blob: f169455b4ad019b38b4f8349a79c8cd6bd2ce88c [file] [log] [blame]
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +00001/*
epoger@google.comec3ed6a2011-07-28 14:26:00 +00002 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +00006 */
7
8#include "GrPathUtils.h"
commit-bot@chromium.orgfd03d4a2013-07-17 21:39:42 +00009
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000010#include "GrPoint.h"
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +000011#include "SkGeometry.h"
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000012
bsalomon@google.com81712882012-11-01 17:12:34 +000013SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
bsalomon@google.comb9086a02012-11-01 18:02:54 +000014 const SkMatrix& viewM,
commit-bot@chromium.orgfd03d4a2013-07-17 21:39:42 +000015 const SkRect& pathBounds) {
bsalomon@google.com181e9bd2011-09-07 18:42:30 +000016 // In order to tesselate the path we get a bound on how much the matrix can
17 // stretch when mapping to screen coordinates.
bsalomon@google.com81712882012-11-01 17:12:34 +000018 SkScalar stretch = viewM.getMaxStretch();
19 SkScalar srcTol = devTol;
bsalomon@google.com181e9bd2011-09-07 18:42:30 +000020
21 if (stretch < 0) {
bsalomon@google.com38396322011-09-09 19:32:04 +000022 // take worst case mapRadius amoung four corners.
23 // (less than perfect)
24 for (int i = 0; i < 4; ++i) {
bsalomon@google.comb9086a02012-11-01 18:02:54 +000025 SkMatrix mat;
bsalomon@google.com38396322011-09-09 19:32:04 +000026 mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
27 (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
28 mat.postConcat(viewM);
29 stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
30 }
bsalomon@google.com181e9bd2011-09-07 18:42:30 +000031 }
bsalomon@google.com81712882012-11-01 17:12:34 +000032 srcTol = SkScalarDiv(srcTol, stretch);
bsalomon@google.com181e9bd2011-09-07 18:42:30 +000033 return srcTol;
34}
35
bsalomon@google.comb5b31682011-06-16 18:05:35 +000036static const int MAX_POINTS_PER_CURVE = 1 << 10;
bsalomon@google.com81712882012-11-01 17:12:34 +000037static const SkScalar gMinCurveTol = SkFloatToScalar(0.0001f);
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000038
39uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[],
bsalomon@google.com81712882012-11-01 17:12:34 +000040 SkScalar tol) {
tomhudson@google.comc10a8882011-06-28 15:19:32 +000041 if (tol < gMinCurveTol) {
tomhudson@google.comafec7ba2011-06-30 14:47:55 +000042 tol = gMinCurveTol;
tomhudson@google.comc10a8882011-06-28 15:19:32 +000043 }
44 GrAssert(tol > 0);
45
bsalomon@google.com81712882012-11-01 17:12:34 +000046 SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
tomhudson@google.comc10a8882011-06-28 15:19:32 +000047 if (d <= tol) {
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000048 return 1;
49 } else {
50 // Each time we subdivide, d should be cut in 4. So we need to
51 // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
52 // points.
53 // 2^(log4(x)) = sqrt(x);
epoger@google.com2047f002011-05-17 17:36:59 +000054 int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
bsalomon@google.com61f3bde2011-06-17 20:06:49 +000055 int pow2 = GrNextPow2(temp);
56 // Because of NaNs & INFs we can wind up with a degenerate temp
57 // such that pow2 comes out negative. Also, our point generator
58 // will always output at least one pt.
