = load <4 x float>, <4 x float>* %Pa3 |
| 132 | // |
| 133 | // %Pb1 = add i64 %IDX, 4 |
| 134 | // %Pb2 = lshr i64 %Pb1, 1 |
| 135 | // %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2 |
| 136 | // %Vb = load <4 x float>, <4 x float>* %Pb3 |
| 137 | // ... } |
| 138 | // |
| 139 | // The goal is to prove that two loads load consecutive addresses. |
| 140 | // |
| 141 | // In this case the polynomials are constructed by the following |
| 142 | // steps. |
| 143 | // |
| 144 | // The number tag #e specifies the error bits. |
| 145 | // |
| 146 | // Pa_0 = %IDX #0 |
| 147 | // Pa_1 = %IDX + 2 #0 | add 2 |
| 148 | // Pa_2 = %IDX/2 + 1 #1 | lshr 1 |
| 149 | // Pa_3 = %IDX/2 + 1 #1 | GEP, step signext to i64 |
| 150 | // Pa_4 = (%IDX/2)*16 + 16 #0 | GEP, multiply index by sizeof(4) for floats |
| 151 | // Pa_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components |
| 152 | // |
| 153 | // Pb_0 = %IDX #0 |
| 154 | // Pb_1 = %IDX + 4 #0 | add 2 |
| 155 | // Pb_2 = %IDX/2 + 2 #1 | lshr 1 |
| 156 | // Pb_3 = %IDX/2 + 2 #1 | GEP, step signext to i64 |
| 157 | // Pb_4 = (%IDX/2)*16 + 32 #0 | GEP, multiply index by sizeof(4) for floats |
| 158 | // Pb_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components |
| 159 | // |
| 160 | // Pb_5 - Pa_5 = 16 #0 | subtract to get the offset |
| 161 | // |
| 162 | // Remark: %PTR is not maintained within this class. So in this instance the |
| 163 | // offset of 16 can only be assumed if the pointers are equal. |
| 164 | // |
| 165 | class Polynomial { |
| 166 | /// Operations on B |
| 167 | enum BOps { |
| 168 | LShr, |
| 169 | Mul, |
| 170 | SExt, |
| 171 | Trunc, |
| 172 | }; |
| 173 | |
| 174 | /// Number of Error Bits e |
| 175 | unsigned ErrorMSBs; |
| 176 | |
| 177 | /// Value |
| 178 | Value *V; |
| 179 | |
| 180 | /// Coefficient B |
| 181 | SmallVector<std::pair<BOps, APInt>, 4> B; |
| 182 | |
| 183 | /// Coefficient A |
| 184 | APInt A; |
| 185 | |
| 186 | public: |
| 187 | Polynomial(Value *V) : ErrorMSBs((unsigned)-1), V(V), B(), A() { |
| 188 | IntegerType *Ty = dyn_cast<IntegerType>(V->getType()); |
| 189 | if (Ty) { |
| 190 | ErrorMSBs = 0; |
| 191 | this->V = V; |
| 192 | A = APInt(Ty->getBitWidth(), 0); |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | Polynomial(const APInt &A, unsigned ErrorMSBs = 0) |
| 197 | : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(A) {} |
| 198 | |
| 199 | Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0) |
| 200 | : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(BitWidth, A) {} |
| 201 | |
| 202 | Polynomial() : ErrorMSBs((unsigned)-1), V(NULL), B(), A() {} |
| 203 | |
| 204 | /// Increment and clamp the number of undefined bits. |
| 205 | void incErrorMSBs(unsigned amt) { |
| 206 | if (ErrorMSBs == (unsigned)-1) |
| 207 | return; |
| 208 | |
| 209 | ErrorMSBs += amt; |
| 210 | if (ErrorMSBs > A.getBitWidth()) |
| 211 | ErrorMSBs = A.getBitWidth(); |
| 212 | } |
| 213 | |
| 214 | /// Decrement and clamp the number of undefined bits. |
| 215 | void decErrorMSBs(unsigned amt) { |
| 216 | if (ErrorMSBs == (unsigned)-1) |
| 217 | return; |
| 218 | |
| 219 | if (ErrorMSBs > amt) |
| 220 | ErrorMSBs -= amt; |
| 221 | else |
| 222 | ErrorMSBs = 0; |
| 223 | } |
| 224 | |
| 225 | /// Apply an add on the polynomial |
| 226 | Polynomial &add(const APInt &C) { |
| 227 | // Note: Addition is associative in two's complement even when in case of |
| 228 | // signed overflow. |
| 229 | // |
| 230 | // Error bits can only propagate into higher significant bits. As these are |
| 231 | // already regarded as undefined, there is no change. |
| 232 | // |
| 233 | // Theorem: Adding a constant to a polynomial does not change the error |
| 234 | // term. |
| 235 | // |
| 236 | // Proof: |
| 237 | // |
| 238 | // Since the addition is associative and commutes: |
| 239 | // |
| 240 | // (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e) |
| 241 | // [qed] |
| 242 | |
| 243 | if (C.getBitWidth() != A.getBitWidth()) { |
| 244 | ErrorMSBs = (unsigned)-1; |
| 245 | return *this; |
| 246 | } |
| 247 | |
| 248 | A += C; |
| 249 | return *this; |
| 250 | } |
| 251 | |
| 252 | /// Apply a multiplication onto the polynomial. |
| 253 | Polynomial &mul(const APInt &C) { |
| 254 | // Note: Multiplication distributes over the addition |
| 255 | // |
| 256 | // Theorem: Multiplication distributes over the addition |
| 257 | // |
| 258 | // Proof(1): |
| 259 | // |
| 260 | // (B+A)*C =- |
| 261 | // = (B + A) + (B + A) + .. {C Times} |
| 262 | // addition is associative and commutes, hence |
| 263 | // = B + B + .. {C Times} .. + A + A + .. {C times} |
| 264 | // = B*C + A*C |
| 265 | // (see (function add) for signed values and overflows) |
| 266 | // [qed] |
| 267 | // |
| 268 | // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out |
| 269 | // to the left. |
| 270 | // |
| 271 | // Proof(2): |
| 272 | // |
| 273 | // Let B' and A' be the n-Bit inputs with some unknown errors EA, |
| 274 | // EB at e leading bits. B' and A' can be written down as: |
| 275 | // |
| 276 | // B' = B + 2^(n-e)*EB |
| 277 | // A' = A + 2^(n-e)*EA |
| 278 | // |
| 279 | // Let C' be an input with c trailing zero bits. C' can be written as |
| 280 | // |
| 281 | // C' = C*2^c |
| 282 | // |
| 283 | // Therefore we can compute the result by using distributivity and |
| 284 | // commutativity. |
| 285 | // |
| 286 | // (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' = |
| 287 | // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = |
| 288 | // = (B'+A') * C' = |
| 289 | // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = |
| 290 | // = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' = |
