| #include "CubicIntersection.h" |
| #include "CubicUtilities.h" |
| #include "Intersections.h" |
| #include "LineUtilities.h" |
| |
| /* |
| Find the interection of a line and cubic by solving for valid t values. |
| |
| Analogous to line-quadratic intersection, solve line-cubic intersection by |
| representing the cubic as: |
| x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3 |
| y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3 |
| and the line as: |
| y = i*x + j (if the line is more horizontal) |
| or: |
| x = i*y + j (if the line is more vertical) |
| |
| Then using Mathematica, solve for the values of t where the cubic intersects the |
| line: |
| |
| (in) Resultant[ |
| a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x, |
| e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x] |
| (out) -e + j + |
| 3 e t - 3 f t - |
| 3 e t^2 + 6 f t^2 - 3 g t^2 + |
| e t^3 - 3 f t^3 + 3 g t^3 - h t^3 + |
| i ( a - |
| 3 a t + 3 b t + |
| 3 a t^2 - 6 b t^2 + 3 c t^2 - |
| a t^3 + 3 b t^3 - 3 c t^3 + d t^3 ) |
| |
| if i goes to infinity, we can rewrite the line in terms of x. Mathematica: |
| |
| (in) Resultant[ |
| a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j, |
| e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] |
| (out) a - j - |
| 3 a t + 3 b t + |
| 3 a t^2 - 6 b t^2 + 3 c t^2 - |
| a t^3 + 3 b t^3 - 3 c t^3 + d t^3 - |
| i ( e - |
| 3 e t + 3 f t + |
| 3 e t^2 - 6 f t^2 + 3 g t^2 - |
| e t^3 + 3 f t^3 - 3 g t^3 + h t^3 ) |
| |
| Solving this with Mathematica produces an expression with hundreds of terms; |
| instead, use Numeric Solutions recipe to solve the cubic. |
| |
| The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 |
| A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) ) |
| B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) ) |
| C = 3*(-(-e + f ) + i*(-a + b ) ) |
| D = (-( e ) + i*( a ) + j ) |
| |
| The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 |
| A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) ) |
| B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) ) |
| C = 3*( (-a + b ) - i*(-e + f ) ) |
| D = ( ( a ) - i*( e ) - j ) |
| */ |
| |
| class LineCubicIntersections : public Intersections { |
| public: |
| |
| LineCubicIntersections(const Cubic& c, const _Line& l, Intersections& i) |
| : cubic(c) |
| , line(l) |
| , intersections(i) { |
| } |
| |
| bool intersect() { |
| double slope; |
| double axisIntercept; |
| moreHorizontal = implicitLine(line, slope, axisIntercept); |
| double A = cubic[3].x; // d |
| double B = cubic[2].x * 3; // 3*c |
| double C = cubic[1].x * 3; // 3*b |
| double D = cubic[0].x; // a |
| A -= D - C + B; // A = -a + 3*b - 3*c + d |
| B += 3 * D - 2 * C; // B = 3*a - 6*b + 3*c |
| C -= 3 * D; // C = -3*a + 3*b |
| double E = cubic[3].y; // h |
| double F = cubic[2].y * 3; // 3*g |
| double G = cubic[1].y * 3; // 3*f |
| double H = cubic[0].y; // e |
| E -= H - G + F; // E = -e + 3*f - 3*g + h |
| F += 3 * H - 2 * G; // F = 3*e - 6*f + 3*g |
| G -= 3 * H; // G = -3*e + 3*f |
| if (moreHorizontal) { |
| A = A * slope - E; |
| B = B * slope - F; |
| C = C * slope - G; |
| D = D * slope - H + axisIntercept; |
| } else { |
| A = A - E * slope; |
| B = B - F * slope; |
| C = C - G * slope; |
| D = D - H * slope - axisIntercept; |
| } |
| double t[3]; |
| int roots = cubicRoots(A, B, C, D, t); |
| for (int x = 0; x < roots; ++x) { |
| intersections.add(t[x], findLineT(t[x])); |
| } |
| return roots > 0; |
| } |
| |
| protected: |
| |
| double findLineT(double t) { |
| const double* cPtr; |
| const double* lPtr; |
| if (moreHorizontal) { |
| cPtr = &cubic[0].x; |
| lPtr = &line[0].x; |
| } else { |
| cPtr = &cubic[0].y; |
| lPtr = &line[0].y; |
| } |
| double s = 1 - t; |
| double cubicVal = cPtr[0] * s * s * s + 3 * cPtr[2] * s * s * t |
| + 3 * cPtr[4] * s * t * t + cPtr[6] * t * t * t; |
| return (cubicVal - lPtr[0]) / (lPtr[2] - lPtr[0]); |
| } |
| |
| private: |
| |
| const Cubic& cubic; |
| const _Line& line; |
| Intersections& intersections; |
| bool moreHorizontal; |
| |
| }; |
| |
| bool intersectStart(const Cubic& cubic, const _Line& line, Intersections& i) { |
| LineCubicIntersections c(cubic, line, i); |
| return c.intersect(); |
| } |