59 if (pow2 < 1) {
60 pow2 = 1;
61 }
62 return GrMin(pow2, MAX_POINTS_PER_CURVE);
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000063 }
64}
65
66uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0,
tomhudson@google.comc10a8882011-06-28 15:19:32 +000067 const GrPoint& p1,
68 const GrPoint& p2,
bsalomon@google.com81712882012-11-01 17:12:34 +000069 SkScalar tolSqd,
tomhudson@google.comc10a8882011-06-28 15:19:32 +000070 GrPoint** points,
71 uint32_t pointsLeft) {
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000072 if (pointsLeft < 2 ||
73 (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
74 (*points)[0] = p2;
75 *points += 1;
76 return 1;
77 }
78
79 GrPoint q[] = {
bsalomon@google.com81712882012-11-01 17:12:34 +000080 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
81 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000082 };
bsalomon@google.com81712882012-11-01 17:12:34 +000083 GrPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000084
85 pointsLeft >>= 1;
86 uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
87 uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
88 return a + b;
89}
90
91uint32_t GrPathUtils::cubicPointCount(const GrPoint points[],
bsalomon@google.com81712882012-11-01 17:12:34 +000092 SkScalar tol) {
tomhudson@google.comc10a8882011-06-28 15:19:32 +000093 if (tol < gMinCurveTol) {
tomhudson@google.comafec7ba2011-06-30 14:47:55 +000094 tol = gMinCurveTol;
tomhudson@google.comc10a8882011-06-28 15:19:32 +000095 }
96 GrAssert(tol > 0);
97
bsalomon@google.com81712882012-11-01 17:12:34 +000098 SkScalar d = GrMax(
tomhudson@google.comc10a8882011-06-28 15:19:32 +000099 points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
100 points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
epoger@google.com2047f002011-05-17 17:36:59 +0000101 d = SkScalarSqrt(d);
tomhudson@google.comc10a8882011-06-28 15:19:32 +0000102 if (d <= tol) {
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000103 return 1;
104 } else {
epoger@google.com2047f002011-05-17 17:36:59 +0000105 int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
bsalomon@google.com61f3bde2011-06-17 20:06:49 +0000106 int pow2 = GrNextPow2(temp);
107 // Because of NaNs & INFs we can wind up with a degenerate temp
108 // such that pow2 comes out negative. Also, our point generator
109 // will always output at least one pt.
110 if (pow2 < 1) {
111 pow2 = 1;
112 }
113 return GrMin(pow2, MAX_POINTS_PER_CURVE);
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000114 }
115}
116
117uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0,
tomhudson@google.comc10a8882011-06-28 15:19:32 +0000118 const GrPoint& p1,
119 const GrPoint& p2,
120 const GrPoint& p3,
bsalomon@google.com81712882012-11-01 17:12:34 +0000121 SkScalar tolSqd,
tomhudson@google.comc10a8882011-06-28 15:19:32 +0000122 GrPoint** points,
123 uint32_t pointsLeft) {
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000124 if (pointsLeft < 2 ||
125 (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
126 p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
127 (*points)[0] = p3;
128 *points += 1;
129 return 1;
130 }
131 GrPoint q[] = {
bsalomon@google.com81712882012-11-01 17:12:34 +0000132 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
133 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
134 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000135 };
136 GrPoint r[] = {
bsalomon@google.com81712882012-11-01 17:12:34 +0000137 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
138 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000139 };
bsalomon@google.com81712882012-11-01 17:12:34 +0000140 GrPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000141 pointsLeft >>= 1;
142 uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
143 uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
144 return a + b;
145}
146
bsalomon@google.com8d033a12012-04-27 15:52:53 +0000147int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
bsalomon@google.com81712882012-11-01 17:12:34 +0000148 SkScalar tol) {
tomhudson@google.comc10a8882011-06-28 15:19:32 +0000149 if (tol < gMinCurveTol) {
tomhudson@google.comafec7ba2011-06-30 14:47:55 +0000150 tol = gMinCurveTol;
tomhudson@google.comc10a8882011-06-28 15:19:32 +0000151 }
152 GrAssert(tol > 0);
153
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000154 int pointCount = 0;
155 *subpaths = 1;
156
157 bool first = true;
158
senorblanco@chromium.org129b8e32011-06-15 17:52:09 +0000159 SkPath::Iter iter(path, false);
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000160 SkPath::Verb verb;
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000161
162 GrPoint pts[4];
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000163 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000164
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000165 switch (verb) {
166 case SkPath::kLine_Verb:
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000167 pointCount += 1;
168 break;
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000169 case SkPath::kQuad_Verb:
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000170 pointCount += quadraticPointCount(pts, tol);
171 break;
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000172 case SkPath::kCubic_Verb:
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000173 pointCount += cubicPointCount(pts, tol);
174 break;
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000175 case SkPath::kMove_Verb:
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000176 pointCount += 1;
177 if (!first) {
178 ++(*subpaths);
179 }
180 break;
181 default:
182 break;
183 }
184 first = false;
185 }
186 return pointCount;
187}
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000188
bsalomon@google.com19713172012-03-15 13:51:08 +0000189void GrPathUtils::QuadUVMatrix::set(const GrPoint qPts[3]) {
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000190 // can't make this static, no cons :(
191 SkMatrix UVpts;
bsalomon@google.com5e9bf822012-01-17 14:39:21 +0000192#ifndef SK_SCALAR_IS_FLOAT
193 GrCrash("Expected scalar is float.");
194#endif
bsalomon@google.com19713172012-03-15 13:51:08 +0000195 SkMatrix m;
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000196 // We want M such that M * xy_pt = uv_pt
197 // We know M * control_pts = [0 1/2 1]
198 // [0 0 1]
199 // [1 1 1]
200 // We invert the control pt matrix and post concat to both sides to get M.