| 291 | // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' = |
| 292 | // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c = |
| 293 | // = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c = |
| 294 | // |
| 295 | // Let EC be the final error with EC = C*(EB + EA) |
| 296 | // |
| 297 | // = (B + A)*C' + EC*2^(n-e)*2^c = |
| 298 | // = (B + A)*C' + EC*2^(n-(e-c)) |
| 299 | // |
| 300 | // Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c |
| 301 | // less error bits than the input. c bits are shifted out to the left. |
| 302 | // [qed] |
| 303 | |
| 304 | if (C.getBitWidth() != A.getBitWidth()) { |
| 305 | ErrorMSBs = (unsigned)-1; |
| 306 | return *this; |
| 307 | } |
| 308 | |
| 309 | // Multiplying by one is a no-op. |
| 310 | if (C.isOneValue()) { |
| 311 | return *this; |
| 312 | } |
| 313 | |
| 314 | // Multiplying by zero removes the coefficient B and defines all bits. |
| 315 | if (C.isNullValue()) { |
| 316 | ErrorMSBs = 0; |
| 317 | deleteB(); |
| 318 | } |
| 319 | |
| 320 | // See Proof(2): Trailing zero bits indicate a left shift. This removes |
| 321 | // leading bits from the result even if they are undefined. |
| 322 | decErrorMSBs(C.countTrailingZeros()); |
| 323 | |
| 324 | A *= C; |
| 325 | pushBOperation(Mul, C); |
| 326 | return *this; |
| 327 | } |
| 328 | |
| 329 | /// Apply a logical shift right on the polynomial |
| 330 | Polynomial &lshr(const APInt &C) { |
| 331 | // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e') |
| 332 | // where |
| 333 | // e' = e + 1, |
| 334 | // E is a e-bit number, |
| 335 | // E' is a e'-bit number, |
| 336 | // holds under the following precondition: |
| 337 | // pre(1): A % 2 = 0 |
| 338 | // pre(2): e < n, (see Theorem(2) for the trivial case with e=n) |
| 339 | // where >> expresses a logical shift to the right, with adding zeros. |
| 340 | // |
| 341 | // We need to show that for every, E there is a E' |
| 342 | // |
| 343 | // B = b_h * 2^(n-1) + b_m * 2 + b_l |
| 344 | // A = a_h * 2^(n-1) + a_m * 2 (pre(1)) |
| 345 | // |
| 346 | // where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers |
| 347 | // |
| 348 | // Let X = (B + A + E*2^(n-e)) >> 1 |
| 349 | // Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1 |
| 350 | // |
| 351 | // X = [B + A + E*2^(n-e)] >> 1 = |
| 352 | // = [ b_h * 2^(n-1) + b_m * 2 + b_l + |
| 353 | // + a_h * 2^(n-1) + a_m * 2 + |
| 354 | // + E * 2^(n-e) ] >> 1 = |
| 355 | // |
| 356 | // The sum is built by putting the overflow of [a_m + b+n] into the term |
| 357 | // 2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within |
| 358 | // this bit is discarded. This is expressed by % 2. |
| 359 | // |
| 360 | // The bit in position 0 cannot overflow into the term (b_m + a_m). |
| 361 | // |
| 362 | // = [ ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) + |
| 363 | // + ((b_m + a_m) % 2^(n-2)) * 2 + |
| 364 | // + b_l + E * 2^(n-e) ] >> 1 = |
| 365 | // |
| 366 | // The shift is computed by dividing the terms by 2 and by cutting off |
| 367 | // b_l. |
| 368 | // |
| 369 | // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + |
| 370 | // + ((b_m + a_m) % 2^(n-2)) + |
| 371 | // + E * 2^(n-(e+1)) = |
| 372 | // |
| 373 | // by the definition in the Theorem e+1 = e' |
| 374 | // |
| 375 | // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + |
| 376 | // + ((b_m + a_m) % 2^(n-2)) + |
| 377 | // + E * 2^(n-e') = |
| 378 | // |
| 379 | // Compute Y by applying distributivity first |
| 380 | // |
| 381 | // Y = (B >> 1) + (A >> 1) + E*2^(n-e') = |
| 382 | // = (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 + |
| 383 | // + (a_h * 2^(n-1) + a_m * 2) >> 1 + |
| 384 | // + E * 2^(n-e) >> 1 = |
| 385 | // |
| 386 | // Again, the shift is computed by dividing the terms by 2 and by cutting |
| 387 | // off b_l. |
| 388 | // |
| 389 | // = b_h * 2^(n-2) + b_m + |
| 390 | // + a_h * 2^(n-2) + a_m + |
| 391 | // + E * 2^(n-(e+1)) = |
| 392 | // |
| 393 | // Again, the sum is built by putting the overflow of [a_m + b+n] into |
| 394 | // the term 2^(n-1). But this time there is room for a second bit in the |
| 395 | // term 2^(n-2) we add this bit to a new term and denote it o_h in a |
| 396 | // second step. |
| 397 | // |
| 398 | // = ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) + |
| 399 | // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + |
| 400 | // + ((b_m + a_m) % 2^(n-2)) + |
| 401 | // + E * 2^(n-(e+1)) = |
| 402 | // |
| 403 | // Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1 |
| 404 | // Further replace e+1 by e'. |
| 405 | // |
| 406 | // = o_h * 2^(n-1) + |
| 407 | // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + |
| 408 | // + ((b_m + a_m) % 2^(n-2)) + |
| 409 | // + E * 2^(n-e') = |
| 410 | // |
| 411 | // Move o_h into the error term and construct E'. To ensure that there is |
| 412 | // no 2^x with negative x, this step requires pre(2) (e < n). |
| 413 | // |
| 414 | // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + |
| 415 | // + ((b_m + a_m) % 2^(n-2)) + |
| 416 | // + o_h * 2^(e'-1) * 2^(n-e') + | pre(2), move 2^(e'-1) |
| 417 | // | out of the old exponent |
| 418 | // + E * 2^(n-e') = |
| 419 | // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + |
| 420 | // + ((b_m + a_m) % 2^(n-2)) + |
| 421 | // + [o_h * 2^(e'-1) + E] * 2^(n-e') + | move 2^(e'-1) out of |
| 422 | // | the old exponent |
| 423 | // |
| 424 | // Let E' = o_h * 2^(e'-1) + E |
| 425 | // |
| 426 | // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + |
| 427 | // + ((b_m + a_m) % 2^(n-2)) + |
| 428 | // + E' * 2^(n-e') |
| 429 | // |
| 430 | // Because X and Y are distinct only in there error terms and E' can be |
