blob: f37507b5a7aa7bf9f14c96bebc757885ad4bdc8e [file] [log] [blame]
#include "CubicIntersection.h"
#include "CubicUtilities.h"
#include "Intersections.h"
#include "LineUtilities.h"
/*
Find the interection of a line and cubic by solving for valid t values.
Analogous to line-quadratic intersection, solve line-cubic intersection by
representing the cubic as:
x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
and the line as:
y = i*x + j (if the line is more horizontal)
or:
x = i*y + j (if the line is more vertical)
Then using Mathematica, solve for the values of t where the cubic intersects the
line:
(in) Resultant[
a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
(out) -e + j +
3 e t - 3 f t -
3 e t^2 + 6 f t^2 - 3 g t^2 +
e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
i ( a -
3 a t + 3 b t +
3 a t^2 - 6 b t^2 + 3 c t^2 -
a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
(in) Resultant[
a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
(out) a - j -
3 a t + 3 b t +
3 a t^2 - 6 b t^2 + 3 c t^2 -
a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
i ( e -
3 e t + 3 f t +
3 e t^2 - 6 f t^2 + 3 g t^2 -
e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
Solving this with Mathematica produces an expression with hundreds of terms;
instead, use Numeric Solutions recipe to solve the cubic.
The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) )
B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) )
C = 3*(-(-e + f ) + i*(-a + b ) )
D = (-( e ) + i*( a ) + j )
The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) )
B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) )
C = 3*( (-a + b ) - i*(-e + f ) )
D = ( ( a ) - i*( e ) - j )
*/
class LineCubicIntersections : public Intersections {
public:
LineCubicIntersections(const Cubic& c, const _Line& l, Intersections& i)
: cubic(c)
, line(l)
, intersections(i) {
}
bool intersect() {
double slope;
double axisIntercept;
moreHorizontal = implicitLine(line, slope, axisIntercept);
double A = cubic[3].x; // d
double B = cubic[2].x * 3; // 3*c
double C = cubic[1].x * 3; // 3*b
double D = cubic[0].x; // a
A -= D - C + B; // A = -a + 3*b - 3*c + d
B += 3 * D - 2 * C; // B = 3*a - 6*b + 3*c
C -= 3 * D; // C = -3*a + 3*b
double E = cubic[3].y; // h
double F = cubic[2].y * 3; // 3*g
double G = cubic[1].y * 3; // 3*f
double H = cubic[0].y; // e
E -= H - G + F; // E = -e + 3*f - 3*g + h
F += 3 * H - 2 * G; // F = 3*e - 6*f + 3*g
G -= 3 * H; // G = -3*e + 3*f
if (moreHorizontal) {
A = A * slope - E;
B = B * slope - F;
C = C * slope - G;
D = D * slope - H + axisIntercept;
} else {
A = A - E * slope;
B = B - F * slope;
C = C - G * slope;
D = D - H * slope - axisIntercept;
}
double t[3];
int roots = cubicRoots(A, B, C, D, t);
for (int x = 0; x < roots; ++x) {
intersections.add(t[x], findLineT(t[x]));
}
return roots > 0;
}
protected:
double findLineT(double t) {
const double* cPtr;
const double* lPtr;
if (moreHorizontal) {
cPtr = &cubic[0].x;
lPtr = &line[0].x;
} else {
cPtr = &cubic[0].y;
lPtr = &line[0].y;
}
double s = 1 - t;
double cubicVal = cPtr[0] * s * s * s + 3 * cPtr[2] * s * s * t
+ 3 * cPtr[4] * s * t * t + cPtr[6] * t * t * t;
return (cubicVal - lPtr[0]) / (lPtr[2] - lPtr[0]);
}
private:
const Cubic& cubic;
const _Line& line;
Intersections& intersections;
bool moreHorizontal;
};
bool intersectStart(const Cubic& cubic, const _Line& line, Intersections& i) {
LineCubicIntersections c(cubic, line, i);
return c.intersect();
}