blob: eb5a65c888bc0c7b8348df9e150801eff5e8acfa [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGpuGL.h"
#include "GrTypes.h"
#include "SkTemplates.h"
static const GrGLuint GR_MAX_GLUINT = ~0;
static const GrGLint GR_INVAL_GLINT = ~0;
// we use a spare texture unit to avoid
// mucking with the state of any of the stages.
static const int SPARE_TEX_UNIT = GrGpuGL::kNumStages;
#define SKIP_CACHE_CHECK true
static const GrGLenum gXfermodeCoeff2Blend[] = {
GR_GL_ZERO,
GR_GL_ONE,
GR_GL_SRC_COLOR,
GR_GL_ONE_MINUS_SRC_COLOR,
GR_GL_DST_COLOR,
GR_GL_ONE_MINUS_DST_COLOR,
GR_GL_SRC_ALPHA,
GR_GL_ONE_MINUS_SRC_ALPHA,
GR_GL_DST_ALPHA,
GR_GL_ONE_MINUS_DST_ALPHA,
GR_GL_CONSTANT_COLOR,
GR_GL_ONE_MINUS_CONSTANT_COLOR,
GR_GL_CONSTANT_ALPHA,
GR_GL_ONE_MINUS_CONSTANT_ALPHA,
// extended blend coeffs
GR_GL_SRC1_COLOR,
GR_GL_ONE_MINUS_SRC1_COLOR,
GR_GL_SRC1_ALPHA,
GR_GL_ONE_MINUS_SRC1_ALPHA,
};
bool GrGpuGL::BlendCoeffReferencesConstant(GrBlendCoeff coeff) {
static const bool gCoeffReferencesBlendConst[] = {
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
true,
true,
true,
true,
// extended blend coeffs
false,
false,
false,
false,
};
return gCoeffReferencesBlendConst[coeff];
GR_STATIC_ASSERT(kTotalBlendCoeffCount == GR_ARRAY_COUNT(gCoeffReferencesBlendConst));
GR_STATIC_ASSERT(0 == kZero_BlendCoeff);
GR_STATIC_ASSERT(1 == kOne_BlendCoeff);
GR_STATIC_ASSERT(2 == kSC_BlendCoeff);
GR_STATIC_ASSERT(3 == kISC_BlendCoeff);
GR_STATIC_ASSERT(4 == kDC_BlendCoeff);
GR_STATIC_ASSERT(5 == kIDC_BlendCoeff);
GR_STATIC_ASSERT(6 == kSA_BlendCoeff);
GR_STATIC_ASSERT(7 == kISA_BlendCoeff);
GR_STATIC_ASSERT(8 == kDA_BlendCoeff);
GR_STATIC_ASSERT(9 == kIDA_BlendCoeff);
GR_STATIC_ASSERT(10 == kConstC_BlendCoeff);
GR_STATIC_ASSERT(11 == kIConstC_BlendCoeff);
GR_STATIC_ASSERT(12 == kConstA_BlendCoeff);
GR_STATIC_ASSERT(13 == kIConstA_BlendCoeff);
GR_STATIC_ASSERT(14 == kS2C_BlendCoeff);
GR_STATIC_ASSERT(15 == kIS2C_BlendCoeff);
GR_STATIC_ASSERT(16 == kS2A_BlendCoeff);
GR_STATIC_ASSERT(17 == kIS2A_BlendCoeff);
// assertion for gXfermodeCoeff2Blend have to be in GrGpu scope
GR_STATIC_ASSERT(kTotalBlendCoeffCount == GR_ARRAY_COUNT(gXfermodeCoeff2Blend));
}
///////////////////////////////////////////////////////////////////////////////
void GrGpuGL::AdjustTextureMatrix(const GrGLTexture* texture,
GrSamplerState::SampleMode mode,
GrMatrix* matrix) {
GrAssert(NULL != texture);
GrAssert(NULL != matrix);
if (GR_Scalar1 != texture->contentScaleX() ||
GR_Scalar1 != texture->contentScaleY()) {
if (GrSamplerState::kRadial_SampleMode == mode) {
GrMatrix scale;
scale.setScale(texture->contentScaleX(), texture->contentScaleX());
matrix->postConcat(scale);
} else if (GrSamplerState::kNormal_SampleMode == mode) {
GrMatrix scale;
scale.setScale(texture->contentScaleX(), texture->contentScaleY());
matrix->postConcat(scale);
} else {
GrPrintf("We haven't handled NPOT adjustment for other sample modes!");
}
}
GrGLTexture::Orientation orientation = texture->orientation();
if (GrGLTexture::kBottomUp_Orientation == orientation) {
GrMatrix invY;
invY.setAll(GR_Scalar1, 0, 0,
0, -GR_Scalar1, GR_Scalar1,
0, 0, GrMatrix::I()[8]);
matrix->postConcat(invY);
} else {
GrAssert(GrGLTexture::kTopDown_Orientation == orientation);
}
}
bool GrGpuGL::TextureMatrixIsIdentity(const GrGLTexture* texture,
const GrSamplerState& sampler) {
GrAssert(NULL != texture);
if (!sampler.getMatrix().isIdentity()) {
return false;
}
if (GR_Scalar1 != texture->contentScaleX() ||
GR_Scalar1 != texture->contentScaleY()) {
return false;
}
GrGLTexture::Orientation orientation = texture->orientation();
if (GrGLTexture::kBottomUp_Orientation == orientation) {
return false;
} else {
GrAssert(GrGLTexture::kTopDown_Orientation == orientation);
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
static bool gPrintStartupSpew;
static bool fbo_test(int w, int h) {
GrGLint savedFBO;
GrGLint savedTexUnit;
GR_GL_GetIntegerv(GR_GL_ACTIVE_TEXTURE, &savedTexUnit);
GR_GL_GetIntegerv(GR_GL_FRAMEBUFFER_BINDING, &savedFBO);
GR_GL(ActiveTexture(GR_GL_TEXTURE0 + SPARE_TEX_UNIT));
GrGLuint testFBO;
GR_GL(GenFramebuffers(1, &testFBO));
GR_GL(BindFramebuffer(GR_GL_FRAMEBUFFER, testFBO));
GrGLuint testRTTex;
GR_GL(GenTextures(1, &testRTTex));
GR_GL(BindTexture(GR_GL_TEXTURE_2D, testRTTex));
// some implementations require texture to be mip-map complete before
// FBO with level 0 bound as color attachment will be framebuffer complete.
GR_GL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, GR_GL_NEAREST));
GR_GL(TexImage2D(GR_GL_TEXTURE_2D, 0, GR_GL_RGBA, w, h,
0, GR_GL_RGBA, GR_GL_UNSIGNED_BYTE, NULL));
GR_GL(BindTexture(GR_GL_TEXTURE_2D, 0));
GR_GL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D, testRTTex, 0));
GrGLenum status = GR_GL(CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
GR_GL(DeleteFramebuffers(1, &testFBO));
GR_GL(DeleteTextures(1, &testRTTex));
GR_GL(ActiveTexture(savedTexUnit));
GR_GL(BindFramebuffer(GR_GL_FRAMEBUFFER, savedFBO));
return status == GR_GL_FRAMEBUFFER_COMPLETE;
}
static bool probe_for_npot_render_target_support(bool hasNPOTTextureSupport) {
/* Experimentation has found that some GLs that support NPOT textures
do not support FBOs with a NPOT texture. They report "unsupported" FBO
status. I don't know how to explicitly query for this. Do an
experiment. Note they may support NPOT with a renderbuffer but not a
texture. Presumably, the implementation bloats the renderbuffer
internally to the next POT.
*/
if (hasNPOTTextureSupport) {
return fbo_test(200, 200);
}
return false;
}
static int probe_for_min_render_target_height(bool hasNPOTRenderTargetSupport,
int maxRenderTargetSize) {
/* The iPhone 4 has a restriction that for an FBO with texture color
attachment with height <= 8 then the width must be <= height. Here
we look for such a limitation.
*/
if (gPrintStartupSpew) {
GrPrintf("Small height FBO texture experiments\n");
}
int minRenderTargetHeight = GR_INVAL_GLINT;
for (GrGLuint i = 1; i <= 256; hasNPOTRenderTargetSupport ? ++i : i *= 2) {
GrGLuint w = maxRenderTargetSize;
GrGLuint h = i;
if (fbo_test(w, h)) {
if (gPrintStartupSpew) {
GrPrintf("\t[%d, %d]: PASSED\n", w, h);
}
minRenderTargetHeight = i;
break;
} else {
if (gPrintStartupSpew) {
GrPrintf("\t[%d, %d]: FAILED\n", w, h);
}
}
}
GrAssert(GR_INVAL_GLINT != minRenderTargetHeight);
return minRenderTargetHeight;
}
static int probe_for_min_render_target_width(bool hasNPOTRenderTargetSupport,
int maxRenderTargetSize) {
if (gPrintStartupSpew) {
GrPrintf("Small width FBO texture experiments\n");
}
int minRenderTargetWidth = GR_INVAL_GLINT;
for (GrGLuint i = 1; i <= 256; hasNPOTRenderTargetSupport ? i *= 2 : ++i) {
GrGLuint w = i;
GrGLuint h = maxRenderTargetSize;
if (fbo_test(w, h)) {
if (gPrintStartupSpew) {
GrPrintf("\t[%d, %d]: PASSED\n", w, h);
}
minRenderTargetWidth = i;
break;
} else {
if (gPrintStartupSpew) {
GrPrintf("\t[%d, %d]: FAILED\n", w, h);
}
}
}
GrAssert(GR_INVAL_GLINT != minRenderTargetWidth);
return minRenderTargetWidth;
}
GrGpuGL::GrGpuGL()
: fStencilFormats(8) {
GrGLClearErr();
if (gPrintStartupSpew) {
GrPrintf("------------------------- create GrGpuGL %p --------------\n",
this);
GrPrintf("------ VENDOR %s\n",
GrGLGetGLInterface()->fGetString(GR_GL_VENDOR));
GrPrintf("------ RENDERER %s\n",
GrGLGetGLInterface()->fGetString(GR_GL_RENDERER));
GrPrintf("------ VERSION %s\n",
GrGLGetGLInterface()->fGetString(GR_GL_VERSION));
GrPrintf("------ EXTENSIONS\n %s \n",
GrGLGetGLInterface()->fGetString(GR_GL_EXTENSIONS));
}
fGLVersion = gl_version_as_float();
fExtensionString = (const char*) GR_GL(GetString(GR_GL_EXTENSIONS));
this->resetDirtyFlags();
GrGLint maxTextureUnits;
// check FS and fixed-function texture unit limits
// we only use textures in the fragment stage currently.
