blob: 9c186e21f4e96d8da0b47146e93337ef73ed6975 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGradientEffects.h"
#include "gl/GrGLProgramStage.h"
#include "GrProgramStageFactory.h"
#include "SkGr.h"
#include "../core/SkShader.h"
// Base class for GL gradient custom stages
class GrGLGradientStage : public GrGLProgramStage {
public:
GrGLGradientStage(const GrProgramStageFactory& factory);
virtual ~GrGLGradientStage();
// emit code that gets a fragment's color from an expression for t; for now
// this always uses the texture, but for simpler cases we'll be able to lerp
void emitColorLookup(GrGLShaderBuilder* builder, const char* t,
const char* outputColor, const char* samplerName);
private:
typedef GrGLProgramStage INHERITED;
};
GrGLGradientStage::GrGLGradientStage(const GrProgramStageFactory& factory)
: INHERITED(factory) { }
GrGLGradientStage::~GrGLGradientStage() { }
void GrGLGradientStage::emitColorLookup(GrGLShaderBuilder* builder,
const char* tName,
const char* outputColor,
const char* samplerName) {
// Texture is effectively 1D so the y coordinate is 0.5, if we pack multiple
// gradients into a texture, we could instead pick the appropriate row here
builder->fSampleCoords.printf("vec2(%s, 0.5)", tName);
builder->fComplexCoord = true;
builder->emitDefaultFetch(outputColor, samplerName);
}
/////////////////////////////////////////////////////////////////////
GrGradientEffect::GrGradientEffect(GrTexture* texture)
: fTexture (texture)
, fUseTexture(true) {
SkSafeRef(fTexture);
}
GrGradientEffect::GrGradientEffect(GrContext* ctx,
const SkShader& shader,
GrSamplerState* sampler)
: fTexture (NULL)
, fUseTexture (false) {
// TODO: check for simple cases where we don't need a texture:
//GradientInfo info;
//shader.asAGradient(&info);
//if (info.fColorCount == 2) { ...
SkBitmap bitmap;
shader.asABitmap(&bitmap, NULL, NULL);
GrContext::TextureCacheEntry entry = GrLockCachedBitmapTexture(ctx, bitmap,
sampler->textureParams());
fTexture = entry.texture();
SkSafeRef(fTexture);
fUseTexture = true;
// Unlock immediately, this is not great, but we don't have a way of
// knowing when else to unlock it currently, so it may get purged from
// the cache, but it'll still be ref'd until it's no longer being used.
GrUnlockCachedBitmapTexture(ctx, entry);
}
GrGradientEffect::~GrGradientEffect() {
SkSafeUnref(fTexture);
}
unsigned int GrGradientEffect::numTextures() const {
return fUseTexture ? 1 : 0;
}
GrTexture* GrGradientEffect::texture(unsigned int index)
const {
GrAssert(fUseTexture && 0 == index);
return fTexture;
}
/////////////////////////////////////////////////////////////////////
class GrGLLinearGradient : public GrGLGradientStage {
public:
GrGLLinearGradient(const GrProgramStageFactory& factory,
const GrCustomStage&)
: INHERITED (factory) { }
virtual ~GrGLLinearGradient() { }
virtual void emitVS(GrGLShaderBuilder* builder,
const char* vertexCoords) SK_OVERRIDE { }
virtual void emitFS(GrGLShaderBuilder* builder,
const char* outputColor,
const char* inputColor,
const char* samplerName) SK_OVERRIDE;
static StageKey GenKey(const GrCustomStage& s) { return 0; }
private:
typedef GrGLGradientStage INHERITED;
};
void GrGLLinearGradient::emitFS(GrGLShaderBuilder* builder,
const char* outputColor,
const char* inputColor,
const char* samplerName) {
SkString t;
t.printf("%s.x", builder->fSampleCoords.c_str());
this->emitColorLookup(builder, t.c_str(), outputColor, samplerName);
}
/////////////////////////////////////////////////////////////////////
GrLinearGradient::GrLinearGradient(GrTexture* texture)
: INHERITED(texture) {
}
