blob: 3125657af2e68a3665f68bda229dfc6d1c485c9e [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGradientEffects.h"
#include "gl/GrGLProgramStage.h"
#include "GrProgramStageFactory.h"
/////////////////////////////////////////////////////////////////////
class GrGLRadialGradient : public GrGLProgramStage {
public:
GrGLRadialGradient(const GrProgramStageFactory& factory,
const GrCustomStage&) : INHERITED (factory) { }
virtual ~GrGLRadialGradient() { }
virtual void emitVS(GrGLShaderBuilder* state,
const char* vertexCoords) SK_OVERRIDE { }
virtual void emitFS(GrGLShaderBuilder* state,
const char* outputColor,
const char* inputColor,
const char* samplerName) SK_OVERRIDE;
static StageKey GenKey(const GrCustomStage& s) { return 0; }
private:
typedef GrGLProgramStage INHERITED;
};
void GrGLRadialGradient::emitFS(GrGLShaderBuilder* state,
const char* outputColor,
const char* inputColor,
const char* samplerName) {
state->fSampleCoords.printf("vec2(length(%s.xy), 0.5)",
state->fSampleCoords.c_str());
state->fComplexCoord = true;
state->emitDefaultFetch(outputColor, samplerName);
}
/////////////////////////////////////////////////////////////////////
GrRadialGradient::GrRadialGradient(GrTexture* texture)
: GrSingleTextureEffect(texture) {
}
GrRadialGradient::~GrRadialGradient() {
}
const GrProgramStageFactory& GrRadialGradient::getFactory() const {
return GrTProgramStageFactory<GrRadialGradient>::getInstance();
}
bool GrRadialGradient::isEqual(const GrCustomStage& sBase) const {
return INHERITED::isEqual(sBase);
}
/////////////////////////////////////////////////////////////////////
class GrGLRadial2Gradient : public GrGLProgramStage {
public:
GrGLRadial2Gradient(const GrProgramStageFactory& factory,
const GrCustomStage&);
virtual ~GrGLRadial2Gradient() { }
virtual void setupVariables(GrGLShaderBuilder* state,
int stage) SK_OVERRIDE;
virtual void emitVS(GrGLShaderBuilder* state,
const char* vertexCoords) SK_OVERRIDE;
virtual void emitFS(GrGLShaderBuilder* state,
const char* outputColor,
const char* inputColor,
const char* samplerName) SK_OVERRIDE;
virtual void initUniforms(const GrGLInterface*, int programID) SK_OVERRIDE;
virtual void setData(const GrGLInterface*,
const GrCustomStage&,
const GrRenderTarget*,
int stageNum) SK_OVERRIDE;
static StageKey GenKey(const GrCustomStage& s) {
return (static_cast<const GrRadial2Gradient&>(s).isDegenerate());
}
protected:
const GrGLShaderVar* fVSParamVar;
GrGLint fVSParamLocation;
const GrGLShaderVar* fFSParamVar;
GrGLint fFSParamLocation;
const char* fVSVaryingName;
const char* fFSVaryingName;
bool fIsDegenerate;
// @{
/// Values last uploaded as uniforms
GrScalar fCachedCenter;
GrScalar fCachedRadius;
bool fCachedPosRoot;
// @}
private:
typedef GrGLProgramStage INHERITED;
};
GrGLRadial2Gradient::GrGLRadial2Gradient(
const GrProgramStageFactory& factory,
const GrCustomStage& baseData)
: INHERITED(factory)
, fVSParamVar(NULL)
, fFSParamVar(NULL)
, fVSVaryingName(NULL)
, fFSVaryingName(NULL)
, fCachedCenter(GR_ScalarMax)
, fCachedRadius(-GR_ScalarMax)
, fCachedPosRoot(0) {
const GrRadial2Gradient& data =
static_cast<const GrRadial2Gradient&>(baseData);
fIsDegenerate = data.isDegenerate();
}
void GrGLRadial2Gradient::setupVariables(GrGLShaderBuilder* state, int stage) {
// 2 copies of uniform array, 1 for each of vertex & fragment shader,
// to work around Xoom bug. Doesn't seem to cause performance decrease
// in test apps, but need to keep an eye on it.