// checks are > to make sure we have a spare unit.
if (GR_GL_SUPPORT_DESKTOP || GR_GL_SUPPORT_ES2) {
GR_GL_GetIntegerv(GR_GL_MAX_TEXTURE_IMAGE_UNITS, &maxTextureUnits);
GrAssert(maxTextureUnits > kNumStages);
}
if (GR_GL_SUPPORT_DESKTOP || GR_GL_SUPPORT_ES1) {
GR_GL_GetIntegerv(GR_GL_MAX_TEXTURE_UNITS, &maxTextureUnits);
GrAssert(maxTextureUnits > kNumStages);
}
if (GR_GL_SUPPORT_ES2) {
GR_GL_GetIntegerv(GR_GL_MAX_FRAGMENT_UNIFORM_VECTORS,
&fMaxFragmentUniformVectors);
} else if (GR_GL_SUPPORT_DESKTOP) {
GrGLint max;
GR_GL_GetIntegerv(GR_GL_MAX_FRAGMENT_UNIFORM_COMPONENTS, &max);
fMaxFragmentUniformVectors = max / 4;
} else {
fMaxFragmentUniformVectors = 16;
}
////////////////////////////////////////////////////////////////////////////
// Check for supported features.
this->setupStencilFormats();
GrGLint numFormats;
GR_GL_GetIntegerv(GR_GL_NUM_COMPRESSED_TEXTURE_FORMATS, &numFormats);
SkAutoSTMalloc<10, GrGLint> formats(numFormats);
GR_GL_GetIntegerv(GR_GL_COMPRESSED_TEXTURE_FORMATS, formats);
for (int i = 0; i < numFormats; ++i) {
if (formats[i] == GR_GL_PALETTE8_RGBA8) {
f8bitPaletteSupport = true;
break;
}
}
if (gPrintStartupSpew) {
GrPrintf("Palette8 support: %s\n", (f8bitPaletteSupport ? "YES" : "NO"));
}
GR_STATIC_ASSERT(0 == kNone_GrAALevel);
GR_STATIC_ASSERT(1 == kLow_GrAALevel);
GR_STATIC_ASSERT(2 == kMed_GrAALevel);
GR_STATIC_ASSERT(3 == kHigh_GrAALevel);
memset(fAASamples, 0, sizeof(fAASamples));
fMSFBOType = kNone_MSFBO;
if (GR_GL_SUPPORT_ES) {
if (this->hasExtension("GL_CHROMIUM_framebuffer_multisample")) {
// chrome's extension is equivalent to the EXT msaa
// and fbo_blit extensions.
fMSFBOType = kDesktopEXT_MSFBO;
} else if (this->hasExtension("GL_APPLE_framebuffer_multisample")) {
fMSFBOType = kAppleES_MSFBO;
}
} else {
GrAssert(GR_GL_SUPPORT_DESKTOP);
if ((fGLVersion >= 3.f) || this->hasExtension("GL_ARB_framebuffer_object")) {
fMSFBOType = kDesktopARB_MSFBO;
} else if (this->hasExtension("GL_EXT_framebuffer_multisample") &&
this->hasExtension("GL_EXT_framebuffer_blit")) {
fMSFBOType = kDesktopEXT_MSFBO;
}
}
if (gPrintStartupSpew) {
switch (fMSFBOType) {
case kNone_MSFBO:
GrPrintf("MSAA Support: NONE\n");
break;
case kDesktopARB_MSFBO:
GrPrintf("MSAA Support: DESKTOP ARB.\n");
break;
case kDesktopEXT_MSFBO:
GrPrintf("MSAA Support: DESKTOP EXT.\n");
break;
case kAppleES_MSFBO:
GrPrintf("MSAA Support: APPLE ES.\n");
break;
}
}
if (kNone_MSFBO != fMSFBOType) {
GrGLint maxSamples;
GR_GL_GetIntegerv(GR_GL_MAX_SAMPLES, &maxSamples);
if (maxSamples > 1 ) {
fAASamples[kNone_GrAALevel] = 0;
fAASamples[kLow_GrAALevel] = GrMax(2,
GrFixedFloorToInt((GR_FixedHalf) *
maxSamples));
fAASamples[kMed_GrAALevel] = GrMax(2,
GrFixedFloorToInt(((GR_Fixed1*3)/4) *
maxSamples));
fAASamples[kHigh_GrAALevel] = maxSamples;
}
if (gPrintStartupSpew) {
GrPrintf("\tMax Samples: %d\n", maxSamples);
}
}
fFSAASupport = fAASamples[kHigh_GrAALevel] > 0;
if (GR_GL_SUPPORT_DESKTOP) {
fHasStencilWrap = (fGLVersion >= 1.4f) ||
this->hasExtension("GL_EXT_stencil_wrap");
} else {
fHasStencilWrap = (fGLVersion >= 2.0f) || this->hasExtension("GL_OES_stencil_wrap");
}
if (gPrintStartupSpew) {
GrPrintf("Stencil Wrap: %s\n", (fHasStencilWrap ? "YES" : "NO"));
}
if (GR_GL_SUPPORT_DESKTOP) {
// we could also look for GL_ATI_separate_stencil extension or
// GL_EXT_stencil_two_side but they use different function signatures
// than GL2.0+ (and than each other).
fTwoSidedStencilSupport = (fGLVersion >= 2.f);
// supported on GL 1.4 and higher or by extension
fStencilWrapOpsSupport = (fGLVersion >= 1.4f) ||
this->hasExtension("GL_EXT_stencil_wrap");
} else {
// ES 2 has two sided stencil but 1.1 doesn't. There doesn't seem to be
// an ES1 extension.
fTwoSidedStencilSupport = (fGLVersion >= 2.f);
// stencil wrap support is in ES2, ES1 requires extension.
fStencilWrapOpsSupport = (fGLVersion >= 2.f) ||
this->hasExtension("GL_OES_stencil_wrap");
}
if (gPrintStartupSpew) {
GrPrintf("Stencil Caps: TwoSide: %s, Wrap: %s\n",
(fTwoSidedStencilSupport ? "YES" : "NO"),
(fStencilWrapOpsSupport ? "YES" : "NO"));
}
if (GR_GL_SUPPORT_DESKTOP) {
fRGBA8Renderbuffer = true;
} else {
fRGBA8Renderbuffer = this->hasExtension("GL_OES_rgb8_rgba8");
}
if (gPrintStartupSpew) {
GrPrintf("RGBA Renderbuffer: %s\n", (fRGBA8Renderbuffer ? "YES" : "NO"));
}
if (GR_GL_SUPPORT_ES) {
if (GR_GL_32BPP_COLOR_FORMAT == GR_GL_BGRA) {
GrAssert(this->hasExtension("GL_EXT_texture_format_BGRA8888"));
}
}
if (GR_GL_SUPPORT_DESKTOP) {
fBufferLockSupport = true; // we require VBO support and the desktop VBO
// extension includes glMapBuffer.
} else {
fBufferLockSupport = this->hasExtension("GL_OES_mapbuffer");
}
if (gPrintStartupSpew) {
GrPrintf("Map Buffer: %s\n", (fBufferLockSupport ? "YES" : "NO"));
}
if (GR_GL_SUPPORT_DESKTOP) {
if (fGLVersion >= 2.f ||
this->hasExtension("GL_ARB_texture_non_power_of_two")) {
fNPOTTextureTileSupport = true;
fNPOTTextureSupport = true;
} else {
fNPOTTextureTileSupport = false;
fNPOTTextureSupport = false;
}
} else {
if (fGLVersion >= 2.f) {
fNPOTTextureSupport = true;
fNPOTTextureTileSupport = this->hasExtension("GL_OES_texture_npot");
} else {
fNPOTTextureSupport =
this->hasExtension("GL_APPLE_texture_2D_limited_npot");
fNPOTTextureTileSupport = false;
}
}
fAALineSupport = GR_GL_SUPPORT_DESKTOP;
////////////////////////////////////////////////////////////////////////////
// Experiments to determine limitations that can't be queried.
// TODO: Make these a preprocess that generate some compile time constants.
// TODO: probe once at startup, rather than once per context creation.
int expectNPOTTargets = GrGLGetGLInterface()->fNPOTRenderTargetSupport;
if (expectNPOTTargets == kProbe_GrGLCapability) {
fNPOTRenderTargetSupport =
probe_for_npot_render_target_support(fNPOTTextureSupport);
} else {
GrAssert(expectNPOTTargets == 0 || expectNPOTTargets == 1);
fNPOTRenderTargetSupport = static_cast<bool>(expectNPOTTargets);
}
if (gPrintStartupSpew) {
if (fNPOTTextureSupport) {
GrPrintf("NPOT textures supported\n");
if (fNPOTTextureTileSupport) {
GrPrintf("NPOT texture tiling supported\n");
} else {
GrPrintf("NPOT texture tiling NOT supported\n");
}
if (fNPOTRenderTargetSupport) {
GrPrintf("NPOT render targets supported\n");
} else {
GrPrintf("NPOT render targets NOT supported\n");
}
} else {
GrPrintf("NPOT textures NOT supported\n");
}
}
GR_GL_GetIntegerv(GR_GL_MAX_TEXTURE_SIZE, &fMaxTextureSize);
GR_GL_GetIntegerv(GR_GL_MAX_RENDERBUFFER_SIZE, &fMaxRenderTargetSize);
// Our render targets are always created with textures as the color
// attachment, hence this min:
fMaxRenderTargetSize = GrMin(fMaxTextureSize, fMaxRenderTargetSize);
fMinRenderTargetHeight = GrGLGetGLInterface()->fMinRenderTargetHeight;
if (fMinRenderTargetHeight == kProbe_GrGLCapability) {
fMinRenderTargetHeight =
probe_for_min_render_target_height(fNPOTRenderTargetSupport,
fMaxRenderTargetSize);
}
fMinRenderTargetWidth = GrGLGetGLInterface()->fMinRenderTargetWidth;
if (fMinRenderTargetWidth == kProbe_GrGLCapability) {
fMinRenderTargetWidth =
probe_for_min_render_target_width(fNPOTRenderTargetSupport,
fMaxRenderTargetSize);
}
fLastSuccessfulStencilFmtIdx = 0;
}
GrGpuGL::~GrGpuGL() {
}
void GrGpuGL::resetContext() {
// We detect cases when blending is effectively off
fHWBlendDisabled = false;
GR_GL(Enable(GR_GL_BLEND));
// we don't use the zb at all
GR_GL(Disable(GR_GL_DEPTH_TEST));
GR_GL(DepthMask(GR_GL_FALSE));
GR_GL(Disable(GR_GL_CULL_FACE));
GR_GL(FrontFace(GR_GL_CCW));
fHWDrawState.fDrawFace = kBoth_DrawFace;
GR_GL(Disable(GR_GL_DITHER));
if (GR_GL_SUPPORT_DESKTOP) {
GR_GL(Disable(GR_GL_LINE_SMOOTH));
GR_GL(Disable(GR_GL_POINT_SMOOTH));
GR_GL(Disable(GR_GL_MULTISAMPLE));
fHWAAState.fMSAAEnabled = false;
fHWAAState.fSmoothLineEnabled = false;
}
GR_GL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWDrawState.fFlagBits = 0;
// we only ever use lines in hairline mode
GR_GL(LineWidth(1));
// invalid
fActiveTextureUnitIdx = -1;
// illegal values
fHWDrawState.fSrcBlend = (GrBlendCoeff)-1;
fHWDrawState.fDstBlend = (GrBlendCoeff)-1;
fHWDrawState.fBlendConstant = 0x00000000;
GR_GL(BlendColor(0,0,0,0));
fHWDrawState.fColor = GrColor_ILLEGAL;
fHWDrawState.fViewMatrix = GrMatrix::InvalidMatrix();
for (int s = 0; s < kNumStages; ++s) {
fHWDrawState.fTextures[s] = NULL;
fHWDrawState.fSamplerStates[s].setRadial2Params(-GR_ScalarMax,
-GR_ScalarMax,
true);
fHWDrawState.fSamplerStates[s].setMatrix(GrMatrix::InvalidMatrix());
fHWDrawState.fSamplerStates[s].setConvolutionParams(0, NULL, NULL);
}
fHWBounds.fScissorRect.invalidate();
fHWBounds.fScissorEnabled = false;
GR_GL(Disable(GR_GL_SCISSOR_TEST));
fHWBounds.fViewportRect.invalidate();
fHWDrawState.fStencilSettings.invalidate();
fHWStencilClip = false;
fClipState.fClipIsDirty = true;
fClipState.fClipInStencil = false;
fHWGeometryState.fIndexBuffer = NULL;
fHWGeometryState.fVertexBuffer = NULL;
fHWGeometryState.fArrayPtrsDirty = true;
GR_GL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWDrawState.fRenderTarget = NULL;
}
GrResource* GrGpuGL::onCreatePlatformSurface(const GrPlatformSurfaceDesc& desc) {
bool isTexture = kTexture_GrPlatformSurfaceType == desc.fSurfaceType ||
kTextureRenderTarget_GrPlatformSurfaceType == desc.fSurfaceType;
bool isRenderTarget = kRenderTarget_GrPlatformSurfaceType == desc.fSurfaceType ||
kTextureRenderTarget_GrPlatformSurfaceType == desc.fSurfaceType;
GrGLRenderTarget::GLRenderTargetIDs rtIDs;
if (isRenderTarget) {
rtIDs.fRTFBOID = desc.fPlatformRenderTarget;
if (kIsMultisampled_GrPlatformRenderTargetFlagBit & desc.fRenderTargetFlags) {
if (kGrCanResolve_GrPlatformRenderTargetFlagBit & desc.fRenderTargetFlags) {
rtIDs.fTexFBOID = desc.fPlatformResolveDestination;
} else {
GrAssert(!isTexture); // this should have been filtered by GrContext
rtIDs.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID;
}
} else {
rtIDs.fTexFBOID = desc.fPlatformRenderTarget;
}
// we don't know what the RB ids are without glGets and we don't care
// since we aren't responsible for deleting them.