GrLinearGradient::GrLinearGradient(GrContext* ctx,
const SkShader& shader,
GrSamplerState* sampler)
: INHERITED(ctx, shader, sampler) {
}
GrLinearGradient::~GrLinearGradient() {
}
const GrProgramStageFactory& GrLinearGradient::getFactory() const {
return GrTProgramStageFactory<GrLinearGradient>::getInstance();
}
/////////////////////////////////////////////////////////////////////
class GrGLRadialGradient : public GrGLGradientStage {
public:
GrGLRadialGradient(const GrProgramStageFactory& factory,
const GrCustomStage&) : INHERITED (factory) { }
virtual ~GrGLRadialGradient() { }
virtual void emitVS(GrGLShaderBuilder* builder,
const char* vertexCoords) SK_OVERRIDE { }
virtual void emitFS(GrGLShaderBuilder* builder,
const char* outputColor,
const char* inputColor,
const char* samplerName) SK_OVERRIDE;
static StageKey GenKey(const GrCustomStage& s) { return 0; }
private:
typedef GrGLGradientStage INHERITED;
};
void GrGLRadialGradient::emitFS(GrGLShaderBuilder* builder,
const char* outputColor,
const char* inputColor,
const char* samplerName) {
SkString t;
t.printf("length(%s.xy)", builder->fSampleCoords.c_str());
this->emitColorLookup(builder, t.c_str(), outputColor, samplerName);
}
/////////////////////////////////////////////////////////////////////
GrRadialGradient::GrRadialGradient(GrTexture* texture)
: INHERITED(texture) {
}
GrRadialGradient::GrRadialGradient(GrContext* ctx, const SkShader& shader,
GrSamplerState* sampler)
: INHERITED(ctx, shader, sampler) {
}
GrRadialGradient::~GrRadialGradient() {
}
const GrProgramStageFactory& GrRadialGradient::getFactory() const {
return GrTProgramStageFactory<GrRadialGradient>::getInstance();
}
/////////////////////////////////////////////////////////////////////
// For brevity
typedef GrGLUniformManager::UniformHandle UniformHandle;
static const UniformHandle kInvalidUniformHandle = GrGLUniformManager::kInvalidUniformHandle;
class GrGLRadial2Gradient : public GrGLGradientStage {
public:
GrGLRadial2Gradient(const GrProgramStageFactory& factory,
const GrCustomStage&);
virtual ~GrGLRadial2Gradient() { }
virtual void setupVariables(GrGLShaderBuilder* builder) SK_OVERRIDE;
virtual void emitVS(GrGLShaderBuilder* builder,
const char* vertexCoords) SK_OVERRIDE;
virtual void emitFS(GrGLShaderBuilder* builder,
const char* outputColor,
const char* inputColor,
const char* samplerName) SK_OVERRIDE;
virtual void setData(const GrGLUniformManager&,
const GrCustomStage&,
const GrRenderTarget*,
int stageNum) SK_OVERRIDE;
static StageKey GenKey(const GrCustomStage& s) {
return (static_cast<const GrRadial2Gradient&>(s).isDegenerate());
}
protected:
UniformHandle fVSParamUni;
UniformHandle fFSParamUni;
const char* fVSVaryingName;
const char* fFSVaryingName;
bool fIsDegenerate;
// @{
/// Values last uploaded as uniforms
GrScalar fCachedCenter;
GrScalar fCachedRadius;
bool fCachedPosRoot;
// @}
private:
typedef GrGLGradientStage INHERITED;
};
GrGLRadial2Gradient::GrGLRadial2Gradient(
const GrProgramStageFactory& factory,
const GrCustomStage& baseData)
: INHERITED(factory)
, fVSParamUni(kInvalidUniformHandle)
, fFSParamUni(kInvalidUniformHandle)
, fVSVaryingName(NULL)
, fFSVaryingName(NULL)
, fCachedCenter(GR_ScalarMax)
, fCachedRadius(-GR_ScalarMax)
, fCachedPosRoot(0) {
const GrRadial2Gradient& data =
static_cast<const GrRadial2Gradient&>(baseData);
fIsDegenerate = data.isDegenerate();
}
void GrGLRadial2Gradient::setupVariables(GrGLShaderBuilder* builder) {
// 2 copies of uniform array, 1 for each of vertex & fragment shader,
// to work around Xoom bug. Doesn't seem to cause performance decrease
// in test apps, but need to keep an eye on it.
