blob: 9f45ba2c7a25d800a7b0524be83d648788dbc18d [file] [log] [blame]
caryclark@google.com639df892012-01-10 21:46:10 +00001#include "CubicIntersection.h"
2
3/* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1
4 *
5 * This paper proves that Syvester's method can compute the implicit form of
6 * the quadratic from the parameterzied form.
7 *
8 * Given x = a*t*t*t + b*t*t + c*t + d (the parameterized form)
9 * y = e*t*t*t + f*t*t + g*t + h
10 *
11 * we want to find an equation of the implicit form:
12 *
13 * A*x^3 + B*x*x*y + C*x*y*y + D*y^3 + E*x*x + F*x*y + G*y*y + H*x + I*y + J = 0
14 *
15 * The implicit form can be expressed as a 6x6 determinant, as shown.
16 *
17 * The resultant obtained by Syvester's method is
18 *
19 * | a b c (d - x) 0 0 |
20 * | 0 a b c (d - x) 0 |
21 * | 0 0 a b c (d - x) |
22 * | e f g (h - y) 0 0 |
23 * | 0 e f g (h - y) 0 |
24 * | 0 0 e f g (h - y) |
25 *
26 * which, according to Mathematica, expands as shown below.
27 *
28 * Resultant[a*t^3 + b*t^2 + c*t + d - x, e*t^3 + f*t^2 + g*t + h - y, t]
29 *
30 * -d^3 e^3 + c d^2 e^2 f - b d^2 e f^2 + a d^2 f^3 - c^2 d e^2 g +
31 * 2 b d^2 e^2 g + b c d e f g - 3 a d^2 e f g - a c d f^2 g -
32 * b^2 d e g^2 + 2 a c d e g^2 + a b d f g^2 - a^2 d g^3 + c^3 e^2 h -
33 * 3 b c d e^2 h + 3 a d^2 e^2 h - b c^2 e f h + 2 b^2 d e f h +
34 * a c d e f h + a c^2 f^2 h - 2 a b d f^2 h + b^2 c e g h -
35 * 2 a c^2 e g h - a b d e g h - a b c f g h + 3 a^2 d f g h +
36 * a^2 c g^2 h - b^3 e h^2 + 3 a b c e h^2 - 3 a^2 d e h^2 +
37 * a b^2 f h^2 - 2 a^2 c f h^2 - a^2 b g h^2 + a^3 h^3 + 3 d^2 e^3 x -
38 * 2 c d e^2 f x + 2 b d e f^2 x - 2 a d f^3 x + c^2 e^2 g x -
39 * 4 b d e^2 g x - b c e f g x + 6 a d e f g x + a c f^2 g x +
40 * b^2 e g^2 x - 2 a c e g^2 x - a b f g^2 x + a^2 g^3 x +
41 * 3 b c e^2 h x - 6 a d e^2 h x - 2 b^2 e f h x - a c e f h x +
42 * 2 a b f^2 h x + a b e g h x - 3 a^2 f g h x + 3 a^2 e h^2 x -
43 * 3 d e^3 x^2 + c e^2 f x^2 - b e f^2 x^2 + a f^3 x^2 +
44 * 2 b e^2 g x^2 - 3 a e f g x^2 + 3 a e^2 h x^2 + e^3 x^3 -
45 * c^3 e^2 y + 3 b c d e^2 y - 3 a d^2 e^2 y + b c^2 e f y -
46 * 2 b^2 d e f y - a c d e f y - a c^2 f^2 y + 2 a b d f^2 y -
47 * b^2 c e g y + 2 a c^2 e g y + a b d e g y + a b c f g y -
48 * 3 a^2 d f g y - a^2 c g^2 y + 2 b^3 e h y - 6 a b c e h y +
49 * 6 a^2 d e h y - 2 a b^2 f h y + 4 a^2 c f h y + 2 a^2 b g h y -
50 * 3 a^3 h^2 y - 3 b c e^2 x y + 6 a d e^2 x y + 2 b^2 e f x y +
51 * a c e f x y - 2 a b f^2 x y - a b e g x y + 3 a^2 f g x y -
52 * 6 a^2 e h x y - 3 a e^2 x^2 y - b^3 e y^2 + 3 a b c e y^2 -
53 * 3 a^2 d e y^2 + a b^2 f y^2 - 2 a^2 c f y^2 - a^2 b g y^2 +
54 * 3 a^3 h y^2 + 3 a^2 e x y^2 - a^3 y^3
55 */
56
57enum {
58 xxx_coeff,
59 xxy_coeff,
60 xyy_coeff,
61 yyy_coeff,
62 xx_coeff,
63 xy_coeff,
64 yy_coeff,
65 x_coeff,
66 y_coeff,
67 c_coeff,
68 coeff_count
69};
70
71// FIXME: factoring version unwritten
72// static bool straight_forward = true;
73
74/* from CubicParameterizationCode.cpp output:
75 * double A = e * e * e;
76 * double B = -3 * a * e * e;
77 * double C = 3 * a * a * e;
78 * double D = -a * a * a;
79 */
80static void calc_ABCD(double a, double e, double p[coeff_count]) {
81 double ee = e * e;
82 p[xxx_coeff] = e * ee;
83 p[xxy_coeff] = -3 * a * ee;
84 double aa = a * a;
85 p[xyy_coeff] = 3 * aa * e;
86 p[yyy_coeff] = -aa * a;
87}
88
89/* CubicParameterizationCode.cpp turns Mathematica output into C.