rtIDs.fStencilRenderbufferID = 0;
rtIDs.fMSColorRenderbufferID = 0;
rtIDs.fOwnIDs = false;
} else {
rtIDs.reset();
}
if (isTexture) {
GrGLTexture::GLTextureDesc texDesc;
GrGLenum dontCare;
if (!canBeTexture(desc.fConfig, &dontCare,
&texDesc.fUploadFormat,
&texDesc.fUploadType)) {
return NULL;
}
GrGLTexture::TexParams params;
texDesc.fAllocWidth = texDesc.fContentWidth = desc.fWidth;
texDesc.fAllocHeight = texDesc.fContentHeight = desc.fHeight;
texDesc.fFormat = desc.fConfig;
texDesc.fOrientation = GrGLTexture::kBottomUp_Orientation;
texDesc.fStencilBits = desc.fStencilBits;
texDesc.fTextureID = desc.fPlatformTexture;
texDesc.fUploadByteCount = GrBytesPerPixel(desc.fConfig);
texDesc.fOwnsID = false;
params.invalidate(); // rather than do glGets.
return new GrGLTexture(this, texDesc, rtIDs, params);
} else {
GrGLIRect viewport;
viewport.fLeft = 0;
viewport.fBottom = 0;
viewport.fWidth = desc.fWidth;
viewport.fHeight = desc.fHeight;
bool isMSAA = kIsMultisampled_GrPlatformRenderTargetFlagBit &
desc.fRenderTargetFlags;
return new GrGLRenderTarget(this, rtIDs, NULL, desc.fConfig,
desc.fStencilBits, isMSAA, viewport, NULL);
}
}
namespace {
static const GrGLenum kUnknownGLFormat = ~0;
GrGLenum get_fbo_color_format() {
GrGLint cbType;
GR_GL_GetFramebufferAttachmentParameteriv(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE,
&cbType);
GrGLint cbID;
GrGLint cbFormat;
switch (cbType) {
case GR_GL_RENDERBUFFER:
GR_GL_GetFramebufferAttachmentParameteriv(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME,
&cbID);
GR_GL(BindRenderbuffer(GR_GL_RENDERBUFFER, cbID));
GR_GL_GetRenderbufferParameteriv(GR_GL_RENDERBUFFER,
GR_GL_RENDERBUFFER_INTERNAL_FORMAT,
&cbFormat);
return cbFormat;
break;
case GR_GL_TEXTURE:
// ES doesn't have glGetTexLevelParameter
if (GR_GL_SUPPORT_DESKTOP) {
GrGLint cbLevel;
GrGLint cbFace;
GR_GL_GetFramebufferAttachmentParameteriv(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME,
&cbID);
GR_GL_GetFramebufferAttachmentParameteriv(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL,
&cbLevel);
GR_GL_GetFramebufferAttachmentParameteriv(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE,
&cbFace);
GrGLenum bind;
GrGLenum target;
if (cbFace) {
bind = GR_GL_TEXTURE_CUBE_MAP;
target = cbFace;
} else {
bind = GR_GL_TEXTURE_2D;
target = GR_GL_TEXTURE_2D;
}
GR_GL(BindTexture(bind, cbID));
GR_GL_GetTexLevelParameteriv(target, cbLevel,
GR_GL_TEXTURE_INTERNAL_FORMAT, &cbFormat);
return cbFormat;
} else {
return kUnknownGLFormat;
}
break;
default:
// we can get here with FBO 0, not a render buffer or a texture
return kUnknownGLFormat;
}
}
GrPixelConfig internal_color_format_to_config(GrGLenum iFormat) {
switch (iFormat) {
case GR_GL_RGB565:
return kRGB_565_GrPixelConfig;
case GR_GL_RGBA4:
return kRGBA_4444_GrPixelConfig;
case GR_GL_RGBA8:
case GR_GL_SRGB8_ALPHA8:
case GR_GL_SRGB_ALPHA:
case GR_GL_RGBA:
case GR_GL_BGRA:
return kRGBA_8888_GrPixelConfig;
case GR_GL_RGB8:
case GR_GL_SRGB8:
case GR_GL_SRGB:
return kRGBX_8888_GrPixelConfig;
default:
// there are many GL formats we don't have enums
// for. We should still render to them if the client
// asks us.
return kUnknown_GrPixelConfig;
}
}
GrPixelConfig get_implied_color_config(bool arbFBOExtension) {
GrGLint rSize, bSize, gSize, aSize;
if (arbFBOExtension) {
GR_GL_GetFramebufferAttachmentParameteriv(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_FRAMEBUFFER_ATTACHMENT_RED_SIZE, &rSize);
GR_GL_GetFramebufferAttachmentParameteriv(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_FRAMEBUFFER_ATTACHMENT_GREEN_SIZE, &gSize);
GR_GL_GetFramebufferAttachmentParameteriv(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_FRAMEBUFFER_ATTACHMENT_BLUE_SIZE, &bSize);
GR_GL_GetFramebufferAttachmentParameteriv(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_FRAMEBUFFER_ATTACHMENT_ALPHA_SIZE, &aSize);
} else {
GR_GL_GetIntegerv(GR_GL_RED_BITS, &rSize);
GR_GL_GetIntegerv(GR_GL_GREEN_BITS, &gSize);
GR_GL_GetIntegerv(GR_GL_BLUE_BITS, &bSize);
GR_GL_GetIntegerv(GR_GL_ALPHA_BITS, &aSize);
}
if(8 == rSize && 8 == gSize && 8 == bSize) {
if (0 == aSize) {
return kRGBX_8888_GrPixelConfig;
} else if (8 == aSize) {
return kRGBA_8888_GrPixelConfig;
}
} else if (4 == rSize && 4 == gSize && 4 == bSize && 4 == aSize) {
return kRGBA_4444_GrPixelConfig;
} else if (5 == rSize && 6 == gSize && 5 == bSize && 0 == aSize) {
return kRGB_565_GrPixelConfig;
}
return kUnknown_GrPixelConfig;
}
int get_fbo_stencil_bits(bool arbFBOExtension) {
GrGLint stencilBits;
if (arbFBOExtension) {
GR_GL_GetFramebufferAttachmentParameteriv(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_FRAMEBUFFER_ATTACHMENT_STENCIL_SIZE,
&stencilBits);
} else {
GR_GL_GetIntegerv(GR_GL_STENCIL_BITS, &stencilBits);
}
return stencilBits;
}
}
GrRenderTarget* GrGpuGL::onCreateRenderTargetFrom3DApiState() {
GrGLRenderTarget::GLRenderTargetIDs rtIDs;
GR_GL_GetIntegerv(GR_GL_FRAMEBUFFER_BINDING, (GrGLint*)&rtIDs.fRTFBOID);
rtIDs.fTexFBOID = rtIDs.fRTFBOID;
rtIDs.fMSColorRenderbufferID = 0;
rtIDs.fStencilRenderbufferID = 0;
bool arbFBO = (GR_GL_SUPPORT_DESKTOP && (fGLVersion > 3.0 ||
this->hasExtension("GL_ARB_framebuffer_object")));
GrGLIRect viewport;
viewport.setFromGLViewport();
int stencilBits = get_fbo_stencil_bits(arbFBO);
GrPixelConfig config;
GrGLint samples;
GR_GL_GetIntegerv(GR_GL_SAMPLES, &samples);
GrGLenum fmat = get_fbo_color_format();
if (kUnknownGLFormat == fmat) {
config = get_implied_color_config(arbFBO);
} else {
config = internal_color_format_to_config(fmat);
}
// may have to bind a texture to gets its format
this->setSpareTextureUnit();
rtIDs.fOwnIDs = false;
return new GrGLRenderTarget(this, rtIDs, NULL, config, stencilBits,
(samples > 0), viewport, NULL);
}
///////////////////////////////////////////////////////////////////////////////
void GrGpuGL::setupStencilFormats() {
// Build up list of legal stencil formats (though perhaps not supported on
// the particular gpu/driver) from most preferred to least.
// these consts are in order of most preferred to least preferred
// we don't bother with GL_STENCIL_INDEX1 or GL_DEPTH32F_STENCIL8
static const StencilFormat gS8 = {GR_GL_STENCIL_INDEX8, 8, false};
static const StencilFormat gS16 = {GR_GL_STENCIL_INDEX16, 16, false};
static const StencilFormat gD24S8 = {GR_GL_DEPTH24_STENCIL8, 8, true };
static const StencilFormat gS4 = {GR_GL_STENCIL_INDEX4, 4, false};
static const StencilFormat gS = {GR_GL_STENCIL_INDEX, gUNKNOWN_BITCOUNT, false};
static const StencilFormat gDS = {GR_GL_DEPTH_STENCIL, gUNKNOWN_BITCOUNT, true };
if (GR_GL_SUPPORT_DESKTOP) {
bool supportsPackedDS = fGLVersion >= 3.0f ||
this->hasExtension("GL_EXT_packed_depth_stencil") ||
this->hasExtension("GL_ARB_framebuffer_object");
// S1 thru S16 formats are in GL 3.0+, EXT_FBO, and ARB_FBO since we
// require FBO support we can expect these are legal formats and don't
// check. These also all support the unsized GL_STENCIL_INDEX.
fStencilFormats.push_back() = gS8;
fStencilFormats.push_back() = gS16;
if (supportsPackedDS) {
fStencilFormats.push_back() = gD24S8;
}
fStencilFormats.push_back() = gS4;
if (supportsPackedDS) {
fStencilFormats.push_back() = gDS;
}
} else {
// ES2 has STENCIL_INDEX8 without extensions.
// ES1 with GL_OES_framebuffer_object (which we require for ES1)
// introduces tokens for S1 thu S8 but there are separate extensions
// that make them legal (GL_OES_stencil1, ...).