fVSParamUni = builder->addUniformArray(GrGLShaderBuilder::kVertex_ShaderType,
kFloat_GrSLType, "Radial2VSParams", 6);
fFSParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_ShaderType,
kFloat_GrSLType, "Radial2FSParams", 6);
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
if (builder->fVaryingDims == builder->fCoordDims) {
builder->addVarying(kFloat_GrSLType, "Radial2BCoeff",
&fVSVaryingName, &fFSVaryingName);
}
}
void GrGLRadial2Gradient::emitVS(GrGLShaderBuilder* builder,
const char* vertexCoords) {
SkString* code = &builder->fVSCode;
SkString p2;
SkString p3;
builder->getUniformVariable(fVSParamUni).appendArrayAccess(2, &p2);
builder->getUniformVariable(fVSParamUni).appendArrayAccess(3, &p3);
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
if (builder->fVaryingDims == builder->fCoordDims) {
// r2Var = 2 * (r2Parm[2] * varCoord.x - r2Param[3])
code->appendf("\t%s = 2.0 *(%s * %s.x - %s);\n",
fVSVaryingName, p2.c_str(),
vertexCoords, p3.c_str());
}
}
void GrGLRadial2Gradient::emitFS(GrGLShaderBuilder* builder,
const char* outputColor,
const char* inputColor,
const char* samplerName) {
SkString* code = &builder->fFSCode;
SkString cName("c");
SkString ac4Name("ac4");
SkString rootName("root");
SkString t;
SkString p0;
SkString p1;
SkString p2;
SkString p3;
SkString p4;
SkString p5;
builder->getUniformVariable(fFSParamUni).appendArrayAccess(0, &p0);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(1, &p1);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(2, &p2);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(3, &p3);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(4, &p4);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(5, &p5);
// If we we're able to interpolate the linear component,
// bVar is the varying; otherwise compute it
SkString bVar;
if (builder->fCoordDims == builder->fVaryingDims) {
bVar = fFSVaryingName;
GrAssert(2 == builder->fVaryingDims);
} else {
GrAssert(3 == builder->fVaryingDims);
bVar = "b";
//bVar.appendS32(stageNum);
code->appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n",
bVar.c_str(), p2.c_str(),
builder->fSampleCoords.c_str(), p3.c_str());
}
// c = (x^2)+(y^2) - params[4]
code->appendf("\tfloat %s = dot(%s, %s) - %s;\n",
cName.c_str(), builder->fSampleCoords.c_str(),
builder->fSampleCoords.c_str(),
p4.c_str());
// If we aren't degenerate, emit some extra code, and accept a slightly
// more complex coord.