| 431 | // constructed as shown the theorem holds. |
| 432 | // [qed] |
| 433 | // |
| 434 | // For completeness in case of the case e=n it is also required to show that |
| 435 | // distributivity can be applied. |
| 436 | // |
| 437 | // In this case Theorem(1) transforms to (the pre-condition on A can also be |
| 438 | // dropped) |
| 439 | // |
| 440 | // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E' |
| 441 | // where |
| 442 | // A, B, E, E' are two's complement numbers with the same bit |
| 443 | // width |
| 444 | // |
| 445 | // Let A + B + E = X |
| 446 | // Let (B >> 1) + (A >> 1) = Y |
| 447 | // |
| 448 | // Therefore we need to show that for every X and Y there is an E' which |
| 449 | // makes the equation |
| 450 | // |
| 451 | // X = Y + E' |
| 452 | // |
| 453 | // hold. This is trivially the case for E' = X - Y. |
| 454 | // |
| 455 | // [qed] |
| 456 | // |
| 457 | // Remark: Distributing lshr with and arbitrary number n can be expressed as |
| 458 | // ((((B + A) lshr 1) lshr 1) ... ) {n times}. |
| 459 | // This construction induces n additional error bits at the left. |
| 460 | |
| 461 | if (C.getBitWidth() != A.getBitWidth()) { |
| 462 | ErrorMSBs = (unsigned)-1; |
| 463 | return *this; |
| 464 | } |
| 465 | |
| 466 | if (C.isNullValue()) |
| 467 | return *this; |
| 468 | |
| 469 | // Test if the result will be zero |
| 470 | unsigned shiftAmt = C.getZExtValue(); |
| 471 | if (shiftAmt >= C.getBitWidth()) |
| 472 | return mul(APInt(C.getBitWidth(), 0)); |
| 473 | |
| 474 | // The proof that shiftAmt LSBs are zero for at least one summand is only |
| 475 | // possible for the constant number. |
| 476 | // |
| 477 | // If this can be proven add shiftAmt to the error counter |
| 478 | // `ErrorMSBs`. Otherwise set all bits as undefined. |
| 479 | if (A.countTrailingZeros() < shiftAmt) |
| 480 | ErrorMSBs = A.getBitWidth(); |
| 481 | else |
| 482 | incErrorMSBs(shiftAmt); |
| 483 | |
| 484 | // Apply the operation. |
| 485 | pushBOperation(LShr, C); |
| 486 | A = A.lshr(shiftAmt); |
| 487 | |
| 488 | return *this; |
| 489 | } |
| 490 | |
| 491 | /// Apply a sign-extend or truncate operation on the polynomial. |
| 492 | Polynomial &sextOrTrunc(unsigned n) { |
| 493 | if (n < A.getBitWidth()) { |
| 494 | // Truncate: Clearly undefined Bits on the MSB side are removed |
| 495 | // if there are any. |
| 496 | decErrorMSBs(A.getBitWidth() - n); |
| 497 | A = A.trunc(n); |
| 498 | pushBOperation(Trunc, APInt(sizeof(n) * 8, n)); |
| 499 | } |
| 500 | if (n > A.getBitWidth()) { |
| 501 | // Extend: Clearly extending first and adding later is different |
| 502 | // to adding first and extending later in all extended bits. |
| 503 | incErrorMSBs(n - A.getBitWidth()); |
| 504 | A = A.sext(n); |
| 505 | pushBOperation(SExt, APInt(sizeof(n) * 8, n)); |
| 506 | } |
| 507 | |
| 508 | return *this; |
| 509 | } |
| 510 | |
| 511 | /// Test if there is a coefficient B. |
| 512 | bool isFirstOrder() const { return V != nullptr; } |
| 513 | |
| 514 | /// Test coefficient B of two Polynomials are equal. |
| 515 | bool isCompatibleTo(const Polynomial &o) const { |
| 516 | // The polynomial use different bit width. |
| 517 | if (A.getBitWidth() != o.A.getBitWidth()) |
| 518 | return false; |
| 519 | |
| 520 | // If neither Polynomial has the Coefficient B. |
| 521 | if (!isFirstOrder() && !o.isFirstOrder()) |
| 522 | return true; |
| 523 | |
| 524 | // The index variable is different. |
| 525 | if (V != o.V) |
| 526 | return false; |
| 527 | |
| 528 | // Check the operations. |
| 529 | if (B.size() != o.B.size()) |
| 530 | return false; |
| 531 | |
| 532 | auto ob = o.B.begin(); |
| 533 | for (auto &b : B) { |
| 534 | if (b != *ob) |
| 535 | return false; |
| 536 | ob++; |
| 537 | } |
| 538 | |
| 539 | return true; |
| 540 | } |
| 541 | |
| 542 | /// Subtract two polynomials, return an undefined polynomial if |
| 543 | /// subtraction is not possible. |
| 544 | Polynomial operator-(const Polynomial &o) const { |
| 545 | // Return an undefined polynomial if incompatible. |
| 546 | if (!isCompatibleTo(o)) |
| 547 | return Polynomial(); |
| 548 | |
| 549 | // If the polynomials are compatible (meaning they have the same |
| 550 | // coefficient on B), B is eliminated. Thus a polynomial solely |
| 551 | // containing A is returned |
| 552 | return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs)); |
| 553 | } |
| 554 | |
| 555 | /// Subtract a constant from a polynomial, |
| 556 | Polynomial operator-(uint64_t C) const { |
| 557 | Polynomial Result(*this); |
| 558 | Result.A -= C; |
| 559 | return Result; |
| 560 | } |
| 561 | |
| 562 | /// Add a constant to a polynomial, |
| 563 | Polynomial operator+(uint64_t C) const { |
| 564 | Polynomial Result(*this); |
| 565 | Result.A += C; |
| 566 | return Result; |
| 567 | } |
| 568 | |
| 569 | /// Returns true if it can be proven that two Polynomials are equal. |
| 570 | bool isProvenEqualTo(const Polynomial &o) { |
| 571 | // Subtract both polynomials and test if it is fully defined and zero. |
| 572 | Polynomial r = *this - o; |
| 573 | return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isNullValue()); |
| 574 | } |
| 575 | |
| 576 | /// Print the polynomial into a stream. |
| 577 | void print(raw_ostream &OS) const { |
| 578 | OS << "[{#ErrBits:" << ErrorMSBs << "} "; |
| 579 | |
| 580 | if (V) { |
| 581 | for (auto b : B) |
| 582 | OS << "("; |
| 583 | OS << "(" << *V << ") "; |
| 584 | |
| 585 | for (auto b : B) { |
| 586 | switch (b.first) { |
| 587 | case LShr: |
| 588 | OS << "LShr "; |
| 589 | break; |
| 590 | case Mul: |
| 591 | OS << "Mul "; |
| 592 | break; |
| 593 | case SExt: |
| 594 | OS << "SExt "; |
| 595 | break; |