90 * Rather than edit the lines below, please edit the code there instead.
91 */
92// start of generated code
93static double calc_E(double a, double b, double c, double d,
94 double e, double f, double g, double h) {
95 return
96 -3 * d * e * e * e
97 + c * e * e * f
98 - b * e * f * f
99 + a * f * f * f
100 + 2 * b * e * e * g
101 - 3 * a * e * f * g
102 + 3 * a * e * e * h;
103}
104
105static double calc_F(double a, double b, double c, double d,
106 double e, double f, double g, double h) {
107 return
108 -3 * b * c * e * e
109 + 6 * a * d * e * e
110 + 2 * b * b * e * f
111 + a * c * e * f
112 - 2 * a * b * f * f
113 - a * b * e * g
114 + 3 * a * a * f * g
115 - 6 * a * a * e * h;
116}
117
118static double calc_G(double a, double b, double c, double d,
119 double e, double f, double g, double h) {
120 return
121 -b * b * b * e
122 + 3 * a * b * c * e
123 - 3 * a * a * d * e
124 + a * b * b * f
125 - 2 * a * a * c * f
126 - a * a * b * g
127 + 3 * a * a * a * h;
128}
129
130static double calc_H(double a, double b, double c, double d,
131 double e, double f, double g, double h) {
132 return
133 3 * d * d * e * e * e
134 - 2 * c * d * e * e * f
135 + 2 * b * d * e * f * f
136 - 2 * a * d * f * f * f
137 + c * c * e * e * g
138 - 4 * b * d * e * e * g
139 - b * c * e * f * g
140 + 6 * a * d * e * f * g
141 + a * c * f * f * g
142 + b * b * e * g * g
143 - 2 * a * c * e * g * g
144 - a * b * f * g * g
145 + a * a * g * g * g
146 + 3 * b * c * e * e * h
147 - 6 * a * d * e * e * h
148 - 2 * b * b * e * f * h
149 - a * c * e * f * h
150 + 2 * a * b * f * f * h
151 + a * b * e * g * h
152 - 3 * a * a * f * g * h
153 + 3 * a * a * e * h * h;
154}
155
156static double calc_I(double a, double b, double c, double d,
157 double e, double f, double g, double h) {
158 return
159 -c * c * c * e * e
160 + 3 * b * c * d * e * e
161 - 3 * a * d * d * e * e
162 + b * c * c * e * f
163 - 2 * b * b * d * e * f
164 - a * c * d * e * f
165 - a * c * c * f * f
166 + 2 * a * b * d * f * f
167 - b * b * c * e * g
168 + 2 * a * c * c * e * g
169 + a * b * d * e * g
170 + a * b * c * f * g
171 - 3 * a * a * d * f * g
172 - a * a * c * g * g
173 + 2 * b * b * b * e * h
174 - 6 * a * b * c * e * h
175 + 6 * a * a * d * e * h
176 - 2 * a * b * b * f * h
177 + 4 * a * a * c * f * h
178 + 2 * a * a * b * g * h
179 - 3 * a * a * a * h * h;
180}
181
182static double calc_J(double a, double b, double c, double d,
183 double e, double f, double g, double h) {
184 return
185 -d * d * d * e * e * e
186 + c * d * d * e * e * f
187 - b * d * d * e * f * f
188 + a * d * d * f * f * f
189 - c * c * d * e * e * g
190 + 2 * b * d * d * e * e * g
191 + b * c * d * e * f * g
192 - 3 * a * d * d * e * f * g
193 - a * c * d * f * f * g
194 - b * b * d * e * g * g
195 + 2 * a * c * d * e * g * g
196 + a * b * d * f * g * g
197 - a * a * d * g * g * g
198 + c * c * c * e * e * h
199 - 3 * b * c * d * e * e * h
200 + 3 * a * d * d * e * e * h
201 - b * c * c * e * f * h
202 + 2 * b * b * d * e * f * h
203 + a * c * d * e * f * h
204 + a * c * c * f * f * h
205 - 2 * a * b * d * f * f * h
206 + b * b * c * e * g * h