if (!fIsDegenerate) {
// ac4 = 4.0 * params[0] * c
code->appendf("\tfloat %s = %s * 4.0 * %s;\n",
ac4Name.c_str(), p0.c_str(),
cName.c_str());
// root = sqrt(b^2-4ac)
// (abs to avoid exception due to fp precision)
code->appendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n",
rootName.c_str(), bVar.c_str(), bVar.c_str(),
ac4Name.c_str());
// t is: (-b + params[5] * sqrt(b^2-4ac)) * params[1]
t.printf("(-%s + %s * %s) * %s", bVar.c_str(), p5.c_str(),
rootName.c_str(), p1.c_str());
} else {
// t is: -c/b
t.printf("-%s / %s", cName.c_str(), bVar.c_str());
}
this->emitColorLookup(builder, t.c_str(), outputColor, samplerName);
}
void GrGLRadial2Gradient::setData(const GrGLUniformManager& uman,
const GrCustomStage& baseData,
const GrRenderTarget*,
int stageNum) {
const GrRadial2Gradient& data =
static_cast<const GrRadial2Gradient&>(baseData);
GrAssert(data.isDegenerate() == fIsDegenerate);
GrScalar centerX1 = data.center();
GrScalar radius0 = data.radius();
if (fCachedCenter != centerX1 ||
fCachedRadius != radius0 ||
fCachedPosRoot != data.isPosRoot()) {
GrScalar a = GrMul(centerX1, centerX1) - GR_Scalar1;
// When we're in the degenerate (linear) case, the second
// value will be INF but the program doesn't read it. (We
// use the same 6 uniforms even though we don't need them
// all in the linear case just to keep the code complexity
// down).
float values[6] = {
GrScalarToFloat(a),
1 / (2.f * GrScalarToFloat(a)),
GrScalarToFloat(centerX1),
GrScalarToFloat(radius0),
GrScalarToFloat(GrMul(radius0, radius0)),
data.isPosRoot() ? 1.f : -1.f
};
uman.set1fv(fVSParamUni, 0, 6, values);
uman.set1fv(fFSParamUni, 0, 6, values);
fCachedCenter = centerX1;
fCachedRadius = radius0;
fCachedPosRoot = data.isPosRoot();
}
}
/////////////////////////////////////////////////////////////////////
GrRadial2Gradient::GrRadial2Gradient(GrTexture* texture,
GrScalar center,
GrScalar radius,
bool posRoot)
: INHERITED(texture)
, fCenterX1 (center)
, fRadius0 (radius)
, fPosRoot (posRoot) {
}
GrRadial2Gradient::GrRadial2Gradient(GrContext* ctx,
const SkShader& shader,
GrSamplerState* sampler,
SkScalar center,
SkScalar startRadius,
SkScalar diffRadius)
: INHERITED(ctx, shader, sampler)
, fCenterX1(center)
, fRadius0(startRadius)
, fPosRoot(diffRadius < 0) {
}
GrRadial2Gradient::~GrRadial2Gradient() {
}
const GrProgramStageFactory& GrRadial2Gradient::getFactory() const {
return GrTProgramStageFactory<GrRadial2Gradient>::getInstance();
}
bool GrRadial2Gradient::isEqual(const GrCustomStage& sBase) const {
const GrRadial2Gradient& s = static_cast<const GrRadial2Gradient&>(sBase);
return (INHERITED::isEqual(sBase) &&
this->fCenterX1 == s.fCenterX1 &&
this->fRadius0 == s.fRadius0 &&
this->fPosRoot == s.fPosRoot);
}
/////////////////////////////////////////////////////////////////////
class GrGLConical2Gradient : public GrGLGradientStage {
public:
GrGLConical2Gradient(const GrProgramStageFactory& factory,
const GrCustomStage&);
virtual ~GrGLConical2Gradient() { }
virtual void setupVariables(GrGLShaderBuilder* builder) SK_OVERRIDE;
virtual void emitVS(GrGLShaderBuilder* builder,
const char* vertexCoords) SK_OVERRIDE;
virtual void emitFS(GrGLShaderBuilder* builder,
const char* outputColor,
const char* inputColor,
const char* samplerName) SK_OVERRIDE;
virtual void setData(const GrGLUniformManager&,
const GrCustomStage&,
const GrRenderTarget*,
int stageNum) SK_OVERRIDE;
static StageKey GenKey(const GrCustomStage& s) {
return (static_cast<const GrConical2Gradient&>(s).isDegenerate());
}
protected:
UniformHandle fVSParamUni;
GrGLint fVSParamLocation;
UniformHandle fFSParamUni;