| 596 | case Trunc: |
| 597 | OS << "Trunc "; |
| 598 | break; |
| 599 | } |
| 600 | |
| 601 | OS << b.second << ") "; |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | OS << "+ " << A << "]"; |
| 606 | } |
| 607 | |
| 608 | private: |
| 609 | void deleteB() { |
| 610 | V = nullptr; |
| 611 | B.clear(); |
| 612 | } |
| 613 | |
| 614 | void pushBOperation(const BOps Op, const APInt &C) { |
| 615 | if (isFirstOrder()) { |
| 616 | B.push_back(std::make_pair(Op, C)); |
| 617 | return; |
| 618 | } |
| 619 | } |
| 620 | }; |
| 621 | |
Simon Pilgrim | 7e9b96e | 2018-11-19 18:57:49 +0000 | [diff] [blame] | 622 | #ifndef NDEBUG |
| 623 | static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) { |
| 624 | S.print(OS); |
| 625 | return OS; |
| 626 | } |
| 627 | #endif |
| 628 | |
Martin Elshuber | 5e067bb | 2018-11-19 14:26:10 +0000 | [diff] [blame] | 629 | /// VectorInfo stores abstract the following information for each vector |
| 630 | /// element: |
| 631 | /// |
| 632 | /// 1) The the memory address loaded into the element as Polynomial |
| 633 | /// 2) a set of load instruction necessary to construct the vector, |
| 634 | /// 3) a set of all other instructions that are necessary to create the vector and |
| 635 | /// 4) a pointer value that can be used as relative base for all elements. |
| 636 | struct VectorInfo { |
| 637 | private: |
| 638 | VectorInfo(const VectorInfo &c) : VTy(c.VTy) { |
| 639 | llvm_unreachable( |
| 640 | "Copying VectorInfo is neither implemented nor necessary,"); |
| 641 | } |
| 642 | |
| 643 | public: |
| 644 | /// Information of a Vector Element |
| 645 | struct ElementInfo { |
| 646 | /// Offset Polynomial. |
| 647 | Polynomial Ofs; |
| 648 | |
| 649 | /// The Load Instruction used to Load the entry. LI is null if the pointer |
| 650 | /// of the load instruction does not point on to the entry |
| 651 | LoadInst *LI; |
| 652 | |
| 653 | ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr) |
| 654 | : Ofs(Offset), LI(LI) {} |
| 655 | }; |
| 656 | |
| 657 | /// Basic-block the load instructions are within |
| 658 | BasicBlock *BB; |
| 659 | |
| 660 | /// Pointer value of all participation load instructions |
| 661 | Value *PV; |
| 662 | |
| 663 | /// Participating load instructions |
| 664 | std::set<LoadInst *> LIs; |
| 665 | |
| 666 | /// Participating instructions |
| 667 | std::set<Instruction *> Is; |
| 668 | |
| 669 | /// Final shuffle-vector instruction |
| 670 | ShuffleVectorInst *SVI; |
| 671 | |
| 672 | /// Information of the offset for each vector element |
| 673 | ElementInfo *EI; |
| 674 | |
| 675 | /// Vector Type |
| 676 | VectorType *const VTy; |
| 677 | |
| 678 | VectorInfo(VectorType *VTy) |
| 679 | : BB(nullptr), PV(nullptr), LIs(), Is(), SVI(nullptr), VTy(VTy) { |
| 680 | EI = new ElementInfo[VTy->getNumElements()]; |
| 681 | } |
| 682 | |
| 683 | virtual ~VectorInfo() { delete[] EI; } |
| 684 | |
| 685 | unsigned getDimension() const { return VTy->getNumElements(); } |
| 686 | |
| 687 | /// Test if the VectorInfo can be part of an interleaved load with the |
| 688 | /// specified factor. |
| 689 | /// |
| 690 | /// \param Factor of the interleave |
| 691 | /// \param DL Targets Datalayout |
| 692 | /// |
| 693 | /// \returns true if this is possible and false if not |
| 694 | bool isInterleaved(unsigned Factor, const DataLayout &DL) const { |
| 695 | unsigned Size = DL.getTypeAllocSize(VTy->getElementType()); |
| 696 | for (unsigned i = 1; i < getDimension(); i++) { |
| 697 | if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) { |
| 698 | return false; |
| 699 | } |
| 700 | } |
| 701 | return true; |
| 702 | } |
| 703 | |
| 704 | /// Recursively computes the vector information stored in V. |
| 705 | /// |
| 706 | /// This function delegates the work to specialized implementations |
| 707 | /// |
| 708 | /// \param V Value to operate on |
| 709 | /// \param Result Result of the computation |
| 710 | /// |
| 711 | /// \returns false if no sensible information can be gathered. |
| 712 | static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) { |
| 713 | ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); |
| 714 | if (SVI) |
| 715 | return computeFromSVI(SVI, Result, DL); |
| 716 | LoadInst *LI = dyn_cast<LoadInst>(V); |
| 717 | if (LI) |
| 718 | return computeFromLI(LI, Result, DL); |
| 719 | BitCastInst *BCI = dyn_cast<BitCastInst>(V); |
| 720 | if (BCI) |
| 721 | return computeFromBCI(BCI, Result, DL); |
| 722 | return false; |
| 723 | } |
| 724 | |
| 725 | /// BitCastInst specialization to compute the vector information. |
| 726 | /// |
| 727 | /// \param BCI BitCastInst to operate on |
| 728 | /// \param Result Result of the computation |
| 729 | /// |
| 730 | /// \returns false if no sensible information can be gathered. |
| 731 | static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result, |
| 732 | const DataLayout &DL) { |
| 733 | Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0)); |
| 734 | |
| 735 | if (!Op) |
| 736 | return false; |
| 737 | |
| 738 | VectorType *VTy = dyn_cast<VectorType>(Op->getType()); |
| 739 | if (!VTy) |
| 740 | return false; |
| 741 | |
| 742 | // We can only cast from large to smaller vectors |
| 743 | if (Result.VTy->getNumElements() % VTy->getNumElements()) |
| 744 | return false; |
| 745 | |
| 746 | unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements(); |
| 747 | unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType()); |
| 748 | unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType()); |
| 749 | |
| 750 | if (NewSize * Factor != OldSize) |
| 751 | return false; |
| 752 | |
| 753 | VectorInfo Old(VTy); |
| 754 | if (!compute(Op, Old, DL)) |