// GL_OES_packed_depth_stencil adds DEPTH24_STENCIL8
// ES doesn't support using the unsized formats.
if (fGLVersion >= 2.f || this->hasExtension("GL_OES_stencil8")) {
fStencilFormats.push_back() = gS8;
}
//fStencilFormats.push_back() = gS16;
if (this->hasExtension("GL_OES_packed_depth_stencil")) {
fStencilFormats.push_back() = gD24S8;
}
if (this->hasExtension("GL_OES_stencil4")) {
fStencilFormats.push_back() = gS4;
}
// we require some stencil format.
GrAssert(fStencilFormats.count() > 0);
}
}
// good to set a break-point here to know when createTexture fails
static GrTexture* return_null_texture() {
// GrAssert(!"null texture");
return NULL;
}
#if GR_DEBUG
static size_t as_size_t(int x) {
return x;
}
#endif
GrTexture* GrGpuGL::onCreateTexture(const GrTextureDesc& desc,
const void* srcData,
size_t rowBytes) {
#if GR_COLLECT_STATS
++fStats.fTextureCreateCnt;
#endif
this->setSpareTextureUnit();
static const GrGLTexture::TexParams DEFAULT_PARAMS = {
GR_GL_NEAREST,
GR_GL_CLAMP_TO_EDGE,
GR_GL_CLAMP_TO_EDGE
};
GrGLTexture::GLTextureDesc glDesc;
GrGLenum internalFormat;
glDesc.fContentWidth = desc.fWidth;
glDesc.fContentHeight = desc.fHeight;
glDesc.fAllocWidth = desc.fWidth;
glDesc.fAllocHeight = desc.fHeight;
glDesc.fStencilBits = 0;
glDesc.fFormat = desc.fFormat;
glDesc.fOwnsID = true;
bool renderTarget = 0 != (desc.fFlags & kRenderTarget_GrTextureFlagBit);
if (!canBeTexture(desc.fFormat,
&internalFormat,
&glDesc.fUploadFormat,
&glDesc.fUploadType)) {
return return_null_texture();
}
// We keep GrRenderTargets in GL's normal orientation so that they
// can be drawn to by the outside world without the client having
// to render upside down.
glDesc.fOrientation = renderTarget ? GrGLTexture::kBottomUp_Orientation :
GrGLTexture::kTopDown_Orientation;
GrAssert(as_size_t(desc.fAALevel) < GR_ARRAY_COUNT(fAASamples));
GrGLint samples = fAASamples[desc.fAALevel];
if (kNone_MSFBO == fMSFBOType && desc.fAALevel != kNone_GrAALevel) {
GrPrintf("AA RT requested but not supported on this platform.");
}
glDesc.fUploadByteCount = GrBytesPerPixel(desc.fFormat);
// in case we need a temporary, trimmed copy of the src pixels
SkAutoSMalloc<128 * 128> tempStorage;
if (!rowBytes) {
rowBytes = glDesc.fUploadByteCount * desc.fWidth;
}
/*
* check whether to allocate a temporary buffer for flipping y or
* because our srcData has extra bytes past each row. If so, we need
* to trim those off here, since GL ES doesn't let us specify
* GL_UNPACK_ROW_LENGTH.
*/
bool flipY = GrGLTexture::kBottomUp_Orientation == glDesc.fOrientation;
if (GR_GL_SUPPORT_DESKTOP && !flipY) {
if (srcData && rowBytes != desc.fWidth * glDesc.fUploadByteCount) {
GR_GL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH,
rowBytes / glDesc.fUploadByteCount));
}
} else {
size_t trimRowBytes = desc.fWidth * glDesc.fUploadByteCount;
if (srcData && (trimRowBytes < rowBytes || flipY)) {
// copy the data into our new storage, skipping the trailing bytes
size_t trimSize = desc.fHeight * trimRowBytes;
const char* src = (const char*)srcData;
if (flipY) {
src += (desc.fHeight - 1) * rowBytes;
}
char* dst = (char*)tempStorage.realloc(trimSize);
for (int y = 0; y < desc.fHeight; y++) {
memcpy(dst, src, trimRowBytes);
if (flipY) {
src -= rowBytes;
} else {
src += rowBytes;
}
dst += trimRowBytes;
}
// now point srcData to our trimmed version
srcData = tempStorage.get();
rowBytes = trimRowBytes;
}
}
if (renderTarget) {
if (!this->npotRenderTargetSupport()) {
glDesc.fAllocWidth = GrNextPow2(desc.fWidth);
glDesc.fAllocHeight = GrNextPow2(desc.fHeight);
}
glDesc.fAllocWidth = GrMax(fMinRenderTargetWidth,
glDesc.fAllocWidth);
glDesc.fAllocHeight = GrMax(fMinRenderTargetHeight,
glDesc.fAllocHeight);
if (glDesc.fAllocWidth > fMaxRenderTargetSize ||
glDesc.fAllocHeight > fMaxRenderTargetSize) {
return return_null_texture();
}
} else if (!this->npotTextureSupport()) {
glDesc.fAllocWidth = GrNextPow2(desc.fWidth);
glDesc.fAllocHeight = GrNextPow2(desc.fHeight);
if (glDesc.fAllocWidth > fMaxTextureSize ||
glDesc.fAllocHeight > fMaxTextureSize) {
return return_null_texture();
}
}
GR_GL(GenTextures(1, &glDesc.fTextureID));
if (!glDesc.fTextureID) {
return return_null_texture();
}
GR_GL(BindTexture(GR_GL_TEXTURE_2D, glDesc.fTextureID));
GR_GL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MAG_FILTER,
DEFAULT_PARAMS.fFilter));
GR_GL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MIN_FILTER,
DEFAULT_PARAMS.fFilter));
GR_GL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_S,
DEFAULT_PARAMS.fWrapS));
GR_GL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_T,
DEFAULT_PARAMS.fWrapT));
GR_GL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, glDesc.fUploadByteCount));
if (kIndex_8_GrPixelConfig == desc.fFormat &&
supports8BitPalette()) {
// ES only supports CompressedTexImage2D, not CompressedTexSubimage2D
GrAssert(desc.fWidth == glDesc.fAllocWidth);
GrAssert(desc.fHeight == glDesc.fAllocHeight);
GrGLsizei imageSize = glDesc.fAllocWidth * glDesc.fAllocHeight +
kGrColorTableSize;
GR_GL(CompressedTexImage2D(GR_GL_TEXTURE_2D, 0, glDesc.fUploadFormat,
glDesc.fAllocWidth, glDesc.fAllocHeight,
0, imageSize, srcData));
GrGLRestoreResetRowLength();
} else {
if (NULL != srcData && (glDesc.fAllocWidth != desc.fWidth ||
glDesc.fAllocHeight != desc.fHeight)) {
GR_GL(TexImage2D(GR_GL_TEXTURE_2D, 0, internalFormat,
glDesc.fAllocWidth, glDesc.fAllocHeight,
0, glDesc.fUploadFormat, glDesc.fUploadType, NULL));
GR_GL(TexSubImage2D(GR_GL_TEXTURE_2D, 0, 0, 0, desc.fWidth,
desc.fHeight, glDesc.fUploadFormat,
glDesc.fUploadType, srcData));
GrGLRestoreResetRowLength();
int extraW = glDesc.fAllocWidth - desc.fWidth;
int extraH = glDesc.fAllocHeight - desc.fHeight;
int maxTexels = extraW * extraH;
maxTexels = GrMax(extraW * desc.fHeight, maxTexels);
maxTexels = GrMax(desc.fWidth * extraH, maxTexels);
SkAutoSMalloc<128*128> texels(glDesc.fUploadByteCount * maxTexels);
// rowBytes is actual stride between rows in srcData
// rowDataBytes is the actual amount of non-pad data in a row
// and the stride used for uploading extraH rows.
uint32_t rowDataBytes = desc.fWidth * glDesc.fUploadByteCount;
if (extraH) {
uint8_t* lastRowStart = (uint8_t*) srcData +
(desc.fHeight - 1) * rowBytes;
uint8_t* extraRowStart = (uint8_t*)texels.get();
for (int i = 0; i < extraH; ++i) {
memcpy(extraRowStart, lastRowStart, rowDataBytes);
extraRowStart += rowDataBytes;
}
GR_GL(TexSubImage2D(GR_GL_TEXTURE_2D, 0, 0, desc.fHeight, desc.fWidth,
extraH, glDesc.fUploadFormat, glDesc.fUploadType,
texels.get()));
}
if (extraW) {
uint8_t* edgeTexel = (uint8_t*)srcData + rowDataBytes - glDesc.fUploadByteCount;
uint8_t* extraTexel = (uint8_t*)texels.get();
for (int j = 0; j < desc.fHeight; ++j) {
for (int i = 0; i < extraW; ++i) {
memcpy(extraTexel, edgeTexel, glDesc.fUploadByteCount);
extraTexel += glDesc.fUploadByteCount;
}
edgeTexel += rowBytes;
}
GR_GL(TexSubImage2D(GR_GL_TEXTURE_2D, 0, desc.fWidth, 0, extraW,
desc.fHeight, glDesc.fUploadFormat,
glDesc.fUploadType, texels.get()));
}
if (extraW && extraH) {
uint8_t* cornerTexel = (uint8_t*)srcData + desc.fHeight * rowBytes
- glDesc.fUploadByteCount;
uint8_t* extraTexel = (uint8_t*)texels.get();
for (int i = 0; i < extraW*extraH; ++i) {
memcpy(extraTexel, cornerTexel, glDesc.fUploadByteCount);
extraTexel += glDesc.fUploadByteCount;
}
GR_GL(TexSubImage2D(GR_GL_TEXTURE_2D, 0, desc.fWidth, desc.fHeight,
extraW, extraH, glDesc.fUploadFormat,
glDesc.fUploadType, texels.get()));
}
} else {
GR_GL(TexImage2D(GR_GL_TEXTURE_2D, 0, internalFormat, glDesc.fAllocWidth,
glDesc.fAllocHeight, 0, glDesc.fUploadFormat,
glDesc.fUploadType, srcData));
GrGLRestoreResetRowLength();
}
}
GrGLRenderTarget::GLRenderTargetIDs rtIDs;
rtIDs.fStencilRenderbufferID = 0;
rtIDs.fMSColorRenderbufferID = 0;
rtIDs.fRTFBOID = 0;
rtIDs.fTexFBOID = 0;
rtIDs.fOwnIDs = true;
GrGLenum msColorRenderbufferFormat = -1;
if (renderTarget) {
#if GR_COLLECT_STATS
++fStats.fRenderTargetCreateCnt;
#endif
bool failed = true;
GrGLenum status;
GrGLint err;
GR_GL(GenFramebuffers(1, &rtIDs.fTexFBOID));
GrAssert(rtIDs.fTexFBOID);
// If we are using multisampling and we will create two FBOS We render
// to one and then resolve to the texture bound to the other.
