blob: a6c17052e6b3c89f58624e874acc575660b96b58 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrClipMaskManager.h"
#include "GrGpu.h"
#include "GrRenderTarget.h"
#include "GrStencilBuffer.h"
#include "GrPathRenderer.h"
void ScissoringSettings::setupScissoring(GrGpu* gpu) {
if (!fEnableScissoring) {
gpu->disableScissor();
return;
}
gpu->enableScissoring(fScissorRect);
}
// sort out what kind of clip mask needs to be created: A8/R8, stencil or scissor
bool GrClipMaskManager::createClipMask(GrGpu* gpu,
const GrClip& clipIn,
ScissoringSettings* scissorSettings) {
GrAssert(scissorSettings);
scissorSettings->fEnableScissoring = false;
fClipMaskInStencil = false;
GrDrawState* drawState = gpu->drawState();
if (!drawState->isClipState()) {
return true;
}
GrRenderTarget* rt = drawState->getRenderTarget();
// GrDrawTarget should have filtered this for us
GrAssert(NULL != rt);
GrRect bounds;
GrRect rtRect;
rtRect.setLTRB(0, 0,
GrIntToScalar(rt->width()), GrIntToScalar(rt->height()));
if (clipIn.hasConservativeBounds()) {
bounds = clipIn.getConservativeBounds();
if (!bounds.intersect(rtRect)) {
bounds.setEmpty();
}
} else {
bounds = rtRect;
}
bounds.roundOut(&scissorSettings->fScissorRect);
if (scissorSettings->fScissorRect.isEmpty()) {
scissorSettings->fScissorRect.setLTRB(0,0,0,0);
// TODO: I think we can do an early exit here - after refactoring try:
// set fEnableScissoring to true but leave fClipMaskInStencil false
// and return - everything is going to be scissored away anyway!
}
scissorSettings->fEnableScissoring = true;
// use the stencil clip if we can't represent the clip as a rectangle.
fClipMaskInStencil = !clipIn.isRect() && !clipIn.isEmpty() &&
!bounds.isEmpty();
if (fClipMaskInStencil) {
return this->createStencilClipMask(gpu, clipIn, bounds, scissorSettings);
}
return true;
}
#define VISUALIZE_COMPLEX_CLIP 0
#if VISUALIZE_COMPLEX_CLIP
#include "GrRandom.h"
GrRandom gRandom;
#define SET_RANDOM_COLOR drawState->setColor(0xff000000 | gRandom.nextU());
#else
#define SET_RANDOM_COLOR
#endif
namespace {
// determines how many elements at the head of the clip can be skipped and
// whether the initial clear should be to the inside- or outside-the-clip value,
// and what op should be used to draw the first element that isn't skipped.
int process_initial_clip_elements(const GrClip& clip,
const GrRect& bounds,
bool* clearToInside,
SkRegion::Op* startOp) {
// logically before the first element of the clip stack is
// processed the clip is entirely open. However, depending on the
// first set op we may prefer to clear to 0 for performance. We may
// also be able to skip the initial clip paths/rects. We loop until
// we cannot skip an element.
int curr;
bool done = false;
*clearToInside = true;
int count = clip.getElementCount();
for (curr = 0; curr < count && !done; ++curr) {
switch (clip.getOp(curr)) {
case SkRegion::kReplace_Op:
// replace ignores everything previous
*startOp = SkRegion::kReplace_Op;
*clearToInside = false;
done = true;
break;
case SkRegion::kIntersect_Op:
// if this element contains the entire bounds then we
// can skip it.
if (kRect_ClipType == clip.getElementType(curr)
&& clip.getRect(curr).contains(bounds)) {
break;
}
// if everything is initially clearToInside then intersect is
// same as clear to 0 and treat as a replace. Otherwise,
// set stays empty.
if (*clearToInside) {
*startOp = SkRegion::kReplace_Op;
*clearToInside = false;
done = true;
}
break;
// we can skip a leading union.
case SkRegion::kUnion_Op:
// if everything is initially outside then union is
// same as replace. Otherwise, every pixel is still
// clearToInside
if (!*clearToInside) {
*startOp = SkRegion::kReplace_Op;
done = true;
}
break;
case SkRegion::kXOR_Op:
// xor is same as difference or replace both of which
// can be 1-pass instead of 2 for xor.
if (*clearToInside) {
*startOp = SkRegion::kDifference_Op;
} else {
*startOp = SkRegion::kReplace_Op;
}
done = true;
break;
case SkRegion::kDifference_Op:
// if all pixels are clearToInside then we have to process the
// difference, otherwise it has no effect and all pixels
// remain outside.
if (*clearToInside) {
*startOp = SkRegion::kDifference_Op;
done = true;
}
break;
case SkRegion::kReverseDifference_Op:
// if all pixels are clearToInside then reverse difference
// produces empty set. Otherise it is same as replace
if (*clearToInside) {
*clearToInside = false;
} else {
*startOp = SkRegion::kReplace_Op;
done = true;
}
break;
default:
GrCrash("Unknown set op.");
}
}
return done ? curr-1 : count;
}
}
// Create a 1-bit clip mask in the stencil buffer
bool GrClipMaskManager::createStencilClipMask(GrGpu* gpu,
const GrClip& clipIn,
const GrRect& bounds,
ScissoringSettings* scissorSettings) {
GrAssert(fClipMaskInStencil);
GrDrawState* drawState = gpu->drawState();
GrAssert(drawState->isClipState());
GrRenderTarget* rt = drawState->getRenderTarget();
GrAssert(NULL != rt);
// TODO: dynamically attach a SB when needed.