fVSParamVar = &state->addUniform(GrGLShaderBuilder::kVertex_ShaderType,
kFloat_GrSLType, "uRadial2VSParams", stage, 6);
fFSParamVar = &state->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
kFloat_GrSLType, "uRadial2FSParams", stage, 6);
fVSParamLocation = GrGLProgramStage::kUseUniform;
fFSParamLocation = GrGLProgramStage::kUseUniform;
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
if (state->fVaryingDims == state->fCoordDims) {
state->addVarying(kFloat_GrSLType, "Radial2BCoeff", stage,
&fVSVaryingName, &fFSVaryingName);
}
}
void GrGLRadial2Gradient::emitVS(GrGLShaderBuilder* state,
const char* vertexCoords) {
SkString* code = &state->fVSCode;
SkString p2;
SkString p3;
fVSParamVar->appendArrayAccess(2, &p2);
fVSParamVar->appendArrayAccess(3, &p3);
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
if (state->fVaryingDims == state->fCoordDims) {
// r2Var = 2 * (r2Parm[2] * varCoord.x - r2Param[3])
code->appendf("\t%s = 2.0 *(%s * %s.x - %s);\n",
fVSVaryingName, p2.c_str(),
vertexCoords, p3.c_str());
}
}
void GrGLRadial2Gradient::emitFS(GrGLShaderBuilder* state,
const char* outputColor,
const char* inputColor,
const char* samplerName) {
SkString* code = &state->fFSCode;
SkString cName("c");
SkString ac4Name("ac4");
SkString rootName("root");
SkString p0;
SkString p1;
SkString p2;
SkString p3;
SkString p4;
SkString p5;
fFSParamVar->appendArrayAccess(0, &p0);
fFSParamVar->appendArrayAccess(1, &p1);
fFSParamVar->appendArrayAccess(2, &p2);
fFSParamVar->appendArrayAccess(3, &p3);
fFSParamVar->appendArrayAccess(4, &p4);
fFSParamVar->appendArrayAccess(5, &p5);
// If we we're able to interpolate the linear component,
// bVar is the varying; otherwise compute it
SkString bVar;
if (state->fCoordDims == state->fVaryingDims) {
bVar = fFSVaryingName;
GrAssert(2 == state->fVaryingDims);
} else {
GrAssert(3 == state->fVaryingDims);
bVar = "b";
//bVar.appendS32(stageNum);
code->appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n",
bVar.c_str(), p2.c_str(),
state->fSampleCoords.c_str(), p3.c_str());
}
// c = (x^2)+(y^2) - params[4]
code->appendf("\tfloat %s = dot(%s, %s) - %s;\n",
cName.c_str(), state->fSampleCoords.c_str(),
state->fSampleCoords.c_str(),
p4.c_str());
// If we aren't degenerate, emit some extra code, and accept a slightly
// more complex coord.