if (samples > 1 && kNone_MSFBO != fMSFBOType) {
GR_GL(GenFramebuffers(1, &rtIDs.fRTFBOID));
GrAssert(0 != rtIDs.fRTFBOID);
GR_GL(GenRenderbuffers(1, &rtIDs.fMSColorRenderbufferID));
GrAssert(0 != rtIDs.fMSColorRenderbufferID);
if (!fboInternalFormat(desc.fFormat, &msColorRenderbufferFormat)) {
GR_GL(DeleteRenderbuffers(1, &rtIDs.fMSColorRenderbufferID));
GR_GL(DeleteTextures(1, &glDesc.fTextureID));
GR_GL(DeleteFramebuffers(1, &rtIDs.fTexFBOID));
GR_GL(DeleteFramebuffers(1, &rtIDs.fRTFBOID));
return return_null_texture();
}
} else {
rtIDs.fRTFBOID = rtIDs.fTexFBOID;
}
if (!(kNoStencil_GrTextureFlagBit & desc.fFlags)) {
GR_GL(GenRenderbuffers(1, &rtIDs.fStencilRenderbufferID));
GrAssert(0 != rtIDs.fStencilRenderbufferID);
}
// someone suggested that some systems might require
// unbinding the texture before we call FramebufferTexture2D
// (seems unlikely)
GR_GL(BindTexture(GR_GL_TEXTURE_2D, 0));
err = ~GR_GL_NO_ERROR;
int stencilFmtCnt;
if (rtIDs.fStencilRenderbufferID) {
stencilFmtCnt = fStencilFormats.count();
} else {
stencilFmtCnt = 1; // only 1 attempt when we don't need a stencil
}
for (int i = 0; i < stencilFmtCnt; ++i) {
// we start with the last stencil format that succeeded in hopes
// that we won't go through this loop more than once after the
// first (painful) stencil creation.
int sIdx = (i + fLastSuccessfulStencilFmtIdx) % stencilFmtCnt;
if (rtIDs.fStencilRenderbufferID) {
GR_GL(BindRenderbuffer(GR_GL_RENDERBUFFER,
rtIDs.fStencilRenderbufferID));
if (samples > 1) {
GR_GL_NO_ERR(RenderbufferStorageMultisample(
GR_GL_RENDERBUFFER,
samples,
fStencilFormats[sIdx].fEnum,
glDesc.fAllocWidth,
glDesc.fAllocHeight));
} else {
GR_GL_NO_ERR(RenderbufferStorage(GR_GL_RENDERBUFFER,
fStencilFormats[sIdx].fEnum,
glDesc.fAllocWidth,
glDesc.fAllocHeight));
}
err = GrGLGetGLInterface()->fGetError();
if (err != GR_GL_NO_ERROR) {
continue;
}
}
if (rtIDs.fRTFBOID != rtIDs.fTexFBOID) {
GrAssert(samples > 1);
GR_GL(BindRenderbuffer(GR_GL_RENDERBUFFER,
rtIDs.fMSColorRenderbufferID));
GR_GL_NO_ERR(RenderbufferStorageMultisample(
GR_GL_RENDERBUFFER,
samples,
msColorRenderbufferFormat,
glDesc.fAllocWidth,
glDesc.fAllocHeight));
err = GrGLGetGLInterface()->fGetError();
if (err != GR_GL_NO_ERROR) {
continue;
}
}
GR_GL(BindFramebuffer(GR_GL_FRAMEBUFFER, rtIDs.fTexFBOID));
#if GR_COLLECT_STATS
++fStats.fRenderTargetChngCnt;
#endif
GR_GL(FramebufferTexture2D(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D,
glDesc.fTextureID, 0));
if (rtIDs.fRTFBOID != rtIDs.fTexFBOID) {
GrGLenum status = GR_GL(CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
continue;
}
GR_GL(BindFramebuffer(GR_GL_FRAMEBUFFER, rtIDs.fRTFBOID));
#if GR_COLLECT_STATS
++fStats.fRenderTargetChngCnt;
#endif
GR_GL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_RENDERBUFFER,
rtIDs.fMSColorRenderbufferID));
}
if (rtIDs.fStencilRenderbufferID) {
// bind the stencil to rt fbo if present, othewise the tex fbo
GR_GL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER,
rtIDs.fStencilRenderbufferID));
// if it is a packed format bind to depth also, otherwise
// we may get an unsupported fbo completeness result
if (fStencilFormats[sIdx].fPacked) {
GR_GL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER,
rtIDs.fStencilRenderbufferID));
}
}
status = GR_GL(CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
// undo the depth bind
if (rtIDs.fStencilRenderbufferID &&
fStencilFormats[sIdx].fPacked) {
GR_GL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER,
0));
}
continue;
}
// we're successful!
failed = false;
if (rtIDs.fStencilRenderbufferID) {
fLastSuccessfulStencilFmtIdx = sIdx;
if (gUNKNOWN_BITCOUNT == fStencilFormats[sIdx].fBits) {
GR_GL_GetIntegerv(GR_GL_STENCIL_BITS, (GrGLint*)&glDesc.fStencilBits);
} else {
glDesc.fStencilBits = fStencilFormats[sIdx].fBits;
}
}
break;
}
if (failed) {
if (rtIDs.fStencilRenderbufferID) {
GR_GL(DeleteRenderbuffers(1, &rtIDs.fStencilRenderbufferID));
}
if (rtIDs.fMSColorRenderbufferID) {
GR_GL(DeleteRenderbuffers(1, &rtIDs.fMSColorRenderbufferID));
}
if (rtIDs.fRTFBOID != rtIDs.fTexFBOID) {
GR_GL(DeleteFramebuffers(1, &rtIDs.fRTFBOID));
}
if (rtIDs.fTexFBOID) {
GR_GL(DeleteFramebuffers(1, &rtIDs.fTexFBOID));
}
GR_GL(DeleteTextures(1, &glDesc.fTextureID));
return return_null_texture();
}
}
#ifdef TRACE_TEXTURE_CREATION
GrPrintf("--- new texture [%d] size=(%d %d) bpp=%d\n",
tex->fTextureID, width, height, tex->fUploadByteCount);
#endif
GrGLTexture* tex = new GrGLTexture(this, glDesc, rtIDs, DEFAULT_PARAMS);
if (0 != rtIDs.fTexFBOID) {
GrRenderTarget* rt = tex->asRenderTarget();
// We've messed with FBO state but may not have set the correct viewport
// so just dirty the rendertarget state to force a resend.
fHWDrawState.fRenderTarget = NULL;
// clear the new stencil buffer if we have one
if (!(desc.fFlags & kNoStencil_GrTextureFlagBit)) {
GrRenderTarget* rtSave = fCurrDrawState.fRenderTarget;
fCurrDrawState.fRenderTarget = rt;
this->clearStencil(0, ~0);
fCurrDrawState.fRenderTarget = rtSave;
}
}
return tex;
}
GrVertexBuffer* GrGpuGL::onCreateVertexBuffer(uint32_t size, bool dynamic) {
GrGLuint id;
GR_GL(GenBuffers(1, &id));
if (id) {
GR_GL(BindBuffer(GR_GL_ARRAY_BUFFER, id));
fHWGeometryState.fArrayPtrsDirty = true;
GrGLClearErr();
// make sure driver can allocate memory for this buffer
GR_GL_NO_ERR(BufferData(GR_GL_ARRAY_BUFFER, size, NULL,
dynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW));
if (GrGLGetGLInterface()->fGetError() != GR_GL_NO_ERROR) {
GR_GL(DeleteBuffers(1, &id));
// deleting bound buffer does implicit bind to 0
fHWGeometryState.fVertexBuffer = NULL;
return NULL;
}
GrGLVertexBuffer* vertexBuffer = new GrGLVertexBuffer(this, id,
size, dynamic);
fHWGeometryState.fVertexBuffer = vertexBuffer;
return vertexBuffer;
}
return NULL;
}
GrIndexBuffer* GrGpuGL::onCreateIndexBuffer(uint32_t size, bool dynamic) {
GrGLuint id;
GR_GL(GenBuffers(1, &id));
if (id) {
GR_GL(BindBuffer(GR_GL_ELEMENT_ARRAY_BUFFER, id));
GrGLClearErr();
// make sure driver can allocate memory for this buffer
GR_GL_NO_ERR(BufferData(GR_GL_ELEMENT_ARRAY_BUFFER, size, NULL,
dynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW));
if (GrGLGetGLInterface()->fGetError() != GR_GL_NO_ERROR) {
GR_GL(DeleteBuffers(1, &id));
// deleting bound buffer does implicit bind to 0
fHWGeometryState.fIndexBuffer = NULL;
return NULL;
}
GrIndexBuffer* indexBuffer = new GrGLIndexBuffer(this, id,
size, dynamic);
fHWGeometryState.fIndexBuffer = indexBuffer;
return indexBuffer;
}
return NULL;
}
void GrGpuGL::flushScissor(const GrIRect* rect) {
GrAssert(NULL != fCurrDrawState.fRenderTarget);
const GrGLIRect& vp =
((GrGLRenderTarget*)fCurrDrawState.fRenderTarget)->getViewport();
GrGLIRect scissor;
if (NULL != rect) {
scissor.setRelativeTo(vp, rect->fLeft, rect->fTop,
rect->width(), rect->height());
if (scissor.contains(vp)) {
rect = NULL;
}
}
if (NULL != rect) {
if (fHWBounds.fScissorRect != scissor) {
scissor.pushToGLScissor();
fHWBounds.fScissorRect = scissor;
}
if (!fHWBounds.fScissorEnabled) {
GR_GL(Enable(GR_GL_SCISSOR_TEST));
fHWBounds.fScissorEnabled = true;
}
} else {
if (fHWBounds.fScissorEnabled) {
GR_GL(Disable(GR_GL_SCISSOR_TEST));
fHWBounds.fScissorEnabled = false;
}
}
}
void GrGpuGL::onClear(const GrIRect* rect, GrColor color) {
if (NULL == fCurrDrawState.fRenderTarget) {
return;
}
GrIRect r;
if (NULL != rect) {
// flushScissor expects rect to be clipped to the target.
r = *rect;
GrIRect rtRect = SkIRect::MakeWH(fCurrDrawState.fRenderTarget->width(),
fCurrDrawState.fRenderTarget->height());
if (r.intersect(rtRect)) {
rect = &r;
} else {
return;
}
}
this->flushRenderTarget(rect);
this->flushScissor(rect);
GR_GL(ColorMask(GR_GL_TRUE,GR_GL_TRUE,GR_GL_TRUE,GR_GL_TRUE));
fHWDrawState.fFlagBits &= ~kNoColorWrites_StateBit;
GR_GL(ClearColor(GrColorUnpackR(color)/255.f,
GrColorUnpackG(color)/255.f,
GrColorUnpackB(color)/255.f,
GrColorUnpackA(color)/255.f));
GR_GL(Clear(GR_GL_COLOR_BUFFER_BIT));
}
void GrGpuGL::clearStencil(uint32_t value, uint32_t mask) {
if (NULL == fCurrDrawState.fRenderTarget) {
return;
}
this->flushRenderTarget(&GrIRect::EmptyIRect());
if (fHWBounds.fScissorEnabled) {
GR_GL(Disable(GR_GL_SCISSOR_TEST));
fHWBounds.fScissorEnabled = false;
}
GR_GL(StencilMask(mask));
GR_GL(ClearStencil(value));
GR_GL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWDrawState.fStencilSettings.invalidate();
}
void GrGpuGL::clearStencilClip(const GrIRect& rect) {
GrAssert(NULL != fCurrDrawState.fRenderTarget);
#if 0
GrGLint stencilBitCount = fCurrDrawState.fRenderTarget->stencilBits();
GrAssert(stencilBitCount > 0);
GrGLint clipStencilMask = (1 << (stencilBitCount - 1));
#else
// we could just clear the clip bit but when we go through
// angle a partial stencil mask will cause clears to be
// turned into draws. Our contract on GrDrawTarget says that
// changing the clip between stencil passes may or may not
// zero the client's clip bits. So we just clear the whole thing.
static const GrGLint clipStencilMask = ~0;
#endif
this->flushRenderTarget(&GrIRect::EmptyIRect());
flushScissor(&rect);
GR_GL(StencilMask(clipStencilMask));
GR_GL(ClearStencil(0));
GR_GL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWDrawState.fStencilSettings.invalidate();
}
void GrGpuGL::onForceRenderTargetFlush() {
this->flushRenderTarget(&GrIRect::EmptyIRect());
}
bool GrGpuGL::onReadPixels(GrRenderTarget* target,
int left, int top, int width, int height,
GrPixelConfig config, void* buffer) {
GrGLenum internalFormat; // we don't use this for glReadPixels
GrGLenum format;
GrGLenum type;
if (!this->canBeTexture(config, &internalFormat, &format, &type)) {
return false;
}
GrGLRenderTarget* tgt = static_cast<GrGLRenderTarget*>(target);
GrAutoTPtrValueRestore<GrRenderTarget*> autoTargetRestore;
switch (tgt->getResolveType()) {
case GrGLRenderTarget::kCantResolve_ResolveType:
return false;
case GrGLRenderTarget::kAutoResolves_ResolveType:
autoTargetRestore.save(&fCurrDrawState.fRenderTarget);
fCurrDrawState.fRenderTarget = target;
this->flushRenderTarget(&GrIRect::EmptyIRect());
break;
case GrGLRenderTarget::kCanResolve_ResolveType:
this->resolveRenderTarget(tgt);
// we don't track the state of the READ FBO ID.