bsalomon@google.com81712882012-11-01 17:12:34 +0000201 UVpts.setAll(0, SK_ScalarHalf, SK_Scalar1,
202 0, 0, SK_Scalar1,
203 SkScalarToPersp(SK_Scalar1),
204 SkScalarToPersp(SK_Scalar1),
205 SkScalarToPersp(SK_Scalar1));
bsalomon@google.com19713172012-03-15 13:51:08 +0000206 m.setAll(qPts[0].fX, qPts[1].fX, qPts[2].fX,
207 qPts[0].fY, qPts[1].fY, qPts[2].fY,
bsalomon@google.com81712882012-11-01 17:12:34 +0000208 SkScalarToPersp(SK_Scalar1),
209 SkScalarToPersp(SK_Scalar1),
210 SkScalarToPersp(SK_Scalar1));
bsalomon@google.com19713172012-03-15 13:51:08 +0000211 if (!m.invert(&m)) {
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000212 // The quad is degenerate. Hopefully this is rare. Find the pts that are
213 // farthest apart to compute a line (unless it is really a pt).
214 SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
215 int maxEdge = 0;
216 SkScalar d = qPts[1].distanceToSqd(qPts[2]);
217 if (d > maxD) {
218 maxD = d;
219 maxEdge = 1;
220 }
221 d = qPts[2].distanceToSqd(qPts[0]);
222 if (d > maxD) {
223 maxD = d;
224 maxEdge = 2;
225 }
226 // We could have a tolerance here, not sure if it would improve anything
227 if (maxD > 0) {
228 // Set the matrix to give (u = 0, v = distance_to_line)
bsalomon@google.com20e542e2012-02-15 18:49:41 +0000229 GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
230 // when looking from the point 0 down the line we want positive
231 // distances to be to the left. This matches the non-degenerate
232 // case.
233 lineVec.setOrthog(lineVec, GrPoint::kLeft_Side);
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000234 lineVec.dot(qPts[0]);
bsalomon@google.com19713172012-03-15 13:51:08 +0000235 // first row
236 fM[0] = 0;
237 fM[1] = 0;
238 fM[2] = 0;
239 // second row
240 fM[3] = lineVec.fX;
241 fM[4] = lineVec.fY;
242 fM[5] = -lineVec.dot(qPts[maxEdge]);
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000243 } else {
244 // It's a point. It should cover zero area. Just set the matrix such
245 // that (u, v) will always be far away from the quad.
bsalomon@google.com19713172012-03-15 13:51:08 +0000246 fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
247 fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000248 }
249 } else {
bsalomon@google.com19713172012-03-15 13:51:08 +0000250 m.postConcat(UVpts);
251
252 // The matrix should not have perspective.