if (!fIsDegenerate) {
// ac4 = 4.0 * params[0] * c
code->appendf("\tfloat %s = %s * 4.0 * %s;\n",
ac4Name.c_str(), p0.c_str(),
cName.c_str());
// root = sqrt(b^2-4ac)
// (abs to avoid exception due to fp precision)
code->appendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n",
rootName.c_str(), bVar.c_str(), bVar.c_str(),
ac4Name.c_str());
// x coord is: (-b + params[5] * sqrt(b^2-4ac)) * params[1]
// y coord is 0.5 (texture is effectively 1D)
state->fSampleCoords.printf("vec2((-%s + %s * %s) * %s, 0.5)",
bVar.c_str(), p5.c_str(),
rootName.c_str(), p1.c_str());
} else {
// x coord is: -c/b
// y coord is 0.5 (texture is effectively 1D)
state->fSampleCoords.printf("vec2((-%s / %s), 0.5)",
cName.c_str(), bVar.c_str());
}
state->fComplexCoord = true;
state->emitDefaultFetch(outputColor, samplerName);
}
void GrGLRadial2Gradient::initUniforms(const GrGLInterface* gl, int programID) {
GR_GL_CALL_RET(gl, fVSParamLocation,
GetUniformLocation(programID, fVSParamVar->getName().c_str()));
GR_GL_CALL_RET(gl, fFSParamLocation,
GetUniformLocation(programID, fFSParamVar->getName().c_str()));
}
void GrGLRadial2Gradient::setData(const GrGLInterface* gl,
const GrCustomStage& baseData,
const GrRenderTarget*,
int stageNum) {
const GrRadial2Gradient& data =
static_cast<const GrRadial2Gradient&>(baseData);
GrAssert(data.isDegenerate() == fIsDegenerate);
GrScalar centerX1 = data.center();
GrScalar radius0 = data.radius();
if (fCachedCenter != centerX1 ||
fCachedRadius != radius0 ||
fCachedPosRoot != data.isPosRoot()) {
GrScalar a = GrMul(centerX1, centerX1) - GR_Scalar1;
// When we're in the degenerate (linear) case, the second
// value will be INF but the program doesn't read it. (We
// use the same 6 uniforms even though we don't need them
// all in the linear case just to keep the code complexity
// down).
float values[6] = {
GrScalarToFloat(a),
1 / (2.f * GrScalarToFloat(a)),
GrScalarToFloat(centerX1),
GrScalarToFloat(radius0),
GrScalarToFloat(GrMul(radius0, radius0)),
data.isPosRoot() ? 1.f : -1.f
};
GR_GL_CALL(gl, Uniform1fv(fVSParamLocation, 6, values));
GR_GL_CALL(gl, Uniform1fv(fFSParamLocation, 6, values));
fCachedCenter = centerX1;
fCachedRadius = radius0;
fCachedPosRoot = data.isPosRoot();
}
}
/////////////////////////////////////////////////////////////////////
GrRadial2Gradient::GrRadial2Gradient(GrTexture* texture,
GrScalar center,
GrScalar radius,
bool posRoot)
: GrSingleTextureEffect(texture)
, fCenterX1 (center)
, fRadius0 (radius)
, fPosRoot (posRoot) {
}
GrRadial2Gradient::~GrRadial2Gradient() {
}
const GrProgramStageFactory& GrRadial2Gradient::getFactory() const {
return GrTProgramStageFactory<GrRadial2Gradient>::getInstance();
}
bool GrRadial2Gradient::isEqual(const GrCustomStage& sBase) const {
const GrRadial2Gradient& s = static_cast<const GrRadial2Gradient&>(sBase);
return (INHERITED::isEqual(sBase) &&
this->fCenterX1 == s.fCenterX1 &&
this->fRadius0 == s.fRadius0 &&
this->fPosRoot == s.fPosRoot);
}
/////////////////////////////////////////////////////////////////////
class GrGLConical2Gradient : public GrGLProgramStage {
public:
GrGLConical2Gradient(const GrProgramStageFactory& factory,
const GrCustomStage&);
virtual ~GrGLConical2Gradient() { }
virtual void setupVariables(GrGLShaderBuilder* state,
int stage) SK_OVERRIDE;
virtual void emitVS(GrGLShaderBuilder* state,
const char* vertexCoords) SK_OVERRIDE;
virtual void emitFS(GrGLShaderBuilder* state,
const char* outputColor,
const char* inputColor,
const char* samplerName) SK_OVERRIDE;
virtual void initUniforms(const GrGLInterface*, int programID) SK_OVERRIDE;
virtual void setData(const GrGLInterface*,
const GrCustomStage&,
const GrRenderTarget*,
int stageNum) SK_OVERRIDE;
static StageKey GenKey(const GrCustomStage& s) {
return (static_cast<const GrConical2Gradient&>(s).isDegenerate());
}
protected:
const GrGLShaderVar* fVSParamVar;
GrGLint fVSParamLocation;
const GrGLShaderVar* fFSParamVar;
GrGLint fFSParamLocation;
const char* fVSVaryingName;
const char* fFSVaryingName;
bool fIsDegenerate;
// @{
/// Values last uploaded as uniforms
GrScalar fCachedCenter;
GrScalar fCachedRadius;
GrScalar fCachedDiffRadius;
// @}
private:
typedef GrGLProgramStage INHERITED;
};
GrGLConical2Gradient::GrGLConical2Gradient(
const GrProgramStageFactory& factory,
const GrCustomStage& baseData)
: INHERITED(factory)
, fVSParamVar(NULL)
, fFSParamVar(NULL)
, fVSVaryingName(NULL)
, fFSVaryingName(NULL)
, fCachedCenter(GR_ScalarMax)
, fCachedRadius(-GR_ScalarMax)
, fCachedDiffRadius(-GR_ScalarMax) {
const GrConical2Gradient& data =
static_cast<const GrConical2Gradient&>(baseData);
fIsDegenerate = data.isDegenerate();
}
void GrGLConical2Gradient::setupVariables(GrGLShaderBuilder* state, int stage) {
// 2 copies of uniform array, 1 for each of vertex & fragment shader,
// to work around Xoom bug. Doesn't seem to cause performance decrease
// in test apps, but need to keep an eye on it.