| 755 | return false; |
| 756 | |
| 757 | for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) { |
| 758 | for (unsigned j = 0; j < Factor; j++) { |
| 759 | Result.EI[i + j] = |
| 760 | ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize, |
| 761 | j == 0 ? Old.EI[i / Factor].LI : nullptr); |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | Result.BB = Old.BB; |
| 766 | Result.PV = Old.PV; |
| 767 | Result.LIs.insert(Old.LIs.begin(), Old.LIs.end()); |
| 768 | Result.Is.insert(Old.Is.begin(), Old.Is.end()); |
| 769 | Result.Is.insert(BCI); |
| 770 | Result.SVI = nullptr; |
| 771 | |
| 772 | return true; |
| 773 | } |
| 774 | |
| 775 | /// ShuffleVectorInst specialization to compute vector information. |
| 776 | /// |
| 777 | /// \param SVI ShuffleVectorInst to operate on |
| 778 | /// \param Result Result of the computation |
| 779 | /// |
| 780 | /// Compute the left and the right side vector information and merge them by |
| 781 | /// applying the shuffle operation. This function also ensures that the left |
| 782 | /// and right side have compatible loads. This means that all loads are with |
| 783 | /// in the same basic block and are based on the same pointer. |
| 784 | /// |
| 785 | /// \returns false if no sensible information can be gathered. |
| 786 | static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result, |
| 787 | const DataLayout &DL) { |
| 788 | VectorType *ArgTy = dyn_cast<VectorType>(SVI->getOperand(0)->getType()); |
| 789 | assert(ArgTy && "ShuffleVector Operand is not a VectorType"); |
| 790 | |
| 791 | // Compute the left hand vector information. |
| 792 | VectorInfo LHS(ArgTy); |
| 793 | if (!compute(SVI->getOperand(0), LHS, DL)) |
| 794 | LHS.BB = nullptr; |
| 795 | |
| 796 | // Compute the right hand vector information. |
| 797 | VectorInfo RHS(ArgTy); |
| 798 | if (!compute(SVI->getOperand(1), RHS, DL)) |
| 799 | RHS.BB = nullptr; |
| 800 | |
| 801 | // Neither operand produced sensible results? |
| 802 | if (!LHS.BB && !RHS.BB) |
| 803 | return false; |
| 804 | // Only RHS produced sensible results? |
| 805 | else if (!LHS.BB) { |
| 806 | Result.BB = RHS.BB; |
| 807 | Result.PV = RHS.PV; |
| 808 | } |
| 809 | // Only LHS produced sensible results? |
| 810 | else if (!RHS.BB) { |
| 811 | Result.BB = LHS.BB; |
| 812 | Result.PV = LHS.PV; |
| 813 | } |
| 814 | // Both operands produced sensible results? |
Martin Elshuber | 418c4bb | 2018-11-19 18:35:31 +0000 | [diff] [blame] | 815 | else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) { |
Martin Elshuber | 5e067bb | 2018-11-19 14:26:10 +0000 | [diff] [blame] | 816 | Result.BB = LHS.BB; |
| 817 | Result.PV = LHS.PV; |
| 818 | } |
| 819 | // Both operands produced sensible results but they are incompatible. |
| 820 | else { |
| 821 | return false; |
| 822 | } |
| 823 | |
| 824 | // Merge and apply the operation on the offset information. |
| 825 | if (LHS.BB) { |
| 826 | Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end()); |
| 827 | Result.Is.insert(LHS.Is.begin(), LHS.Is.end()); |
| 828 | } |
| 829 | if (RHS.BB) { |
| 830 | Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end()); |
| 831 | Result.Is.insert(RHS.Is.begin(), RHS.Is.end()); |
| 832 | } |
| 833 | Result.Is.insert(SVI); |
| 834 | Result.SVI = SVI; |
| 835 | |
| 836 | int j = 0; |
| 837 | for (int i : SVI->getShuffleMask()) { |
| 838 | assert((i < 2 * (signed)ArgTy->getNumElements()) && |
| 839 | "Invalid ShuffleVectorInst (index out of bounds)"); |
| 840 | |
| 841 | if (i < 0) |
| 842 | Result.EI[j] = ElementInfo(); |
| 843 | else if (i < (signed)ArgTy->getNumElements()) { |
| 844 | if (LHS.BB) |
| 845 | Result.EI[j] = LHS.EI[i]; |
| 846 | else |
| 847 | Result.EI[j] = ElementInfo(); |
| 848 | } else { |
| 849 | if (RHS.BB) |
| 850 | Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()]; |
| 851 | else |
| 852 | Result.EI[j] = ElementInfo(); |
| 853 | } |
| 854 | j++; |
| 855 | } |
| 856 | |
| 857 | return true; |
| 858 | } |
| 859 | |
| 860 | /// LoadInst specialization to compute vector information. |
| 861 | /// |
| 862 | /// This function also acts as abort condition to the recursion. |
| 863 | /// |
| 864 | /// \param LI LoadInst to operate on |
| 865 | /// \param Result Result of the computation |
| 866 | /// |
| 867 | /// \returns false if no sensible information can be gathered. |
| 868 | static bool computeFromLI(LoadInst *LI, VectorInfo &Result, |
| 869 | const DataLayout &DL) { |
| 870 | Value *BasePtr; |
| 871 | Polynomial Offset; |
| 872 | |
| 873 | if (LI->isVolatile()) |
| 874 | return false; |
| 875 | |
| 876 | if (LI->isAtomic()) |
| 877 | return false; |
| 878 | |
| 879 | // Get the base polynomial |
| 880 | computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL); |
| 881 | |
| 882 | Result.BB = LI->getParent(); |
| 883 | Result.PV = BasePtr; |
| 884 | Result.LIs.insert(LI); |
| 885 | Result.Is.insert(LI); |
| 886 | |
| 887 | for (unsigned i = 0; i < Result.getDimension(); i++) { |
| 888 | Value *Idx[2] = { |
| 889 | ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0), |
| 890 | ConstantInt::get(Type::getInt32Ty(LI->getContext()), i), |
| 891 | }; |
| 892 | int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, makeArrayRef(Idx, 2)); |
| 893 | Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr); |
| 894 | } |
| 895 | |
| 896 | return true; |
| 897 | } |
| 898 | |
| 899 | /// Recursively compute polynomial of a value. |
| 900 | /// |
| 901 | /// \param BO Input binary operation |
| 902 | /// \param Result Result polynomial |
| 903 | static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) { |
| 904 | Value *LHS = BO.getOperand(0); |
| 905 | Value *RHS = BO.getOperand(1); |
| 906 | |
