Chandler Carruth | d0f9eac | 2018-07-02 23:57:29 +0000 | [diff] [blame] | 1 | //===- FunctionExtrasTest.cpp - Unit tests for function type erasure ------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #include "llvm/ADT/FunctionExtras.h" |
| 11 | #include "gtest/gtest.h" |
| 12 | |
| 13 | #include <memory> |
| 14 | |
| 15 | using namespace llvm; |
| 16 | |
| 17 | namespace { |
| 18 | |
| 19 | TEST(UniqueFunctionTest, Basic) { |
| 20 | unique_function<int(int, int)> Sum = [](int A, int B) { return A + B; }; |
| 21 | EXPECT_EQ(Sum(1, 2), 3); |
| 22 | |
| 23 | unique_function<int(int, int)> Sum2 = std::move(Sum); |
| 24 | EXPECT_EQ(Sum2(1, 2), 3); |
| 25 | |
| 26 | unique_function<int(int, int)> Sum3 = [](int A, int B) { return A + B; }; |
| 27 | Sum2 = std::move(Sum3); |
| 28 | EXPECT_EQ(Sum2(1, 2), 3); |
| 29 | |
| 30 | Sum2 = unique_function<int(int, int)>([](int A, int B) { return A + B; }); |
| 31 | EXPECT_EQ(Sum2(1, 2), 3); |
| 32 | |
| 33 | // Explicit self-move test. |
| 34 | *&Sum2 = std::move(Sum2); |
| 35 | EXPECT_EQ(Sum2(1, 2), 3); |
| 36 | |
| 37 | Sum2 = unique_function<int(int, int)>(); |
| 38 | EXPECT_FALSE(Sum2); |
| 39 | |
| 40 | // Make sure we can forward through l-value reference parameters. |
| 41 | unique_function<void(int &)> Inc = [](int &X) { ++X; }; |
| 42 | int X = 42; |
| 43 | Inc(X); |
| 44 | EXPECT_EQ(X, 43); |
| 45 | |
| 46 | // Make sure we can forward through r-value reference parameters with |
| 47 | // move-only types. |
| 48 | unique_function<int(std::unique_ptr<int> &&)> ReadAndDeallocByRef = |
| 49 | [](std::unique_ptr<int> &&Ptr) { |
| 50 | int V = *Ptr; |
| 51 | Ptr.reset(); |
| 52 | return V; |
| 53 | }; |
| 54 | std::unique_ptr<int> Ptr{new int(13)}; |
| 55 | EXPECT_EQ(ReadAndDeallocByRef(std::move(Ptr)), 13); |
| 56 | EXPECT_FALSE((bool)Ptr); |
| 57 | |
| 58 | // Make sure we can pass a move-only temporary as opposed to a local variable. |
| 59 | EXPECT_EQ(ReadAndDeallocByRef(std::unique_ptr<int>(new int(42))), 42); |
| 60 | |
| 61 | // Make sure we can pass a move-only type by-value. |
| 62 | unique_function<int(std::unique_ptr<int>)> ReadAndDeallocByVal = |
| 63 | [](std::unique_ptr<int> Ptr) { |
| 64 | int V = *Ptr; |
| 65 | Ptr.reset(); |
| 66 | return V; |
| 67 | }; |
| 68 | Ptr.reset(new int(13)); |
| 69 | EXPECT_EQ(ReadAndDeallocByVal(std::move(Ptr)), 13); |
| 70 | EXPECT_FALSE((bool)Ptr); |
| 71 | |
| 72 | EXPECT_EQ(ReadAndDeallocByVal(std::unique_ptr<int>(new int(42))), 42); |
| 73 | } |
| 74 | |
| 75 | TEST(UniqueFunctionTest, Captures) { |
| 76 | long A = 1, B = 2, C = 3, D = 4, E = 5; |
| 77 | |
| 78 | unique_function<long()> Tmp; |
| 79 | |
| 80 | unique_function<long()> C1 = [A]() { return A; }; |
| 81 | EXPECT_EQ(C1(), 1); |
| 82 | Tmp = std::move(C1); |
| 83 | EXPECT_EQ(Tmp(), 1); |
| 84 | |
| 85 | unique_function<long()> C2 = [A, B]() { return A + B; }; |
| 86 | EXPECT_EQ(C2(), 3); |
| 87 | Tmp = std::move(C2); |
| 88 | EXPECT_EQ(Tmp(), 3); |
| 89 | |
| 90 | unique_function<long()> C3 = [A, B, C]() { return A + B + C; }; |
| 91 | EXPECT_EQ(C3(), 6); |
| 92 | Tmp = std::move(C3); |
| 93 | EXPECT_EQ(Tmp(), 6); |
| 94 | |
| 95 | unique_function<long()> C4 = [A, B, C, D]() { return A + B + C + D; }; |
| 96 | EXPECT_EQ(C4(), 10); |
| 97 | Tmp = std::move(C4); |
| 98 | EXPECT_EQ(Tmp(), 10); |
| 99 | |
| 100 | unique_function<long()> C5 = [A, B, C, D, E]() { return A + B + C + D + E; }; |
| 101 | EXPECT_EQ(C5(), 15); |
| 102 | Tmp = std::move(C5); |
| 103 | EXPECT_EQ(Tmp(), 15); |
| 104 | } |
| 105 | |
| 106 | TEST(UniqueFunctionTest, MoveOnly) { |
| 107 | struct SmallCallable { |
| 108 | std::unique_ptr<int> A{new int(1)}; |
| 109 | |
| 110 | int operator()(int B) { return *A + B; } |
| 111 | }; |
| 112 | unique_function<int(int)> Small = SmallCallable(); |
| 113 | EXPECT_EQ(Small(2), 3); |
| 114 | unique_function<int(int)> Small2 = std::move(Small); |