fVSParamVar = &state->addUniform(GrGLShaderBuilder::kVertex_ShaderType,
kFloat_GrSLType, "uConical2VSParams", stage, 6);
fFSParamVar = &state->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
kFloat_GrSLType, "uConical2FSParams", stage, 6);
fVSParamLocation = GrGLProgramStage::kUseUniform;
fFSParamLocation = GrGLProgramStage::kUseUniform;
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
if (state->fVaryingDims == state->fCoordDims) {
state->addVarying(kFloat_GrSLType, "Conical2BCoeff", stage,
&fVSVaryingName, &fFSVaryingName);
}
}
void GrGLConical2Gradient::emitVS(GrGLShaderBuilder* state,
const char* vertexCoords) {
SkString* code = &state->fVSCode;
SkString p2; // distance between centers
SkString p3; // start radius
SkString p5; // difference in radii (r1 - r0)
fVSParamVar->appendArrayAccess(2, &p2);
fVSParamVar->appendArrayAccess(3, &p3);
fVSParamVar->appendArrayAccess(5, &p5);
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
if (state->fVaryingDims == state->fCoordDims) {
// r2Var = -2 * (r2Parm[2] * varCoord.x - r2Param[3] * r2Param[5])
code->appendf("\t%s = -2.0 * (%s * %s.x + %s * %s);\n",
fVSVaryingName, p2.c_str(),
vertexCoords, p3.c_str(), p5.c_str());
}
}
void GrGLConical2Gradient::emitFS(GrGLShaderBuilder* state,
const char* outputColor,
const char* inputColor,
const char* samplerName) {
SkString* code = &state->fFSCode;
SkString cName("c");
SkString ac4Name("ac4");
SkString dName("d");
SkString qName("q");
SkString r0Name("r0");
SkString r1Name("r1");
SkString tName("t");
SkString p0; // 4a
SkString p1; // 1/a
SkString p2; // distance between centers
SkString p3; // start radius
SkString p4; // start radius squared
SkString p5; // difference in radii (r1 - r0)
fFSParamVar->appendArrayAccess(0, &p0);
fFSParamVar->appendArrayAccess(1, &p1);
fFSParamVar->appendArrayAccess(2, &p2);
fFSParamVar->appendArrayAccess(3, &p3);
fFSParamVar->appendArrayAccess(4, &p4);
fFSParamVar->appendArrayAccess(5, &p5);
// If we we're able to interpolate the linear component,
// bVar is the varying; otherwise compute it
SkString bVar;
if (state->fCoordDims == state->fVaryingDims) {
bVar = fFSVaryingName;
GrAssert(2 == state->fVaryingDims);
} else {
GrAssert(3 == state->fVaryingDims);
bVar = "b";
code->appendf("\tfloat %s = -2.0 * (%s * %s.x + %s * %s);\n",
bVar.c_str(), p2.c_str(), state->fSampleCoords.c_str(),
p3.c_str(), p5.c_str());
}
// output will default to transparent black (we simply won't write anything
// else to it if invalid, instead of discarding or returning prematurely)
code->appendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", outputColor);
// c = (x^2)+(y^2) - params[4]
code->appendf("\tfloat %s = dot(%s, %s) - %s;\n", cName.c_str(),
state->fSampleCoords.c_str(), state->fSampleCoords.c_str(),
p4.c_str());
// Non-degenerate case (quadratic)
if (!fIsDegenerate) {
// ac4 = params[0] * c
code->appendf("\tfloat %s = %s * %s;\n", ac4Name.c_str(), p0.c_str(),
cName.c_str());
// d = b^2 - ac4
code->appendf("\tfloat %s = %s * %s - %s;\n", dName.c_str(),
bVar.c_str(), bVar.c_str(), ac4Name.c_str());
// only proceed if discriminant is >= 0
code->appendf("\tif (%s >= 0.0) {\n", dName.c_str());
// intermediate value we'll use to compute the roots