GR_GL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, tgt->textureFBOID()));
break;
default:
GrCrash("Unknown resolve type");
}
const GrGLIRect& glvp = tgt->getViewport();
// the read rect is viewport-relative
GrGLIRect readRect;
readRect.setRelativeTo(glvp, left, top, width, height);
GR_GL(ReadPixels(readRect.fLeft, readRect.fBottom,
readRect.fWidth, readRect.fHeight,
format, type, buffer));
// now reverse the order of the rows, since GL's are bottom-to-top, but our
// API presents top-to-bottom
{
size_t stride = width * GrBytesPerPixel(config);
SkAutoMalloc rowStorage(stride);
void* tmp = rowStorage.get();
const int halfY = height >> 1;
char* top = reinterpret_cast<char*>(buffer);
char* bottom = top + (height - 1) * stride;
for (int y = 0; y < halfY; y++) {
memcpy(tmp, top, stride);
memcpy(top, bottom, stride);
memcpy(bottom, tmp, stride);
top += stride;
bottom -= stride;
}
}
return true;
}
void GrGpuGL::flushRenderTarget(const GrIRect* bound) {
GrAssert(NULL != fCurrDrawState.fRenderTarget);
GrGLRenderTarget* rt = (GrGLRenderTarget*)fCurrDrawState.fRenderTarget;
if (fHWDrawState.fRenderTarget != fCurrDrawState.fRenderTarget) {
GR_GL(BindFramebuffer(GR_GL_FRAMEBUFFER, rt->renderFBOID()));
#if GR_COLLECT_STATS
++fStats.fRenderTargetChngCnt;
#endif
#if GR_DEBUG
GrGLenum status = GR_GL(CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
GrPrintf("GrGpuGL::flushRenderTarget glCheckFramebufferStatus %x\n", status);
}
#endif
fDirtyFlags.fRenderTargetChanged = true;
fHWDrawState.fRenderTarget = fCurrDrawState.fRenderTarget;
const GrGLIRect& vp = rt->getViewport();
if (fHWBounds.fViewportRect != vp) {
vp.pushToGLViewport();
fHWBounds.fViewportRect = vp;
}
}
if (NULL == bound || !bound->isEmpty()) {
rt->flagAsNeedingResolve(bound);
}
}
GrGLenum gPrimitiveType2GLMode[] = {
GR_GL_TRIANGLES,
GR_GL_TRIANGLE_STRIP,
GR_GL_TRIANGLE_FAN,
GR_GL_POINTS,
GR_GL_LINES,
GR_GL_LINE_STRIP
};
#define SWAP_PER_DRAW 0
#if SWAP_PER_DRAW
#if GR_MAC_BUILD
#include <AGL/agl.h>
#elif GR_WIN32_BUILD
void SwapBuf() {
DWORD procID = GetCurrentProcessId();
HWND hwnd = GetTopWindow(GetDesktopWindow());
while(hwnd) {
DWORD wndProcID = 0;
GetWindowThreadProcessId(hwnd, &wndProcID);
if(wndProcID == procID) {
SwapBuffers(GetDC(hwnd));
}
hwnd = GetNextWindow(hwnd, GW_HWNDNEXT);
}
}
#endif
#endif
void GrGpuGL::onGpuDrawIndexed(GrPrimitiveType type,
uint32_t startVertex,
uint32_t startIndex,
uint32_t vertexCount,
uint32_t indexCount) {
GrAssert((size_t)type < GR_ARRAY_COUNT(gPrimitiveType2GLMode));
GrGLvoid* indices = (GrGLvoid*)(sizeof(uint16_t) * startIndex);
GrAssert(NULL != fHWGeometryState.fIndexBuffer);
GrAssert(NULL != fHWGeometryState.fVertexBuffer);
// our setupGeometry better have adjusted this to zero since
// DrawElements always draws from the begining of the arrays for idx 0.
GrAssert(0 == startVertex);
GR_GL(DrawElements(gPrimitiveType2GLMode[type], indexCount,
GR_GL_UNSIGNED_SHORT, indices));
#if SWAP_PER_DRAW
glFlush();
#if GR_MAC_BUILD
aglSwapBuffers(aglGetCurrentContext());
int set_a_break_pt_here = 9;
aglSwapBuffers(aglGetCurrentContext());
#elif GR_WIN32_BUILD
SwapBuf();
int set_a_break_pt_here = 9;
SwapBuf();
#endif
#endif
}
void GrGpuGL::onGpuDrawNonIndexed(GrPrimitiveType type,
uint32_t startVertex,
uint32_t vertexCount) {
GrAssert((size_t)type < GR_ARRAY_COUNT(gPrimitiveType2GLMode));
GrAssert(NULL != fHWGeometryState.fVertexBuffer);
// our setupGeometry better have adjusted this to zero.
// DrawElements doesn't take an offset so we always adjus the startVertex.
GrAssert(0 == startVertex);
// pass 0 for parameter first. We have to adjust gl*Pointer() to
// account for startVertex in the DrawElements case. So we always
// rely on setupGeometry to have accounted for startVertex.
GR_GL(DrawArrays(gPrimitiveType2GLMode[type], 0, vertexCount));
#if SWAP_PER_DRAW
glFlush();
#if GR_MAC_BUILD
aglSwapBuffers(aglGetCurrentContext());
int set_a_break_pt_here = 9;
aglSwapBuffers(aglGetCurrentContext());
#elif GR_WIN32_BUILD
SwapBuf();
int set_a_break_pt_here = 9;
SwapBuf();
#endif
#endif
}
void GrGpuGL::resolveRenderTarget(GrGLRenderTarget* rt) {
if (rt->needsResolve()) {
GrAssert(kNone_MSFBO != fMSFBOType);
GrAssert(rt->textureFBOID() != rt->renderFBOID());
GR_GL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER,
rt->renderFBOID()));
GR_GL(BindFramebuffer(GR_GL_DRAW_FRAMEBUFFER,
rt->textureFBOID()));
#if GR_COLLECT_STATS
++fStats.fRenderTargetChngCnt;
#endif
// make sure we go through flushRenderTarget() since we've modified
// the bound DRAW FBO ID.
fHWDrawState.fRenderTarget = NULL;
const GrGLIRect& vp = rt->getViewport();
const GrIRect dirtyRect = rt->getResolveRect();
GrGLIRect r;
r.setRelativeTo(vp, dirtyRect.fLeft, dirtyRect.fTop,
dirtyRect.width(), dirtyRect.height());
if (kAppleES_MSFBO == fMSFBOType) {
// Apple's extension uses the scissor as the blit bounds.
GR_GL(Enable(GR_GL_SCISSOR_TEST));
GR_GL(Scissor(r.fLeft, r.fBottom,
r.fWidth, r.fHeight));
GR_GL(ResolveMultisampleFramebuffer());
fHWBounds.fScissorRect.invalidate();
fHWBounds.fScissorEnabled = true;
} else {
if (kDesktopARB_MSFBO != fMSFBOType) {
// this respects the scissor during the blit, so disable it.
GrAssert(kDesktopEXT_MSFBO == fMSFBOType);
flushScissor(NULL);
}
int right = r.fLeft + r.fWidth;
int top = r.fBottom + r.fHeight;
GR_GL(BlitFramebuffer(r.fLeft, r.fBottom, right, top,
r.fLeft, r.fBottom, right, top,
GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST));
}
rt->flagAsResolved();
}
}
static const GrGLenum grToGLStencilFunc[] = {
GR_GL_ALWAYS, // kAlways_StencilFunc
GR_GL_NEVER, // kNever_StencilFunc
GR_GL_GREATER, // kGreater_StencilFunc
GR_GL_GEQUAL, // kGEqual_StencilFunc
GR_GL_LESS, // kLess_StencilFunc
GR_GL_LEQUAL, // kLEqual_StencilFunc,
GR_GL_EQUAL, // kEqual_StencilFunc,
GR_GL_NOTEQUAL, // kNotEqual_StencilFunc,
};
GR_STATIC_ASSERT(GR_ARRAY_COUNT(grToGLStencilFunc) == kBasicStencilFuncCount);
GR_STATIC_ASSERT(0 == kAlways_StencilFunc);
GR_STATIC_ASSERT(1 == kNever_StencilFunc);
GR_STATIC_ASSERT(2 == kGreater_StencilFunc);
GR_STATIC_ASSERT(3 == kGEqual_StencilFunc);
GR_STATIC_ASSERT(4 == kLess_StencilFunc);
GR_STATIC_ASSERT(5 == kLEqual_StencilFunc);
GR_STATIC_ASSERT(6 == kEqual_StencilFunc);
GR_STATIC_ASSERT(7 == kNotEqual_StencilFunc);
static const GrGLenum grToGLStencilOp[] = {
GR_GL_KEEP, // kKeep_StencilOp
GR_GL_REPLACE, // kReplace_StencilOp
GR_GL_INCR_WRAP, // kIncWrap_StencilOp
GR_GL_INCR, // kIncClamp_StencilOp
GR_GL_DECR_WRAP, // kDecWrap_StencilOp
GR_GL_DECR, // kDecClamp_StencilOp
GR_GL_ZERO, // kZero_StencilOp
GR_GL_INVERT, // kInvert_StencilOp
};
GR_STATIC_ASSERT(GR_ARRAY_COUNT(grToGLStencilOp) == kStencilOpCount);
GR_STATIC_ASSERT(0 == kKeep_StencilOp);
GR_STATIC_ASSERT(1 == kReplace_StencilOp);
GR_STATIC_ASSERT(2 == kIncWrap_StencilOp);
GR_STATIC_ASSERT(3 == kIncClamp_StencilOp);
GR_STATIC_ASSERT(4 == kDecWrap_StencilOp);
GR_STATIC_ASSERT(5 == kDecClamp_StencilOp);
GR_STATIC_ASSERT(6 == kZero_StencilOp);
GR_STATIC_ASSERT(7 == kInvert_StencilOp);
void GrGpuGL::flushStencil() {
const GrStencilSettings* settings = &fCurrDrawState.fStencilSettings;
// use stencil for clipping if clipping is enabled and the clip
// has been written into the stencil.