GrGLint fFSParamLocation;
const char* fVSVaryingName;
const char* fFSVaryingName;
bool fIsDegenerate;
// @{
/// Values last uploaded as uniforms
GrScalar fCachedCenter;
GrScalar fCachedRadius;
GrScalar fCachedDiffRadius;
// @}
private:
typedef GrGLGradientStage INHERITED;
};
GrGLConical2Gradient::GrGLConical2Gradient(
const GrProgramStageFactory& factory,
const GrCustomStage& baseData)
: INHERITED(factory)
, fVSParamUni(kInvalidUniformHandle)
, fFSParamUni(kInvalidUniformHandle)
, fVSVaryingName(NULL)
, fFSVaryingName(NULL)
, fCachedCenter(GR_ScalarMax)
, fCachedRadius(-GR_ScalarMax)
, fCachedDiffRadius(-GR_ScalarMax) {
const GrConical2Gradient& data =
static_cast<const GrConical2Gradient&>(baseData);
fIsDegenerate = data.isDegenerate();
}
void GrGLConical2Gradient::setupVariables(GrGLShaderBuilder* builder) {
// 2 copies of uniform array, 1 for each of vertex & fragment shader,
// to work around Xoom bug. Doesn't seem to cause performance decrease
// in test apps, but need to keep an eye on it.
fVSParamUni = builder->addUniformArray(GrGLShaderBuilder::kVertex_ShaderType,
kFloat_GrSLType, "Conical2VSParams", 6);
fFSParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_ShaderType,
kFloat_GrSLType, "Conical2FSParams", 6);
fVSParamLocation = GrGLProgramStage::kUseUniform;
fFSParamLocation = GrGLProgramStage::kUseUniform;
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
if (builder->fVaryingDims == builder->fCoordDims) {
builder->addVarying(kFloat_GrSLType, "Conical2BCoeff",
&fVSVaryingName, &fFSVaryingName);
}
}
void GrGLConical2Gradient::emitVS(GrGLShaderBuilder* builder,
const char* vertexCoords) {
SkString* code = &builder->fVSCode;
SkString p2; // distance between centers
SkString p3; // start radius
SkString p5; // difference in radii (r1 - r0)
builder->getUniformVariable(fVSParamUni).appendArrayAccess(2, &p2);
builder->getUniformVariable(fVSParamUni).appendArrayAccess(3, &p3);
builder->getUniformVariable(fVSParamUni).appendArrayAccess(5, &p5);
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
if (builder->fVaryingDims == builder->fCoordDims) {
// r2Var = -2 * (r2Parm[2] * varCoord.x - r2Param[3] * r2Param[5])
code->appendf("\t%s = -2.0 * (%s * %s.x + %s * %s);\n",
fVSVaryingName, p2.c_str(),
vertexCoords, p3.c_str(), p5.c_str());
}
}
void GrGLConical2Gradient::emitFS(GrGLShaderBuilder* builder,
const char* outputColor,
const char* inputColor,
const char* samplerName) {
SkString* code = &builder->fFSCode;
SkString cName("c");
SkString ac4Name("ac4");
SkString dName("d");
SkString qName("q");
SkString r0Name("r0");
SkString r1Name("r1");
SkString tName("t");
SkString p0; // 4a
SkString p1; // 1/a
SkString p2; // distance between centers
SkString p3; // start radius
SkString p4; // start radius squared
SkString p5; // difference in radii (r1 - r0)
builder->getUniformVariable(fFSParamUni).appendArrayAccess(0, &p0);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(1, &p1);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(2, &p2);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(3, &p3);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(4, &p4);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(5, &p5);
// If we we're able to interpolate the linear component,
// bVar is the varying; otherwise compute it
SkString bVar;
if (builder->fCoordDims == builder->fVaryingDims) {
bVar = fFSVaryingName;
GrAssert(2 == builder->fVaryingDims);
} else {
GrAssert(3 == builder->fVaryingDims);
bVar = "b";
code->appendf("\tfloat %s = -2.0 * (%s * %s.x + %s * %s);\n",
bVar.c_str(), p2.c_str(), builder->fSampleCoords.c_str(),