// q = -0.5 * (b +/- sqrt(d))
code->appendf("\t\tfloat %s = -0.5 * (%s + (%s < 0.0 ? -1.0 : 1.0)"
" * sqrt(%s));\n", qName.c_str(), bVar.c_str(),
bVar.c_str(), dName.c_str());
// compute both roots
// r0 = q * params[1]
code->appendf("\t\tfloat %s = %s * %s;\n", r0Name.c_str(),
qName.c_str(), p1.c_str());
// r1 = c / q
code->appendf("\t\tfloat %s = %s / %s;\n", r1Name.c_str(),
cName.c_str(), qName.c_str());
// Note: If there are two roots that both generate radius(t) > 0, the
// Canvas spec says to choose the larger t.
// so we'll look at the larger one first:
code->appendf("\t\tfloat %s = max(%s, %s);\n", tName.c_str(),
r0Name.c_str(), r1Name.c_str());
// if r(t) > 0, then we're done; t will be our x coordinate
code->appendf("\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
p5.c_str(), p3.c_str());
// y coord is 0.5 (texture is effectively 1D)
code->appendf("\t\t");
state->fSampleCoords.printf("vec2(%s, 0.5)", tName.c_str());
state->emitDefaultFetch(outputColor, samplerName);
// otherwise, if r(t) for the larger root was <= 0, try the other root
code->appendf("\t\t} else {\n");
code->appendf("\t\t\t%s = min(%s, %s);\n", tName.c_str(),
r0Name.c_str(), r1Name.c_str());
// if r(t) > 0 for the smaller root, then t will be our x coordinate
code->appendf("\t\t\tif (%s * %s + %s > 0.0) {\n",
tName.c_str(), p5.c_str(), p3.c_str());
// y coord is 0.5 (texture is effectively 1D)
code->appendf("\t\t\t");
state->fSampleCoords.printf("vec2(%s, 0.5)", tName.c_str());
state->emitDefaultFetch(outputColor, samplerName);
// end if (r(t) > 0) for smaller root
code->appendf("\t\t\t}\n");
// end if (r(t) > 0), else, for larger root
code->appendf("\t\t}\n");
// end if (discriminant >= 0)
code->appendf("\t}\n");
} else {
// linear case: t = -c/b
code->appendf("\tfloat %s = -(%s / %s);\n", tName.c_str(),
cName.c_str(), bVar.c_str());
// if r(t) > 0, then t will be the x coordinate
code->appendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
p5.c_str(), p3.c_str());
code->appendf("\t");
state->fSampleCoords.printf("vec2(%s, 0.5)", tName.c_str());
state->emitDefaultFetch(outputColor, samplerName);
code->appendf("\t}\n");
}
state->fComplexCoord = true;
}
void GrGLConical2Gradient::initUniforms(const GrGLInterface* gl, int programID) {
GR_GL_CALL_RET(gl, fVSParamLocation,
GetUniformLocation(programID, fVSParamVar->getName().c_str()));
GR_GL_CALL_RET(gl, fFSParamLocation,
GetUniformLocation(programID, fFSParamVar->getName().c_str()));
}
void GrGLConical2Gradient::setData(const GrGLInterface* gl,
const GrCustomStage& baseData,
const GrRenderTarget*,
int stageNum) {
const GrConical2Gradient& data =
static_cast<const GrConical2Gradient&>(baseData);
GrAssert(data.isDegenerate() == fIsDegenerate);
GrScalar centerX1 = data.center();
GrScalar radius0 = data.radius();
GrScalar diffRadius = data.diffRadius();
if (fCachedCenter != centerX1 ||
fCachedRadius != radius0 ||
fCachedDiffRadius != diffRadius) {
GrScalar a = GrMul(centerX1, centerX1) - diffRadius * diffRadius;
// When we're in the degenerate (linear) case, the second
// value will be INF but the program doesn't read it. (We
// use the same 6 uniforms even though we don't need them
// all in the linear case just to keep the code complexity
// down).