bool stencilClip = fClipState.fClipInStencil &&
(kClip_StateBit & fCurrDrawState.fFlagBits);
bool stencilChange = fHWStencilClip != stencilClip ||
fHWDrawState.fStencilSettings != *settings ||
((fHWDrawState.fFlagBits & kModifyStencilClip_StateBit) !=
(fCurrDrawState.fFlagBits & kModifyStencilClip_StateBit));
if (stencilChange) {
// we can't simultaneously perform stencil-clipping and modify the stencil clip
GrAssert(!stencilClip || !(fCurrDrawState.fFlagBits & kModifyStencilClip_StateBit));
if (settings->isDisabled()) {
if (stencilClip) {
settings = &gClipStencilSettings;
}
}
if (settings->isDisabled()) {
GR_GL(Disable(GR_GL_STENCIL_TEST));
} else {
GR_GL(Enable(GR_GL_STENCIL_TEST));
#if GR_DEBUG
if (!fStencilWrapOpsSupport) {
GrAssert(settings->fFrontPassOp != kIncWrap_StencilOp);
GrAssert(settings->fFrontPassOp != kDecWrap_StencilOp);
GrAssert(settings->fFrontFailOp != kIncWrap_StencilOp);
GrAssert(settings->fBackFailOp != kDecWrap_StencilOp);
GrAssert(settings->fBackPassOp != kIncWrap_StencilOp);
GrAssert(settings->fBackPassOp != kDecWrap_StencilOp);
GrAssert(settings->fBackFailOp != kIncWrap_StencilOp);
GrAssert(settings->fFrontFailOp != kDecWrap_StencilOp);
}
#endif
int stencilBits = fCurrDrawState.fRenderTarget->stencilBits();
GrAssert(stencilBits ||
(GrStencilSettings::gDisabled ==
fCurrDrawState.fStencilSettings));
GrGLuint clipStencilMask = 1 << (stencilBits - 1);
GrGLuint userStencilMask = clipStencilMask - 1;
unsigned int frontRef = settings->fFrontFuncRef;
unsigned int frontMask = settings->fFrontFuncMask;
unsigned int frontWriteMask = settings->fFrontWriteMask;
GrGLenum frontFunc;
if (fCurrDrawState.fFlagBits & kModifyStencilClip_StateBit) {
GrAssert(settings->fFrontFunc < kBasicStencilFuncCount);
frontFunc = grToGLStencilFunc[settings->fFrontFunc];
} else {
frontFunc = grToGLStencilFunc[ConvertStencilFunc(stencilClip, settings->fFrontFunc)];
ConvertStencilFuncAndMask(settings->fFrontFunc,
stencilClip,
clipStencilMask,
userStencilMask,
&frontRef,
&frontMask);
frontWriteMask &= userStencilMask;
}
GrAssert(settings->fFrontFailOp >= 0 &&
(unsigned) settings->fFrontFailOp < GR_ARRAY_COUNT(grToGLStencilOp));
GrAssert(settings->fFrontPassOp >= 0 &&
(unsigned) settings->fFrontPassOp < GR_ARRAY_COUNT(grToGLStencilOp));
GrAssert(settings->fBackFailOp >= 0 &&
(unsigned) settings->fBackFailOp < GR_ARRAY_COUNT(grToGLStencilOp));
GrAssert(settings->fBackPassOp >= 0 &&
(unsigned) settings->fBackPassOp < GR_ARRAY_COUNT(grToGLStencilOp));
if (fTwoSidedStencilSupport) {
GrGLenum backFunc;
unsigned int backRef = settings->fBackFuncRef;
unsigned int backMask = settings->fBackFuncMask;
unsigned int backWriteMask = settings->fBackWriteMask;
if (fCurrDrawState.fFlagBits & kModifyStencilClip_StateBit) {
GrAssert(settings->fBackFunc < kBasicStencilFuncCount);
backFunc = grToGLStencilFunc[settings->fBackFunc];
} else {
backFunc = grToGLStencilFunc[ConvertStencilFunc(stencilClip, settings->fBackFunc)];
ConvertStencilFuncAndMask(settings->fBackFunc,
stencilClip,
clipStencilMask,
userStencilMask,
&backRef,
&backMask);
backWriteMask &= userStencilMask;
}
GR_GL(StencilFuncSeparate(GR_GL_FRONT, frontFunc, frontRef, frontMask));
GR_GL(StencilMaskSeparate(GR_GL_FRONT, frontWriteMask));
GR_GL(StencilFuncSeparate(GR_GL_BACK, backFunc, backRef, backMask));
GR_GL(StencilMaskSeparate(GR_GL_BACK, backWriteMask));
GR_GL(StencilOpSeparate(GR_GL_FRONT, grToGLStencilOp[settings->fFrontFailOp],
grToGLStencilOp[settings->fFrontPassOp],
grToGLStencilOp[settings->fFrontPassOp]));
GR_GL(StencilOpSeparate(GR_GL_BACK, grToGLStencilOp[settings->fBackFailOp],
grToGLStencilOp[settings->fBackPassOp],
grToGLStencilOp[settings->fBackPassOp]));
} else {
GR_GL(StencilFunc(frontFunc, frontRef, frontMask));
GR_GL(StencilMask(frontWriteMask));
GR_GL(StencilOp(grToGLStencilOp[settings->fFrontFailOp],
grToGLStencilOp[settings->fFrontPassOp],
grToGLStencilOp[settings->fFrontPassOp]));
}
}
fHWDrawState.fStencilSettings = fCurrDrawState.fStencilSettings;
fHWStencilClip = stencilClip;
}
}
bool GrGpuGL::useSmoothLines() {
// there is a conflict between using smooth lines and our use of
// premultiplied alpha. Smooth lines tweak the incoming alpha value
// but not in a premul-alpha way. So we only use them when our alpha
// is 0xff.
// TODO: write a smarter line frag shader.
return (kAntialias_StateBit & fCurrDrawState.fFlagBits) &&
canDisableBlend();
}
void GrGpuGL::flushAAState(GrPrimitiveType type) {
if (GR_GL_SUPPORT_DESKTOP) {
// ES doesn't support toggling GL_MULTISAMPLE and doesn't have
// smooth lines.
// we prefer smooth lines over multisampled lines
// msaa should be disabled if drawing smooth lines.
if (GrIsPrimTypeLines(type)) {
bool smooth = useSmoothLines();
if (!fHWAAState.fSmoothLineEnabled && smooth) {
GR_GL(Enable(GR_GL_LINE_SMOOTH));
fHWAAState.fSmoothLineEnabled = true;
} else if (fHWAAState.fSmoothLineEnabled && !smooth) {
GR_GL(Disable(GR_GL_LINE_SMOOTH));
fHWAAState.fSmoothLineEnabled = false;
}
if (fCurrDrawState.fRenderTarget->isMultisampled() &&
fHWAAState.fMSAAEnabled) {
GR_GL(Disable(GR_GL_MULTISAMPLE));
fHWAAState.fMSAAEnabled = false;
}
} else if (fCurrDrawState.fRenderTarget->isMultisampled() &&
!!(kAntialias_StateBit & fCurrDrawState.fFlagBits) !=
fHWAAState.fMSAAEnabled) {
if (fHWAAState.fMSAAEnabled) {
GR_GL(Disable(GR_GL_MULTISAMPLE));
fHWAAState.fMSAAEnabled = false;
} else {
GR_GL(Enable(GR_GL_MULTISAMPLE));
fHWAAState.fMSAAEnabled = true;
}
}
}
}
void GrGpuGL::flushBlend(GrPrimitiveType type,
GrBlendCoeff srcCoeff,
GrBlendCoeff dstCoeff) {
if (GrIsPrimTypeLines(type) && useSmoothLines()) {
if (fHWBlendDisabled) {
GR_GL(Enable(GR_GL_BLEND));
fHWBlendDisabled = false;
}
if (kSA_BlendCoeff != fHWDrawState.fSrcBlend ||
kISA_BlendCoeff != fHWDrawState.fDstBlend) {
GR_GL(BlendFunc(gXfermodeCoeff2Blend[kSA_BlendCoeff],
gXfermodeCoeff2Blend[kISA_BlendCoeff]));
fHWDrawState.fSrcBlend = kSA_BlendCoeff;
fHWDrawState.fDstBlend = kISA_BlendCoeff;
}
} else {
bool blendOff = canDisableBlend();
if (fHWBlendDisabled != blendOff) {
if (blendOff) {
GR_GL(Disable(GR_GL_BLEND));
} else {
GR_GL(Enable(GR_GL_BLEND));
}
fHWBlendDisabled = blendOff;
}
if (!blendOff) {
if (fHWDrawState.fSrcBlend != srcCoeff ||
fHWDrawState.fDstBlend != dstCoeff) {
GR_GL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff],
gXfermodeCoeff2Blend[dstCoeff]));
fHWDrawState.fSrcBlend = srcCoeff;
fHWDrawState.fDstBlend = dstCoeff;
}
if ((BlendCoeffReferencesConstant(srcCoeff) ||
BlendCoeffReferencesConstant(dstCoeff)) &&
fHWDrawState.fBlendConstant != fCurrDrawState.fBlendConstant) {
float c[] = {
GrColorUnpackR(fCurrDrawState.fBlendConstant) / 255.f,
GrColorUnpackG(fCurrDrawState.fBlendConstant) / 255.f,
GrColorUnpackB(fCurrDrawState.fBlendConstant) / 255.f,
GrColorUnpackA(fCurrDrawState.fBlendConstant) / 255.f
};
GR_GL(BlendColor(c[0], c[1], c[2], c[3]));
fHWDrawState.fBlendConstant = fCurrDrawState.fBlendConstant;
}
}
}
}
static unsigned grToGLFilter(GrSamplerState::Filter filter) {
switch (filter) {
case GrSamplerState::kBilinear_Filter:
case GrSamplerState::k4x4Downsample_Filter:
return GR_GL_LINEAR;
case GrSamplerState::kNearest_Filter:
case GrSamplerState::kConvolution_Filter:
return GR_GL_NEAREST;
default:
GrAssert(!"Unknown filter type");
return GR_GL_LINEAR;
}
}
bool GrGpuGL::flushGLStateCommon(GrPrimitiveType type) {
// GrGpu::setupClipAndFlushState should have already checked this
// and bailed if not true.
GrAssert(NULL != fCurrDrawState.fRenderTarget);
for (int s = 0; s < kNumStages; ++s) {
// bind texture and set sampler state
if (this->isStageEnabled(s)) {
GrGLTexture* nextTexture = (GrGLTexture*)fCurrDrawState.fTextures[s];
// true for now, but maybe not with GrEffect.
GrAssert(NULL != nextTexture);
// if we created a rt/tex and rendered to it without using a
// texture and now we're texuring from the rt it will still be
// the last bound texture, but it needs resolving. So keep this
// out of the "last != next" check.