| 115 | EXPECT_EQ(Small2(2), 3); |
| 116 | |
| 117 | struct LargeCallable { |
| 118 | std::unique_ptr<int> A{new int(1)}; |
| 119 | std::unique_ptr<int> B{new int(2)}; |
| 120 | std::unique_ptr<int> C{new int(3)}; |
| 121 | std::unique_ptr<int> D{new int(4)}; |
| 122 | std::unique_ptr<int> E{new int(5)}; |
| 123 | |
| 124 | int operator()() { return *A + *B + *C + *D + *E; } |
| 125 | }; |
| 126 | unique_function<int()> Large = LargeCallable(); |
| 127 | EXPECT_EQ(Large(), 15); |
| 128 | unique_function<int()> Large2 = std::move(Large); |
| 129 | EXPECT_EQ(Large2(), 15); |
| 130 | } |
| 131 | |
| 132 | TEST(UniqueFunctionTest, CountForwardingCopies) { |
| 133 | struct CopyCounter { |
| 134 | int &CopyCount; |
| 135 | |
| 136 | CopyCounter(int &CopyCount) : CopyCount(CopyCount) {} |
| 137 | CopyCounter(const CopyCounter &Arg) : CopyCount(Arg.CopyCount) { |
| 138 | ++CopyCount; |
| 139 | } |
| 140 | }; |
| 141 | |
| 142 | unique_function<void(CopyCounter)> ByValF = [](CopyCounter) {}; |
| 143 | int CopyCount = 0; |
| 144 | ByValF(CopyCounter(CopyCount)); |
| 145 | EXPECT_EQ(1, CopyCount); |
| 146 | |
| 147 | CopyCount = 0; |
| 148 | { |
| 149 | CopyCounter Counter{CopyCount}; |
| 150 | ByValF(Counter); |
| 151 | } |
| 152 | EXPECT_EQ(2, CopyCount); |
| 153 | |
| 154 | // Check that we don't generate a copy at all when we can bind a reference all |
| 155 | // the way down, even if that reference could *in theory* allow copies. |
| 156 | unique_function<void(const CopyCounter &)> ByRefF = [](const CopyCounter &) { |
| 157 | }; |
| 158 | CopyCount = 0; |
| 159 | ByRefF(CopyCounter(CopyCount)); |
| 160 | EXPECT_EQ(0, CopyCount); |
| 161 | |
| 162 | CopyCount = 0; |
| 163 | { |
| 164 | CopyCounter Counter{CopyCount}; |
| 165 | ByRefF(Counter); |
| 166 | } |
| 167 | EXPECT_EQ(0, CopyCount); |
| 168 | |
| 169 | // If we use a reference, we can make a stronger guarantee that *no* copy |
| 170 | // occurs. |
| 171 | struct Uncopyable { |
| 172 | Uncopyable() = default; |
| 173 | Uncopyable(const Uncopyable &) = delete; |
| 174 | }; |
| 175 | unique_function<void(const Uncopyable &)> UncopyableF = |
| 176 | [](const Uncopyable &) {}; |
| 177 | UncopyableF(Uncopyable()); |
| 178 | Uncopyable X; |
| 179 | UncopyableF(X); |
| 180 | } |
| 181 | |
| 182 | TEST(UniqueFunctionTest, CountForwardingMoves) { |
| 183 | struct MoveCounter { |
| 184 | int &MoveCount; |
| 185 | |
| 186 | MoveCounter(int &MoveCount) : MoveCount(MoveCount) {} |
| 187 | MoveCounter(MoveCounter &&Arg) : MoveCount(Arg.MoveCount) { ++MoveCount; } |
| 188 | }; |
| 189 | |
| 190 | unique_function<void(MoveCounter)> ByValF = [](MoveCounter) {}; |
| 191 | int MoveCount = 0; |
| 192 | ByValF(MoveCounter(MoveCount)); |
| 193 | EXPECT_EQ(1, MoveCount); |
| 194 | |
| 195 | MoveCount = 0; |
| 196 | { |
| 197 | MoveCounter Counter{MoveCount}; |
| 198 | ByValF(std::move(Counter)); |
| 199 | } |
| 200 | EXPECT_EQ(2, MoveCount); |
| 201 | |
| 202 | // Check that when we use an r-value reference we get no spurious copies. |
| 203 | unique_function<void(MoveCounter &&)> ByRefF = [](MoveCounter &&) {}; |
| 204 | MoveCount = 0; |
| 205 | ByRefF(MoveCounter(MoveCount)); |
| 206 | EXPECT_EQ(0, MoveCount); |
| 207 | |
| 208 | MoveCount = 0; |
| 209 | { |
| 210 | MoveCounter Counter{MoveCount}; |
| 211 | ByRefF(std::move(Counter)); |
| 212 | } |
| 213 | EXPECT_EQ(0, MoveCount); |
| 214 | |
| 215 | // If we use an r-value reference we can in fact make a stronger guarantee |
| 216 | // with an unmovable type. |
| 217 | struct Unmovable { |
| 218 | Unmovable() = default; |
| 219 | Unmovable(Unmovable &&) = delete; |
| 220 | }; |
| 221 | unique_function<void(const Unmovable &)> UnmovableF = [](const Unmovable &) { |
| 222 | }; |
| 223 | UnmovableF(Unmovable()); |
| 224 | Unmovable X; |
| 225 | UnmovableF(X); |
| 226 | } |
| 227 | |
| 228 | } // anonymous namespace |