humper@google.com0e515772013-01-07 19:54:40 +0000253 SkDEBUGCODE(static const SkScalar gTOL = SkFloatToScalar(1.f / 100.f));
bsalomon@google.com81712882012-11-01 17:12:34 +0000254 GrAssert(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL);
255 GrAssert(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL);
bsalomon@google.com19713172012-03-15 13:51:08 +0000256
257 // It may not be normalized to have 1.0 in the bottom right
258 float m33 = m.get(SkMatrix::kMPersp2);
259 if (1.f != m33) {
260 m33 = 1.f / m33;
261 fM[0] = m33 * m.get(SkMatrix::kMScaleX);
262 fM[1] = m33 * m.get(SkMatrix::kMSkewX);
263 fM[2] = m33 * m.get(SkMatrix::kMTransX);
264 fM[3] = m33 * m.get(SkMatrix::kMSkewY);
265 fM[4] = m33 * m.get(SkMatrix::kMScaleY);
266 fM[5] = m33 * m.get(SkMatrix::kMTransY);
267 } else {
268 fM[0] = m.get(SkMatrix::kMScaleX);
269 fM[1] = m.get(SkMatrix::kMSkewX);
270 fM[2] = m.get(SkMatrix::kMTransX);
271 fM[3] = m.get(SkMatrix::kMSkewY);
272 fM[4] = m.get(SkMatrix::kMScaleY);
273 fM[5] = m.get(SkMatrix::kMTransY);
274 }
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000275 }
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000276}
277
278namespace {
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000279
280// a is the first control point of the cubic.
281// ab is the vector from a to the second control point.
282// dc is the vector from the fourth to the third control point.
283// d is the fourth control point.
284// p is the candidate quadratic control point.
285// this assumes that the cubic doesn't inflect and is simple
286bool is_point_within_cubic_tangents(const SkPoint& a,
287 const SkVector& ab,
288 const SkVector& dc,
289 const SkPoint& d,
290 SkPath::Direction dir,
291 const SkPoint p) {
292 SkVector ap = p - a;
293 SkScalar apXab = ap.cross(ab);
294 if (SkPath::kCW_Direction == dir) {
295 if (apXab > 0) {
296 return false;
297 }
298 } else {
299 GrAssert(SkPath::kCCW_Direction == dir);
300 if (apXab < 0) {
301 return false;
302 }
303 }
304
305 SkVector dp = p - d;
306 SkScalar dpXdc = dp.cross(dc);
307 if (SkPath::kCW_Direction == dir) {
308 if (dpXdc < 0) {
309 return false;
310 }
311 } else {
312 GrAssert(SkPath::kCCW_Direction == dir);
313 if (dpXdc > 0) {
314 return false;
315 }
316 }
317 return true;
318}
319
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000320void convert_noninflect_cubic_to_quads(const SkPoint p[4],
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000321 SkScalar toleranceSqd,
322 bool constrainWithinTangents,
323 SkPath::Direction dir,
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000324 SkTArray<SkPoint, true>* quads,
325 int sublevel = 0) {
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000326
327 // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
328 // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
329
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000330 SkVector ab = p[1] - p[0];
331 SkVector dc = p[2] - p[3];
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000332
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000333 if (ab.isZero()) {
334 if (dc.isZero()) {
335 SkPoint* degQuad = quads->push_back_n(3);
336 degQuad[0] = p[0];
337 degQuad[1] = p[0];
338 degQuad[2] = p[3];
339 return;
340 }
341 ab = p[2] - p[0];
342 }
343 if (dc.isZero()) {
344 dc = p[1] - p[3];
345 }
346
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000347 // When the ab and cd tangents are nearly parallel with vector from d to a the constraint that
348 // the quad point falls between the tangents becomes hard to enforce and we are likely to hit
349 // the max subdivision count. However, in this case the cubic is approaching a line and the
rmistry@google.comd6176b02012-08-23 18:14:13 +0000350 // accuracy of the quad point isn't so important. We check if the two middle cubic control
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000351 // points are very close to the baseline vector. If so then we just pick quadratic points on the
352 // control polygon.
353
354 if (constrainWithinTangents) {
355 SkVector da = p[0] - p[3];
356 SkScalar invDALengthSqd = da.lengthSqd();
357 if (invDALengthSqd > SK_ScalarNearlyZero) {
358 invDALengthSqd = SkScalarInvert(invDALengthSqd);
359 // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
360 // same goed for point c using vector cd.