GrGLRenderTarget* texRT =
static_cast<GrGLRenderTarget*>(nextTexture->asRenderTarget());
if (NULL != texRT) {
resolveRenderTarget(texRT);
}
if (fHWDrawState.fTextures[s] != nextTexture) {
setTextureUnit(s);
GR_GL(BindTexture(GR_GL_TEXTURE_2D, nextTexture->textureID()));
#if GR_COLLECT_STATS
++fStats.fTextureChngCnt;
#endif
//GrPrintf("---- bindtexture %d\n", nextTexture->textureID());
fHWDrawState.fTextures[s] = nextTexture;
// The texture matrix has to compensate for texture width/height
// and NPOT-embedded-in-POT
fDirtyFlags.fTextureChangedMask |= (1 << s);
}
const GrSamplerState& sampler = fCurrDrawState.fSamplerStates[s];
const GrGLTexture::TexParams& oldTexParams =
nextTexture->getTexParams();
GrGLTexture::TexParams newTexParams;
newTexParams.fFilter = grToGLFilter(sampler.getFilter());
newTexParams.fWrapS =
GrGLTexture::WrapMode2GLWrap()[sampler.getWrapX()];
newTexParams.fWrapT =
GrGLTexture::WrapMode2GLWrap()[sampler.getWrapY()];
if (newTexParams.fFilter != oldTexParams.fFilter) {
setTextureUnit(s);
GR_GL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MAG_FILTER,
newTexParams.fFilter));
GR_GL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MIN_FILTER,
newTexParams.fFilter));
}
if (newTexParams.fWrapS != oldTexParams.fWrapS) {
setTextureUnit(s);
GR_GL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_S,
newTexParams.fWrapS));
}
if (newTexParams.fWrapT != oldTexParams.fWrapT) {
setTextureUnit(s);
GR_GL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_T,
newTexParams.fWrapT));
}
nextTexture->setTexParams(newTexParams);
}
}
GrIRect* rect = NULL;
GrIRect clipBounds;
if ((fCurrDrawState.fFlagBits & kClip_StateBit) &&
fClip.hasConservativeBounds()) {
fClip.getConservativeBounds().roundOut(&clipBounds);
rect = &clipBounds;
}
this->flushRenderTarget(rect);
this->flushAAState(type);
if ((fCurrDrawState.fFlagBits & kDither_StateBit) !=
(fHWDrawState.fFlagBits & kDither_StateBit)) {
if (fCurrDrawState.fFlagBits & kDither_StateBit) {
GR_GL(Enable(GR_GL_DITHER));
} else {
GR_GL(Disable(GR_GL_DITHER));
}
}
if ((fCurrDrawState.fFlagBits & kNoColorWrites_StateBit) !=
(fHWDrawState.fFlagBits & kNoColorWrites_StateBit)) {
GrGLenum mask;
if (fCurrDrawState.fFlagBits & kNoColorWrites_StateBit) {
mask = GR_GL_FALSE;
} else {
mask = GR_GL_TRUE;
}
GR_GL(ColorMask(mask, mask, mask, mask));
}
if (fHWDrawState.fDrawFace != fCurrDrawState.fDrawFace) {
switch (fCurrDrawState.fDrawFace) {
case kCCW_DrawFace:
GR_GL(Enable(GR_GL_CULL_FACE));
GR_GL(CullFace(GR_GL_BACK));
break;
case kCW_DrawFace:
GR_GL(Enable(GR_GL_CULL_FACE));
GR_GL(CullFace(GR_GL_FRONT));
break;
case kBoth_DrawFace:
GR_GL(Disable(GR_GL_CULL_FACE));
break;
default:
GrCrash("Unknown draw face.");
}
fHWDrawState.fDrawFace = fCurrDrawState.fDrawFace;
}
#if GR_DEBUG
// check for circular rendering
for (int s = 0; s < kNumStages; ++s) {
GrAssert(!this->isStageEnabled(s) ||
NULL == fCurrDrawState.fRenderTarget ||
NULL == fCurrDrawState.fTextures[s] ||
fCurrDrawState.fTextures[s]->asRenderTarget() !=
fCurrDrawState.fRenderTarget);
}
#endif
flushStencil();
// flushStencil may look at the private state bits, so keep it before this.
fHWDrawState.fFlagBits = fCurrDrawState.fFlagBits;
return true;
}
void GrGpuGL::notifyVertexBufferBind(const GrGLVertexBuffer* buffer) {
if (fHWGeometryState.fVertexBuffer != buffer) {
fHWGeometryState.fArrayPtrsDirty = true;
fHWGeometryState.fVertexBuffer = buffer;
}
}
void GrGpuGL::notifyVertexBufferDelete(const GrGLVertexBuffer* buffer) {
if (fHWGeometryState.fVertexBuffer == buffer) {
// deleting bound buffer does implied bind to 0
fHWGeometryState.fVertexBuffer = NULL;
fHWGeometryState.fArrayPtrsDirty = true;
}
}
void GrGpuGL::notifyIndexBufferBind(const GrGLIndexBuffer* buffer) {
fHWGeometryState.fIndexBuffer = buffer;
}
void GrGpuGL::notifyIndexBufferDelete(const GrGLIndexBuffer* buffer) {
if (fHWGeometryState.fIndexBuffer == buffer) {
// deleting bound buffer does implied bind to 0
fHWGeometryState.fIndexBuffer = NULL;
}
}
void GrGpuGL::notifyRenderTargetDelete(GrRenderTarget* renderTarget) {
GrAssert(NULL != renderTarget);
if (fCurrDrawState.fRenderTarget == renderTarget) {
fCurrDrawState.fRenderTarget = NULL;
}
if (fHWDrawState.fRenderTarget == renderTarget) {
fHWDrawState.fRenderTarget = NULL;
}
}
void GrGpuGL::notifyTextureDelete(GrGLTexture* texture) {
for (int s = 0; s < kNumStages; ++s) {
if (fCurrDrawState.fTextures[s] == texture) {
fCurrDrawState.fTextures[s] = NULL;
}
if (fHWDrawState.fTextures[s] == texture) {
// deleting bound texture does implied bind to 0
fHWDrawState.fTextures[s] = NULL;
}
}
}
bool GrGpuGL::canBeTexture(GrPixelConfig config,
GrGLenum* internalFormat,
GrGLenum* format,
GrGLenum* type) {
switch (config) {
case kRGBA_8888_GrPixelConfig:
case kRGBX_8888_GrPixelConfig: // todo: can we tell it our X?
*format = GR_GL_32BPP_COLOR_FORMAT;
if (GR_GL_SUPPORT_ES) {
// according to GL_EXT_texture_format_BGRA8888 the *internal*
// format for a BGRA is BGRA not RGBA (as on desktop)
*internalFormat = GR_GL_32BPP_COLOR_FORMAT;
} else {
*internalFormat = GR_GL_RGBA;
}
*type = GR_GL_UNSIGNED_BYTE;
break;
case kRGB_565_GrPixelConfig:
*format = GR_GL_RGB;
*internalFormat = GR_GL_RGB;
*type = GR_GL_UNSIGNED_SHORT_5_6_5;
break;
case kRGBA_4444_GrPixelConfig:
*format = GR_GL_RGBA;
*internalFormat = GR_GL_RGBA;
*type = GR_GL_UNSIGNED_SHORT_4_4_4_4;
break;
case kIndex_8_GrPixelConfig:
if (this->supports8BitPalette()) {
*format = GR_GL_PALETTE8_RGBA8;
*internalFormat = GR_GL_PALETTE8_RGBA8;
*type = GR_GL_UNSIGNED_BYTE; // unused I think
} else {
return false;
}
break;
case kAlpha_8_GrPixelConfig:
*format = GR_GL_ALPHA;
*internalFormat = GR_GL_ALPHA;
*type = GR_GL_UNSIGNED_BYTE;
break;
default:
return false;
}
return true;
}
void GrGpuGL::setTextureUnit(int unit) {
GrAssert(unit >= 0 && unit < kNumStages);
if (fActiveTextureUnitIdx != unit) {
GR_GL(ActiveTexture(GR_GL_TEXTURE0 + unit));
fActiveTextureUnitIdx = unit;
}
}
void GrGpuGL::setSpareTextureUnit() {
if (fActiveTextureUnitIdx != (GR_GL_TEXTURE0 + SPARE_TEX_UNIT)) {
GR_GL(ActiveTexture(GR_GL_TEXTURE0 + SPARE_TEX_UNIT));
fActiveTextureUnitIdx = SPARE_TEX_UNIT;
}
}
/* On ES the internalFormat and format must match for TexImage and we use
GL_RGB, GL_RGBA for color formats. We also generally like having the driver
decide the internalFormat. However, on ES internalFormat for
RenderBufferStorage* has to be a specific format (not a base format like
GL_RGBA).
*/
bool GrGpuGL::fboInternalFormat(GrPixelConfig config, GrGLenum* format) {
switch (config) {
case kRGBA_8888_GrPixelConfig:
case kRGBX_8888_GrPixelConfig:
if (fRGBA8Renderbuffer) {
*format = GR_GL_RGBA8;
return true;
} else {
return false;
}
case kRGB_565_GrPixelConfig:
GrAssert(GR_GL_SUPPORT_ES); // ES2 supports 565. ES1 supports it
// with FBO extension desktop GL has
// no such internal format
*format = GR_GL_RGB565;
return true;
case kRGBA_4444_GrPixelConfig:
*format = GR_GL_RGBA4;
return true;
default:
return false;
}
}
void GrGpuGL::resetDirtyFlags() {
Gr_bzero(&fDirtyFlags, sizeof(fDirtyFlags));
}
void GrGpuGL::setBuffers(bool indexed,
int* extraVertexOffset,
int* extraIndexOffset) {
GrAssert(NULL != extraVertexOffset);
const GeometryPoolState& geoPoolState = this->getGeomPoolState();
GrGLVertexBuffer* vbuf;
switch (this->getGeomSrc().fVertexSrc) {
case kBuffer_GeometrySrcType:
*extraVertexOffset = 0;
vbuf = (GrGLVertexBuffer*) this->getGeomSrc().fVertexBuffer;
break;
case kArray_GeometrySrcType:
case kReserved_GeometrySrcType:
this->finalizeReservedVertices();
*extraVertexOffset = geoPoolState.fPoolStartVertex;
vbuf = (GrGLVertexBuffer*) geoPoolState.fPoolVertexBuffer;
break;
default:
vbuf = NULL; // suppress warning
GrCrash("Unknown geometry src type!");
}
GrAssert(NULL != vbuf);
GrAssert(!vbuf->isLocked());
if (fHWGeometryState.fVertexBuffer != vbuf) {
GR_GL(BindBuffer(GR_GL_ARRAY_BUFFER, vbuf->bufferID()));
fHWGeometryState.fArrayPtrsDirty = true;
fHWGeometryState.fVertexBuffer = vbuf;
}
if (indexed) {
GrAssert(NULL != extraIndexOffset);
GrGLIndexBuffer* ibuf;
switch (this->getGeomSrc().fIndexSrc) {
case kBuffer_GeometrySrcType:
*extraIndexOffset = 0;
ibuf = (GrGLIndexBuffer*)this->getGeomSrc().fIndexBuffer;
break;
case kArray_GeometrySrcType:
case kReserved_GeometrySrcType:
this->finalizeReservedIndices();
*extraIndexOffset = geoPoolState.fPoolStartIndex;
ibuf = (GrGLIndexBuffer*) geoPoolState.fPoolIndexBuffer;
break;
default:
ibuf = NULL; // suppress warning
GrCrash("Unknown geometry src type!");
}
GrAssert(NULL != ibuf);
GrAssert(!ibuf->isLocked());
if (fHWGeometryState.fIndexBuffer != ibuf) {
GR_GL(BindBuffer(GR_GL_ELEMENT_ARRAY_BUFFER, ibuf->bufferID()));
fHWGeometryState.fIndexBuffer = ibuf;
}
}
}
int GrGpuGL::getMaxEdges() const {
// FIXME: This is a pessimistic estimate based on how many other things
// want to add uniforms. This should be centralized somewhere.
return GR_CT_MIN(fMaxFragmentUniformVectors - 8, kMaxEdges);
}