float values[6] = {
GrScalarToFloat(a * 4),
1.f / (GrScalarToFloat(a)),
GrScalarToFloat(centerX1),
GrScalarToFloat(radius0),
GrScalarToFloat(SkScalarMul(radius0, radius0)),
GrScalarToFloat(diffRadius)
};
GR_GL_CALL(gl, Uniform1fv(fVSParamLocation, 6, values));
GR_GL_CALL(gl, Uniform1fv(fFSParamLocation, 6, values));
fCachedCenter = centerX1;
fCachedRadius = radius0;
fCachedDiffRadius = diffRadius;
}
}
/////////////////////////////////////////////////////////////////////
GrConical2Gradient::GrConical2Gradient(GrTexture* texture,
GrScalar center,
GrScalar radius,
GrScalar diffRadius)
: GrSingleTextureEffect (texture)
, fCenterX1 (center)
, fRadius0 (radius)
, fDiffRadius (diffRadius) {
}
GrConical2Gradient::~GrConical2Gradient() {
}
const GrProgramStageFactory& GrConical2Gradient::getFactory() const {
return GrTProgramStageFactory<GrConical2Gradient>::getInstance();
}
bool GrConical2Gradient::isEqual(const GrCustomStage& sBase) const {
const GrConical2Gradient& s = static_cast<const GrConical2Gradient&>(sBase);
return (INHERITED::isEqual(sBase) &&
this->fCenterX1 == s.fCenterX1 &&
this->fRadius0 == s.fRadius0 &&
this->fDiffRadius == s.fDiffRadius);
}
/////////////////////////////////////////////////////////////////////
class GrGLSweepGradient : public GrGLProgramStage {
public:
GrGLSweepGradient(const GrProgramStageFactory& factory,
const GrCustomStage&) : INHERITED (factory) { }
virtual ~GrGLSweepGradient() { }
virtual void emitVS(GrGLShaderBuilder* state,
const char* vertexCoords) SK_OVERRIDE { }
virtual void emitFS(GrGLShaderBuilder* state,
const char* outputColor,
const char* inputColor,
const char* samplerName) SK_OVERRIDE;
static StageKey GenKey(const GrCustomStage& s) { return 0; }
private:
typedef GrGLProgramStage INHERITED;
};
void GrGLSweepGradient::emitFS(GrGLShaderBuilder* state,
const char* outputColor,
const char* inputColor,
const char* samplerName) {
state->fSampleCoords.printf(
"vec2(atan(- %s.y, - %s.x) * 0.1591549430918 + 0.5, 0.5)",
state->fSampleCoords.c_str(), state->fSampleCoords.c_str());
state->fComplexCoord = true;
state->emitDefaultFetch(outputColor, samplerName);
}
/////////////////////////////////////////////////////////////////////
GrSweepGradient::GrSweepGradient(GrTexture* texture)
: GrSingleTextureEffect(texture) {
}
GrSweepGradient::~GrSweepGradient() {
}
const GrProgramStageFactory& GrSweepGradient::getFactory() const {
return GrTProgramStageFactory<GrSweepGradient>::getInstance();
}
bool GrSweepGradient::isEqual(const GrCustomStage& sBase) const {
return INHERITED::isEqual(sBase);
}