361 SkScalar detABSqd = ab.cross(da);
362 detABSqd = SkScalarSquare(detABSqd);
363 SkScalar detDCSqd = dc.cross(da);
364 detDCSqd = SkScalarSquare(detDCSqd);
365 if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd &&
366 SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) {
367 SkPoint b = p[0] + ab;
368 SkPoint c = p[3] + dc;
369 SkPoint mid = b + c;
370 mid.scale(SK_ScalarHalf);
371 // Insert two quadratics to cover the case when ab points away from d and/or dc
372 // points away from a.
373 if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
374 SkPoint* qpts = quads->push_back_n(6);
375 qpts[0] = p[0];
376 qpts[1] = b;
377 qpts[2] = mid;
378 qpts[3] = mid;
379 qpts[4] = c;
380 qpts[5] = p[3];
381 } else {
382 SkPoint* qpts = quads->push_back_n(3);
383 qpts[0] = p[0];
384 qpts[1] = mid;
385 qpts[2] = p[3];
386 }
387 return;
388 }
389 }
390 }
391
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000392 static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000393 static const int kMaxSubdivs = 10;
394
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000395 ab.scale(kLengthScale);
396 dc.scale(kLengthScale);
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000397
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000398 // e0 and e1 are extrapolations along vectors ab and dc.
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000399 SkVector c0 = p[0];
400 c0 += ab;
401 SkVector c1 = p[3];
402 c1 += dc;
403
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000404 SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000405 if (dSqd < toleranceSqd) {
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000406 SkPoint cAvg = c0;
407 cAvg += c1;
408 cAvg.scale(SK_ScalarHalf);
409
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000410 bool subdivide = false;
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000411
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000412 if (constrainWithinTangents &&
413 !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000414 // choose a new cAvg that is the intersection of the two tangent lines.
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000415 ab.setOrthog(ab);
416 SkScalar z0 = -ab.dot(p[0]);
417 dc.setOrthog(dc);
418 SkScalar z1 = -dc.dot(p[3]);
419 cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY);
420 cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1);
421 SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX);
422 z = SkScalarInvert(z);
423 cAvg.fX *= z;
424 cAvg.fY *= z;
425 if (sublevel <= kMaxSubdivs) {
426 SkScalar d0Sqd = c0.distanceToSqd(cAvg);
427 SkScalar d1Sqd = c1.distanceToSqd(cAvg);
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000428 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
429 // the distances and tolerance can't be negative.
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000430 // (d0 + d1)^2 > toleranceSqd
431 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
432 SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd));
433 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
434 }
435 }
436 if (!subdivide) {
437 SkPoint* pts = quads->push_back_n(3);
438 pts[0] = p[0];
439 pts[1] = cAvg;
440 pts[2] = p[3];
441 return;
442 }
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000443 }
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000444 SkPoint choppedPts[7];
445 SkChopCubicAtHalf(p, choppedPts);
446 convert_noninflect_cubic_to_quads(choppedPts + 0,
447 toleranceSqd,
448 constrainWithinTangents,
449 dir,
450 quads,
451 sublevel + 1);
452 convert_noninflect_cubic_to_quads(choppedPts + 3,
453 toleranceSqd,
454 constrainWithinTangents,
455 dir,
456 quads,
457 sublevel + 1);
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000458}
459}
460
461void GrPathUtils::convertCubicToQuads(const GrPoint p[4],
462 SkScalar tolScale,
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000463 bool constrainWithinTangents,
464 SkPath::Direction dir,
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000465 SkTArray<SkPoint, true>* quads) {
466 SkPoint chopped[10];
467 int count = SkChopCubicAtInflections(p, chopped);
468
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000469 // base tolerance is 1 pixel.
470 static const SkScalar kTolerance = SK_Scalar1;
471 const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance));
472
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000473 for (int i = 0; i < count; ++i) {
474 SkPoint* cubic = chopped + 3*i;
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000475 convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads);
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000476 }
477
478}