| 907 | // Find the RHS Constant if any |
| 908 | ConstantInt *C = dyn_cast<ConstantInt>(RHS); |
| 909 | if ((!C) && BO.isCommutative()) { |
| 910 | C = dyn_cast<ConstantInt>(LHS); |
| 911 | if (C) |
| 912 | std::swap(LHS, RHS); |
| 913 | } |
| 914 | |
| 915 | switch (BO.getOpcode()) { |
| 916 | case Instruction::Add: |
| 917 | if (!C) |
| 918 | break; |
| 919 | |
| 920 | computePolynomial(*LHS, Result); |
| 921 | Result.add(C->getValue()); |
| 922 | return; |
| 923 | |
| 924 | case Instruction::LShr: |
| 925 | if (!C) |
| 926 | break; |
| 927 | |
| 928 | computePolynomial(*LHS, Result); |
| 929 | Result.lshr(C->getValue()); |
| 930 | return; |
| 931 | |
| 932 | default: |
| 933 | break; |
| 934 | } |
| 935 | |
| 936 | Result = Polynomial(&BO); |
| 937 | } |
| 938 | |
| 939 | /// Recursively compute polynomial of a value |
| 940 | /// |
| 941 | /// \param V input value |
| 942 | /// \param Result result polynomial |
| 943 | static void computePolynomial(Value &V, Polynomial &Result) { |
| 944 | if (isa<BinaryOperator>(&V)) |
| 945 | computePolynomialBinOp(*dyn_cast<BinaryOperator>(&V), Result); |
| 946 | else |
| 947 | Result = Polynomial(&V); |
| 948 | } |
| 949 | |
| 950 | /// Compute the Polynomial representation of a Pointer type. |
| 951 | /// |
| 952 | /// \param Ptr input pointer value |
| 953 | /// \param Result result polynomial |
| 954 | /// \param BasePtr pointer the polynomial is based on |
| 955 | /// \param DL Datalayout of the target machine |
| 956 | static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result, |
| 957 | Value *&BasePtr, |
| 958 | const DataLayout &DL) { |
| 959 | // Not a pointer type? Return an undefined polynomial |
| 960 | PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType()); |
| 961 | if (!PtrTy) { |
| 962 | Result = Polynomial(); |
| 963 | BasePtr = nullptr; |
| 964 | } |
| 965 | unsigned PointerBits = |
| 966 | DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()); |
| 967 | |
| 968 | /// Skip pointer casts. Return Zero polynomial otherwise |
| 969 | if (isa<CastInst>(&Ptr)) { |
| 970 | CastInst &CI = *cast<CastInst>(&Ptr); |
| 971 | switch (CI.getOpcode()) { |
| 972 | case Instruction::BitCast: |
| 973 | computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL); |
| 974 | break; |
| 975 | default: |
| 976 | BasePtr = &Ptr; |
| 977 | Polynomial(PointerBits, 0); |
| 978 | break; |
| 979 | } |
| 980 | } |
| 981 | /// Resolve GetElementPtrInst. |
| 982 | else if (isa<GetElementPtrInst>(&Ptr)) { |
| 983 | GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr); |
| 984 | |
| 985 | APInt BaseOffset(PointerBits, 0); |
| 986 | |
| 987 | // Check if we can compute the Offset with accumulateConstantOffset |
| 988 | if (GEP.accumulateConstantOffset(DL, BaseOffset)) { |
| 989 | Result = Polynomial(BaseOffset); |
| 990 | BasePtr = GEP.getPointerOperand(); |
| 991 | return; |
| 992 | } else { |
| 993 | // Otherwise we allow that the last index operand of the GEP is |
| 994 | // non-constant. |
| 995 | unsigned idxOperand, e; |
| 996 | SmallVector<Value *, 4> Indices; |
| 997 | for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e; |
| 998 | idxOperand++) { |
| 999 | ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand)); |
| 1000 | if (!IDX) |
| 1001 | break; |
| 1002 | Indices.push_back(IDX); |
| 1003 | } |
| 1004 | |
| 1005 | // It must also be the last operand. |
| 1006 | if (idxOperand + 1 != e) { |
| 1007 | Result = Polynomial(); |
| 1008 | BasePtr = nullptr; |
| 1009 | return; |
| 1010 | } |
| 1011 | |
| 1012 | // Compute the polynomial of the index operand. |
| 1013 | computePolynomial(*GEP.getOperand(idxOperand), Result); |
| 1014 | |
| 1015 | // Compute base offset from zero based index, excluding the last |
| 1016 | // variable operand. |
| 1017 | BaseOffset = |
| 1018 | DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices); |
| 1019 | |
| 1020 | // Apply the operations of GEP to the polynomial. |
| 1021 | unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType()); |
| 1022 | Result.sextOrTrunc(PointerBits); |
| 1023 | Result.mul(APInt(PointerBits, ResultSize)); |
| 1024 | Result.add(BaseOffset); |
| 1025 | BasePtr = GEP.getPointerOperand(); |
| 1026 | } |
| 1027 | } |
| 1028 | // All other instructions are handled by using the value as base pointer and |
| 1029 | // a zero polynomial. |
| 1030 | else { |
| 1031 | BasePtr = &Ptr; |
| 1032 | Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0); |
| 1033 | } |
| 1034 | } |
| 1035 | |
| 1036 | #ifndef NDEBUG |
| 1037 | void print(raw_ostream &OS) const { |
| 1038 | if (PV) |
| 1039 | OS << *PV; |
| 1040 | else |
| 1041 | OS << "(none)"; |
| 1042 | OS << " + "; |
| 1043 | for (unsigned i = 0; i < getDimension(); i++) |
| 1044 | OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs; |
| 1045 | OS << "]"; |
| 1046 | } |
| 1047 | #endif |
| 1048 | }; |
| 1049 | |
Martin Elshuber | 5e067bb | 2018-11-19 14:26:10 +0000 | [diff] [blame] | 1050 | } // anonymous namespace |
| 1051 | |
| 1052 | bool InterleavedLoadCombineImpl::findPattern( |
| 1053 | std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad, |
| 1054 | unsigned Factor, const DataLayout &DL) { |
| 1055 | for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) { |
| 1056 | unsigned i; |
| 1057 | // Try to find an interleaved load using the front of Worklist as first line |
| 1058 | unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType()); |
| 1059 | |
| 1060 | // List containing iterators pointing to the VectorInfos of the candidates |
| 1061 | std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end()); |
| 1062 | |
| 1063 | for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) { |