p3.c_str(), p5.c_str());
}
// output will default to transparent black (we simply won't write anything
// else to it if invalid, instead of discarding or returning prematurely)
code->appendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", outputColor);
// c = (x^2)+(y^2) - params[4]
code->appendf("\tfloat %s = dot(%s, %s) - %s;\n", cName.c_str(),
builder->fSampleCoords.c_str(), builder->fSampleCoords.c_str(),
p4.c_str());
// Non-degenerate case (quadratic)
if (!fIsDegenerate) {
// ac4 = params[0] * c
code->appendf("\tfloat %s = %s * %s;\n", ac4Name.c_str(), p0.c_str(),
cName.c_str());
// d = b^2 - ac4
code->appendf("\tfloat %s = %s * %s - %s;\n", dName.c_str(),
bVar.c_str(), bVar.c_str(), ac4Name.c_str());
// only proceed if discriminant is >= 0
code->appendf("\tif (%s >= 0.0) {\n", dName.c_str());
// intermediate value we'll use to compute the roots
// q = -0.5 * (b +/- sqrt(d))
code->appendf("\t\tfloat %s = -0.5 * (%s + (%s < 0.0 ? -1.0 : 1.0)"
" * sqrt(%s));\n", qName.c_str(), bVar.c_str(),
bVar.c_str(), dName.c_str());
// compute both roots
// r0 = q * params[1]
code->appendf("\t\tfloat %s = %s * %s;\n", r0Name.c_str(),
qName.c_str(), p1.c_str());
// r1 = c / q
code->appendf("\t\tfloat %s = %s / %s;\n", r1Name.c_str(),
cName.c_str(), qName.c_str());
// Note: If there are two roots that both generate radius(t) > 0, the
// Canvas spec says to choose the larger t.
// so we'll look at the larger one first:
code->appendf("\t\tfloat %s = max(%s, %s);\n", tName.c_str(),
r0Name.c_str(), r1Name.c_str());
// if r(t) > 0, then we're done; t will be our x coordinate
code->appendf("\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
p5.c_str(), p3.c_str());
code->appendf("\t\t");
this->emitColorLookup(builder, tName.c_str(), outputColor, samplerName);
// otherwise, if r(t) for the larger root was <= 0, try the other root
code->appendf("\t\t} else {\n");
code->appendf("\t\t\t%s = min(%s, %s);\n", tName.c_str(),
r0Name.c_str(), r1Name.c_str());
// if r(t) > 0 for the smaller root, then t will be our x coordinate
code->appendf("\t\t\tif (%s * %s + %s > 0.0) {\n",
tName.c_str(), p5.c_str(), p3.c_str());
code->appendf("\t\t\t");
this->emitColorLookup(builder, tName.c_str(), outputColor, samplerName);
// end if (r(t) > 0) for smaller root
code->appendf("\t\t\t}\n");
// end if (r(t) > 0), else, for larger root
code->appendf("\t\t}\n");
// end if (discriminant >= 0)
code->appendf("\t}\n");
} else {
// linear case: t = -c/b
code->appendf("\tfloat %s = -(%s / %s);\n", tName.c_str(),
cName.c_str(), bVar.c_str());
// if r(t) > 0, then t will be the x coordinate
code->appendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
p5.c_str(), p3.c_str());
code->appendf("\t");
this->emitColorLookup(builder, tName.c_str(), outputColor, samplerName);
code->appendf("\t}\n");
}
}
void GrGLConical2Gradient::setData(const GrGLUniformManager& uman,
const GrCustomStage& baseData,
const GrRenderTarget*,
int stageNum) {
const GrConical2Gradient& data =
static_cast<const GrConical2Gradient&>(baseData);
GrAssert(data.isDegenerate() == fIsDegenerate);
GrScalar centerX1 = data.center();
GrScalar radius0 = data.radius();
GrScalar diffRadius = data.diffRadius();
if (fCachedCenter != centerX1 ||
fCachedRadius != radius0 ||
fCachedDiffRadius != diffRadius) {
GrScalar a = GrMul(centerX1, centerX1) - diffRadius * diffRadius;
// When we're in the degenerate (linear) case, the second
// value will be INF but the program doesn't read it. (We
// use the same 6 uniforms even though we don't need them
// all in the linear case just to keep the code complexity
// down).
