blob: d246ba1428b3235a066205fea652bfb67acaa4ce [file] [log] [blame]
Justin Bogner0f87ccd2017-08-21 22:57:06 +00001//===- ReservoirSampler.cpp - Tests for the ReservoirSampler --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/FuzzMutate/Random.h"
11#include "gtest/gtest.h"
12#include <random>
13
14using namespace llvm;
15
16TEST(ReservoirSamplerTest, OneItem) {
17 std::mt19937 Rand;
18 auto Sampler = makeSampler(Rand, 7, 1);
19 ASSERT_FALSE(Sampler.isEmpty());
20 ASSERT_EQ(7, Sampler.getSelection());
21}
22
23TEST(ReservoirSamplerTest, NoWeight) {
24 std::mt19937 Rand;
25 auto Sampler = makeSampler(Rand, 7, 0);
26 ASSERT_TRUE(Sampler.isEmpty());
27}
28
29TEST(ReservoirSamplerTest, Uniform) {
30 std::mt19937 Rand;
31
32 // Run three chi-squared tests to check that the distribution is reasonably
33 // uniform.
34 std::vector<int> Items = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
35
36 int Failures = 0;
37 for (int Run = 0; Run < 3; ++Run) {
38 std::vector<int> Counts(Items.size(), 0);
39
40 // We need $np_s > 5$ at minimum, but we're better off going a couple of
41 // orders of magnitude larger.
42 int N = Items.size() * 5 * 100;
43 for (int I = 0; I < N; ++I) {
44 auto Sampler = makeSampler(Rand, Items);
45 Counts[Sampler.getSelection()] += 1;
46 }
47
48 // Knuth. TAOCP Vol. 2, 3.3.1 (8):
49 // $V = \frac{1}{n} \sum_{s=1}^{k} \left(\frac{Y_s^2}{p_s}\right) - n$
50 double Ps = 1.0 / Items.size();
51 double Sum = 0.0;
52 for (int Ys : Counts)
53 Sum += Ys * Ys / Ps;
54 double V = (Sum / N) - N;
55
56 assert(Items.size() == 10 && "Our chi-squared values assume 10 items");
57 // Since we have 10 items, there are 9 degrees of freedom and the table of
58 // chi-squared values is as follows:
59 //
60 // | p=1% | 5% | 25% | 50% | 75% | 95% | 99% |
61 // v=9 | 2.088 | 3.325 | 5.899 | 8.343 | 11.39 | 16.92 | 21.67 |
62 //
63 // Check that we're in the likely range of results.
64 //if (V < 2.088 || V > 21.67)
65 if (V < 2.088 || V > 21.67)
66 ++Failures;
67 }
68 EXPECT_LT(Failures, 3) << "Non-uniform distribution?";
69}