| 1064 | if (C->VTy != C0->VTy) |
| 1065 | continue; |
| 1066 | if (C->BB != C0->BB) |
| 1067 | continue; |
| 1068 | if (C->PV != C0->PV) |
| 1069 | continue; |
| 1070 | |
| 1071 | // Check the current value matches any of factor - 1 remaining lines |
| 1072 | for (i = 1; i < Factor; i++) { |
| 1073 | if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) { |
| 1074 | Res[i] = C; |
| 1075 | } |
| 1076 | } |
| 1077 | |
| 1078 | for (i = 1; i < Factor; i++) { |
| 1079 | if (Res[i] == Candidates.end()) |
| 1080 | break; |
| 1081 | } |
| 1082 | if (i == Factor) { |
| 1083 | Res[0] = C0; |
| 1084 | break; |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | if (Res[0] != Candidates.end()) { |
| 1089 | // Move the result into the output |
| 1090 | for (unsigned i = 0; i < Factor; i++) { |
| 1091 | InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]); |
| 1092 | } |
| 1093 | |
| 1094 | return true; |
| 1095 | } |
| 1096 | } |
| 1097 | return false; |
| 1098 | } |
| 1099 | |
| 1100 | LoadInst * |
| 1101 | InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) { |
| 1102 | assert(!LIs.empty() && "No load instructions given."); |
| 1103 | |
| 1104 | // All LIs are within the same BB. Select the first for a reference. |
| 1105 | BasicBlock *BB = (*LIs.begin())->getParent(); |
| 1106 | BasicBlock::iterator FLI = |
| 1107 | std::find_if(BB->begin(), BB->end(), [&LIs](Instruction &I) -> bool { |
| 1108 | return is_contained(LIs, &I); |
| 1109 | }); |
| 1110 | assert(FLI != BB->end()); |
| 1111 | |
| 1112 | return cast<LoadInst>(FLI); |
| 1113 | } |
| 1114 | |
| 1115 | bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad, |
| 1116 | OptimizationRemarkEmitter &ORE) { |
| 1117 | LLVM_DEBUG(dbgs() << "Checking interleaved load\n"); |
Martin Elshuber | 5e067bb | 2018-11-19 14:26:10 +0000 | [diff] [blame] | 1118 | |
| 1119 | // The insertion point is the LoadInst which loads the first values. The |
| 1120 | // following tests are used to proof that the combined load can be inserted |
| 1121 | // just before InsertionPoint. |
| 1122 | LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI; |
| 1123 | |
| 1124 | // Test if the offset is computed |
| 1125 | if (!InsertionPoint) |
| 1126 | return false; |
| 1127 | |
| 1128 | std::set<LoadInst *> LIs; |
| 1129 | std::set<Instruction *> Is; |
| 1130 | std::set<Instruction *> SVIs; |
| 1131 | |
| 1132 | unsigned InterleavedCost; |
| 1133 | unsigned InstructionCost = 0; |
| 1134 | |
| 1135 | // Get the interleave factor |
| 1136 | unsigned Factor = InterleavedLoad.size(); |
| 1137 | |
| 1138 | // Merge all input sets used in analysis |
| 1139 | for (auto &VI : InterleavedLoad) { |
| 1140 | // Generate a set of all load instructions to be combined |
| 1141 | LIs.insert(VI.LIs.begin(), VI.LIs.end()); |
| 1142 | |
| 1143 | // Generate a set of all instructions taking part in load |
| 1144 | // interleaved. This list excludes the instructions necessary for the |
| 1145 | // polynomial construction. |
| 1146 | Is.insert(VI.Is.begin(), VI.Is.end()); |
| 1147 | |
| 1148 | // Generate the set of the final ShuffleVectorInst. |
| 1149 | SVIs.insert(VI.SVI); |
| 1150 | } |
| 1151 | |
| 1152 | // There is nothing to combine. |
| 1153 | if (LIs.size() < 2) |
| 1154 | return false; |
| 1155 | |
| 1156 | // Test if all participating instruction will be dead after the |
| 1157 | // transformation. If intermediate results are used, no performance gain can |
| 1158 | // be expected. Also sum the cost of the Instructions beeing left dead. |
| 1159 | for (auto &I : Is) { |
| 1160 | // Compute the old cost |
| 1161 | InstructionCost += |
| 1162 | TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency); |
| 1163 | |
| 1164 | // The final SVIs are allowed not to be dead, all uses will be replaced |
| 1165 | if (SVIs.find(I) != SVIs.end()) |
| 1166 | continue; |
| 1167 | |
| 1168 | // If there are users outside the set to be eliminated, we abort the |
| 1169 | // transformation. No gain can be expected. |
| 1170 | for (const auto &U : I->users()) { |
| 1171 | if (Is.find(dyn_cast<Instruction>(U)) == Is.end()) |
| 1172 | return false; |
| 1173 | } |
| 1174 | } |
| 1175 | |
| 1176 | // We know that all LoadInst are within the same BB. This guarantees that |
| 1177 | // either everything or nothing is loaded. |
| 1178 | LoadInst *First = findFirstLoad(LIs); |
| 1179 | |
| 1180 | // To be safe that the loads can be combined, iterate over all loads and test |
| 1181 | // that the corresponding defining access dominates first LI. This guarantees |
| 1182 | // that there are no aliasing stores in between the loads. |
| 1183 | auto FMA = MSSA.getMemoryAccess(First); |
| 1184 | for (auto LI : LIs) { |
| 1185 | auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess(); |
| 1186 | if (!MSSA.dominates(MADef, FMA)) |
| 1187 | return false; |
| 1188 | } |
| 1189 | assert(!LIs.empty() && "There are no LoadInst to combine"); |
| 1190 | |
| 1191 | // It is necessary that insertion point dominates all final ShuffleVectorInst. |
| 1192 | for (auto &VI : InterleavedLoad) { |
| 1193 | if (!DT.dominates(InsertionPoint, VI.SVI)) |
| 1194 | return false; |
| 1195 | } |
| 1196 | |
| 1197 | // All checks are done. Add instructions detectable by InterleavedAccessPass |
| 1198 | // The old instruction will are left dead. |
| 1199 | IRBuilder<> Builder(InsertionPoint); |
| 1200 | Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType(); |
| 1201 | unsigned ElementsPerSVI = |
| 1202 | InterleavedLoad.front().SVI->getType()->getNumElements(); |
| 1203 | VectorType *ILTy = VectorType::get(ETy, Factor * ElementsPerSVI); |
| 1204 | |
| 1205 | SmallVector<unsigned, 4> Indices; |