float values[6] = {
GrScalarToFloat(a * 4),
1.f / (GrScalarToFloat(a)),
GrScalarToFloat(centerX1),
GrScalarToFloat(radius0),
GrScalarToFloat(SkScalarMul(radius0, radius0)),
GrScalarToFloat(diffRadius)
};
uman.set1fv(fVSParamUni, 0, 6, values);
uman.set1fv(fFSParamUni, 0, 6, values);
fCachedCenter = centerX1;
fCachedRadius = radius0;
fCachedDiffRadius = diffRadius;
}
}
/////////////////////////////////////////////////////////////////////
GrConical2Gradient::GrConical2Gradient(GrTexture* texture,
GrScalar center,
GrScalar radius,
GrScalar diffRadius)
: INHERITED (texture)
, fCenterX1 (center)
, fRadius0 (radius)
, fDiffRadius (diffRadius) {
}
GrConical2Gradient::GrConical2Gradient(GrContext* ctx,
const SkShader& shader,
GrSamplerState* sampler,
SkScalar center,
SkScalar startRadius,
SkScalar diffRadius)
: INHERITED(ctx, shader, sampler)
, fCenterX1(center)
, fRadius0(startRadius)
, fDiffRadius(diffRadius) {
}
GrConical2Gradient::~GrConical2Gradient() {
}
const GrProgramStageFactory& GrConical2Gradient::getFactory() const {
return GrTProgramStageFactory<GrConical2Gradient>::getInstance();
}
bool GrConical2Gradient::isEqual(const GrCustomStage& sBase) const {
const GrConical2Gradient& s = static_cast<const GrConical2Gradient&>(sBase);
return (INHERITED::isEqual(sBase) &&
this->fCenterX1 == s.fCenterX1 &&
this->fRadius0 == s.fRadius0 &&
this->fDiffRadius == s.fDiffRadius);
}
/////////////////////////////////////////////////////////////////////
class GrGLSweepGradient : public GrGLGradientStage {
public:
GrGLSweepGradient(const GrProgramStageFactory& factory,
const GrCustomStage&) : INHERITED (factory) { }
virtual ~GrGLSweepGradient() { }
virtual void emitVS(GrGLShaderBuilder* builder,
const char* vertexCoords) SK_OVERRIDE { }
virtual void emitFS(GrGLShaderBuilder* builder,
const char* outputColor,
const char* inputColor,
const char* samplerName) SK_OVERRIDE;
static StageKey GenKey(const GrCustomStage& s) { return 0; }
private:
typedef GrGLGradientStage INHERITED;
};
void GrGLSweepGradient::emitFS(GrGLShaderBuilder* builder,
const char* outputColor,
const char* inputColor,
const char* samplerName) {
SkString t;
t.printf("atan(- %s.y, - %s.x) * 0.1591549430918 + 0.5",
builder->fSampleCoords.c_str(), builder->fSampleCoords.c_str());
this->emitColorLookup(builder, t.c_str(), outputColor, samplerName);
}
/////////////////////////////////////////////////////////////////////
GrSweepGradient::GrSweepGradient(GrTexture* texture)
: INHERITED(texture) {
}
GrSweepGradient::GrSweepGradient(GrContext* ctx, const SkShader& shader,
GrSamplerState* sampler)
: INHERITED(ctx, shader, sampler) {
}
GrSweepGradient::~GrSweepGradient() {
}
const GrProgramStageFactory& GrSweepGradient::getFactory() const {
return GrTProgramStageFactory<GrSweepGradient>::getInstance();
}