GrStencilBuffer* stencilBuffer = rt->getStencilBuffer();
if (NULL == stencilBuffer) {
return false;
}
if (stencilBuffer->mustRenderClip(clipIn, rt->width(), rt->height())) {
stencilBuffer->setLastClip(clipIn, rt->width(), rt->height());
// we set the current clip to the bounds so that our recursive
// draws are scissored to them. We use the copy of the complex clip
// we just stashed on the SB to render from. We set it back after
// we finish drawing it into the stencil.
const GrClip& clipCopy = stencilBuffer->getLastClip();
gpu->setClip(GrClip(bounds));
GrDrawTarget::AutoStateRestore asr(gpu, GrDrawTarget::kReset_ASRInit);
drawState = gpu->drawState();
drawState->setRenderTarget(rt);
GrDrawTarget::AutoGeometryPush agp(gpu);
gpu->disableScissor();
#if !VISUALIZE_COMPLEX_CLIP
drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
#endif
int count = clipCopy.getElementCount();
int clipBit = stencilBuffer->bits();
SkASSERT((clipBit <= 16) &&
"Ganesh only handles 16b or smaller stencil buffers");
clipBit = (1 << (clipBit-1));
GrRect rtRect;
rtRect.setLTRB(0, 0,
GrIntToScalar(rt->width()), GrIntToScalar(rt->height()));
bool clearToInside;
SkRegion::Op startOp = SkRegion::kReplace_Op; // suppress warning
int start = process_initial_clip_elements(clipCopy,
rtRect,
&clearToInside,
&startOp);
gpu->clearStencilClip(scissorSettings->fScissorRect, clearToInside);
// walk through each clip element and perform its set op
// with the existing clip.
for (int c = start; c < count; ++c) {
GrPathFill fill;
bool fillInverted;
// enabled at bottom of loop
drawState->disableState(GrGpu::kModifyStencilClip_StateBit);
bool canRenderDirectToStencil; // can the clip element be drawn
// directly to the stencil buffer
// with a non-inverted fill rule
// without extra passes to
// resolve in/out status.
GrPathRenderer* pr = NULL;
const GrPath* clipPath = NULL;
if (kRect_ClipType == clipCopy.getElementType(c)) {
canRenderDirectToStencil = true;
fill = kEvenOdd_PathFill;
fillInverted = false;
// there is no point in intersecting a screen filling
// rectangle.
if (SkRegion::kIntersect_Op == clipCopy.getOp(c) &&
clipCopy.getRect(c).contains(rtRect)) {
continue;
}
} else {
fill = clipCopy.getPathFill(c);
fillInverted = GrIsFillInverted(fill);
fill = GrNonInvertedFill(fill);
clipPath = &clipCopy.getPath(c);
pr = this->getClipPathRenderer(gpu, *clipPath, fill);
if (NULL == pr) {
fClipMaskInStencil = false;
gpu->setClip(clipCopy); // restore to the original
return false;
}
canRenderDirectToStencil =
!pr->requiresStencilPass(*clipPath, fill, gpu);
}
SkRegion::Op op = (c == start) ? startOp : clipCopy.getOp(c);
int passes;
GrStencilSettings stencilSettings[GrStencilSettings::kMaxStencilClipPasses];
bool canDrawDirectToClip; // Given the renderer, the element,
// fill rule, and set operation can
// we render the element directly to
// stencil bit used for clipping.
canDrawDirectToClip =
GrStencilSettings::GetClipPasses(op,
canRenderDirectToStencil,
clipBit,
fillInverted,
&passes, stencilSettings);
// draw the element to the client stencil bits if necessary
if (!canDrawDirectToClip) {
GR_STATIC_CONST_SAME_STENCIL(gDrawToStencil,
kIncClamp_StencilOp,
kIncClamp_StencilOp,
kAlways_StencilFunc,
0xffff,
0x0000,
0xffff);
SET_RANDOM_COLOR
if (kRect_ClipType == clipCopy.getElementType(c)) {
*drawState->stencil() = gDrawToStencil;
gpu->drawSimpleRect(clipCopy.getRect(c), NULL, 0);
} else {
if (canRenderDirectToStencil) {
*drawState->stencil() = gDrawToStencil;
pr->drawPath(*clipPath, fill, NULL, gpu, 0, false);
} else {
pr->drawPathToStencil(*clipPath, fill, gpu);
}
}
}
// now we modify the clip bit by rendering either the clip
// element directly or a bounding rect of the entire clip.
drawState->enableState(GrGpu::kModifyStencilClip_StateBit);
for (int p = 0; p < passes; ++p) {
*drawState->stencil() = stencilSettings[p];
if (canDrawDirectToClip) {
if (kRect_ClipType == clipCopy.getElementType(c)) {
SET_RANDOM_COLOR
gpu->drawSimpleRect(clipCopy.getRect(c), NULL, 0);
} else {
SET_RANDOM_COLOR
pr->drawPath(*clipPath, fill, NULL, gpu, 0, false);
}
} else {
SET_RANDOM_COLOR
gpu->drawSimpleRect(bounds, NULL, 0);
}
}
}
// restore clip
gpu->setClip(clipCopy);
// recusive draws would have disabled this since they drew with
// the clip bounds as clip.
fClipMaskInStencil = true;
}
return true;
}
GrPathRenderer* GrClipMaskManager::getClipPathRenderer(GrGpu* gpu,
const GrPath& path,
GrPathFill fill) {
if (NULL == fPathRendererChain) {
fPathRendererChain =
new GrPathRendererChain(gpu->getContext(),
GrPathRendererChain::kNonAAOnly_UsageFlag);
}
return fPathRendererChain->getPathRenderer(path, fill, gpu, false);
}
void GrClipMaskManager::freeResources() {
// in case path renderer has any GrResources, start from scratch
GrSafeSetNull(fPathRendererChain);
}