| 1206 | for (unsigned i = 0; i < Factor; i++) |
| 1207 | Indices.push_back(i); |
| 1208 | InterleavedCost = TTI.getInterleavedMemoryOpCost( |
| 1209 | Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlignment(), |
| 1210 | InsertionPoint->getPointerAddressSpace()); |
| 1211 | |
| 1212 | if (InterleavedCost >= InstructionCost) { |
| 1213 | return false; |
| 1214 | } |
| 1215 | |
| 1216 | // Create a pointer cast for the wide load. |
| 1217 | auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0), |
| 1218 | ILTy->getPointerTo(), |
| 1219 | "interleaved.wide.ptrcast"); |
| 1220 | |
| 1221 | // Create the wide load and update the MemorySSA. |
| 1222 | auto LI = Builder.CreateAlignedLoad(CI, InsertionPoint->getAlignment(), |
| 1223 | "interleaved.wide.load"); |
| 1224 | auto MSSAU = MemorySSAUpdater(&MSSA); |
| 1225 | MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore( |
| 1226 | LI, nullptr, MSSA.getMemoryAccess(InsertionPoint))); |
| 1227 | MSSAU.insertUse(MSSALoad); |
| 1228 | |
| 1229 | // Create the final SVIs and replace all uses. |
| 1230 | int i = 0; |
| 1231 | for (auto &VI : InterleavedLoad) { |
| 1232 | SmallVector<uint32_t, 4> Mask; |
| 1233 | for (unsigned j = 0; j < ElementsPerSVI; j++) |
| 1234 | Mask.push_back(i + j * Factor); |
| 1235 | |
| 1236 | Builder.SetInsertPoint(VI.SVI); |
| 1237 | auto SVI = Builder.CreateShuffleVector(LI, UndefValue::get(LI->getType()), |
| 1238 | Mask, "interleaved.shuffle"); |
| 1239 | VI.SVI->replaceAllUsesWith(SVI); |
| 1240 | i++; |
| 1241 | } |
| 1242 | |
| 1243 | NumInterleavedLoadCombine++; |
| 1244 | ORE.emit([&]() { |
| 1245 | return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI) |
| 1246 | << "Load interleaved combined with factor " |
| 1247 | << ore::NV("Factor", Factor); |
| 1248 | }); |
| 1249 | |
| 1250 | return true; |
| 1251 | } |
| 1252 | |
| 1253 | bool InterleavedLoadCombineImpl::run() { |
| 1254 | OptimizationRemarkEmitter ORE(&F); |
| 1255 | bool changed = false; |
| 1256 | unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor(); |
| 1257 | |
| 1258 | auto &DL = F.getParent()->getDataLayout(); |
| 1259 | |
| 1260 | // Start with the highest factor to avoid combining and recombining. |
| 1261 | for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) { |
| 1262 | std::list<VectorInfo> Candidates; |
| 1263 | |
| 1264 | for (BasicBlock &BB : F) { |
| 1265 | for (Instruction &I : BB) { |
| 1266 | if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) { |
| 1267 | |
| 1268 | Candidates.emplace_back(SVI->getType()); |
| 1269 | |
| 1270 | if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) { |
| 1271 | Candidates.pop_back(); |
| 1272 | continue; |
| 1273 | } |
| 1274 | |
| 1275 | if (!Candidates.back().isInterleaved(Factor, DL)) { |
| 1276 | Candidates.pop_back(); |
| 1277 | } |
| 1278 | } |
| 1279 | } |
| 1280 | } |
| 1281 | |
| 1282 | std::list<VectorInfo> InterleavedLoad; |
| 1283 | while (findPattern(Candidates, InterleavedLoad, Factor, DL)) { |
| 1284 | if (combine(InterleavedLoad, ORE)) { |
| 1285 | changed = true; |
| 1286 | } else { |
| 1287 | // Remove the first element of the Interleaved Load but put the others |
| 1288 | // back on the list and continue searching |
| 1289 | Candidates.splice(Candidates.begin(), InterleavedLoad, |
| 1290 | std::next(InterleavedLoad.begin()), |
| 1291 | InterleavedLoad.end()); |
| 1292 | } |
| 1293 | InterleavedLoad.clear(); |
| 1294 | } |
| 1295 | } |
| 1296 | |
| 1297 | return changed; |
| 1298 | } |
| 1299 | |
| 1300 | namespace { |
| 1301 | /// This pass combines interleaved loads into a pattern detectable by |
| 1302 | /// InterleavedAccessPass. |
| 1303 | struct InterleavedLoadCombine : public FunctionPass { |
| 1304 | static char ID; |
| 1305 | |
| 1306 | InterleavedLoadCombine() : FunctionPass(ID) { |
| 1307 | initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry()); |
| 1308 | } |
| 1309 | |
| 1310 | StringRef getPassName() const override { |
| 1311 | return "Interleaved Load Combine Pass"; |
| 1312 | } |
| 1313 | |
| 1314 | bool runOnFunction(Function &F) override { |
| 1315 | if (DisableInterleavedLoadCombine) |
| 1316 | return false; |
| 1317 | |
| 1318 | auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); |
| 1319 | if (!TPC) |
| 1320 | return false; |
| 1321 | |
| 1322 | LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() |
| 1323 | << "\n"); |
| 1324 | |
| 1325 | return InterleavedLoadCombineImpl( |
| 1326 | F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), |
| 1327 | getAnalysis<MemorySSAWrapperPass>().getMSSA(), |
| 1328 | TPC->getTM<TargetMachine>()) |
| 1329 | .run(); |
| 1330 | } |
| 1331 | |
| 1332 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 1333 | AU.addRequired<MemorySSAWrapperPass>(); |
| 1334 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 1335 | FunctionPass::getAnalysisUsage(AU); |
| 1336 | } |
| 1337 | |
| 1338 | private: |
| 1339 | }; |
| 1340 | } // anonymous namespace |
| 1341 | |
| 1342 | char InterleavedLoadCombine::ID = 0; |
| 1343 | |
| 1344 | INITIALIZE_PASS_BEGIN( |
| 1345 | InterleavedLoadCombine, DEBUG_TYPE, |
| 1346 | "Combine interleaved loads into wide loads and shufflevector instructions", |
| 1347 | false, false) |
| 1348 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 1349 | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) |
| 1350 | INITIALIZE_PASS_END( |
| 1351 | InterleavedLoadCombine, DEBUG_TYPE, |
| 1352 | "Combine interleaved loads into wide loads and shufflevector instructions", |
| 1353 | false, false) |
| 1354 | |
| 1355 | FunctionPass * |
| 1356 | llvm::createInterleavedLoadCombinePass() { |
| 1357 | auto P = new InterleavedLoadCombine(); |
| 1358 | return P; |
| 1359 | } |