207 - 2 * a * c * c * e * g * h
208 - a * b * d * e * g * h
209 - a * b * c * f * g * h
210 + 3 * a * a * d * f * g * h
211 + a * a * c * g * g * h
212 - b * b * b * e * h * h
213 + 3 * a * b * c * e * h * h
214 - 3 * a * a * d * e * h * h
215 + a * b * b * f * h * h
216 - 2 * a * a * c * f * h * h
217 - a * a * b * g * h * h
218 + a * a * a * h * h * h;
219}
220// end of generated code
221
222static double (*calc_proc[])(double a, double b, double c, double d,
223 double e, double f, double g, double h) = {
224 calc_E, calc_F, calc_G, calc_H, calc_I, calc_J
225};
226
227/* Control points to parametric coefficients
228 s = 1 - t
229 Attt + 3Btt2 + 3Ctss + Dsss ==
230 Attt + 3B(1 - t)tt + 3C(1 - t)(t - tt) + D(1 - t)(1 - 2t + tt) ==
231 Attt + 3B(tt - ttt) + 3C(t - tt - tt + ttt) + D(1-2t+tt-t+2tt-ttt) ==
232 Attt + 3Btt - 3Bttt + 3Ct - 6Ctt + 3Cttt + D - 3Dt + 3Dtt - Dttt ==
233 D + (3C - 3D)t + (3B - 6C + 3D)tt + (A - 3B + 3C - D)ttt
234 a = A - 3*B + 3*C - D
235 b = 3*B - 6*C + 3*D
236 c = 3*C - 3*D
237 d = D
238 */
239static void set_abcd(const double* cubic, double& a, double& b, double& c,
240 double& d) {
241 a = cubic[0]; // a = A
242 b = 3 * cubic[2]; // b = 3*B (compute rest of b lazily)
243 c = 3 * cubic[4]; // c = 3*C (compute rest of c lazily)
244 d = cubic[6]; // d = D
245 a += -b + c - d; // a = A - 3*B + 3*C - D
246}
247
248static void calc_bc(const double d, double& b, double& c) {
249 b -= 3 * c; // b = 3*B - 3*C
250 c -= 3 * d; // c = 3*C - 3*D
251 b -= c; // b = 3*B - 6*C + 3*D
252}
253
254bool implicit_matches(const Cubic& one, const Cubic& two) {
255 double p1[coeff_count]; // a'xxx , b'xxy , c'xyy , d'xx , e'xy , f'yy, etc.
256 double p2[coeff_count];
257 double a1, b1, c1, d1;
258 set_abcd(&one[0].x, a1, b1, c1, d1);
259 double e1, f1, g1, h1;
260 set_abcd(&one[0].y, e1, f1, g1, h1);
261 calc_ABCD(a1, e1, p1);
262 double a2, b2, c2, d2;
263 set_abcd(&two[0].x, a2, b2, c2, d2);
264 double e2, f2, g2, h2;
265 set_abcd(&two[0].y, e2, f2, g2, h2);
266 calc_ABCD(a2, e2, p2);
267 int first = 0;
268 for (int index = 0; index < coeff_count; ++index) {
269 if (index == xx_coeff) {
270 calc_bc(d1, b1, c1);
271 calc_bc(h1, f1, g1);
272 calc_bc(d2, b2, c2);
273 calc_bc(h2, f2, g2);
274 }
275 if (index >= xx_coeff) {
276 int procIndex = index - xx_coeff;
277 p1[index] = (*calc_proc[procIndex])(a1, b1, c1, d1, e1, f1, g1, h1);
278 p2[index] = (*calc_proc[procIndex])(a2, b2, c2, d2, e2, f2, g2, h2);
279 }
280 if (approximately_zero(p1[index]) || approximately_zero(p2[index])) {
281 first += first == index;
282 continue;
283 }
284 if (first == index) {
285 continue;
286 }
287 if (!approximately_equal(p1[index] * p2[first],
288 p1[first] * p2[index])) {
289 return false;
290 }
291 }
292 return true;
293}
294
295static double tangent(const double* cubic, double t) {
296 double a, b, c, d;
297 set_abcd(cubic, a, b, c, d);
298 calc_bc(d, b, c);
299 return 3 * a * t * t + 2 * b * t + c;
300}
301
302void tangent(const Cubic& cubic, double t, _Point& result) {
303 result.x = tangent(&cubic[0].x, t);
304 result.y = tangent(&cubic[0].y, t);
305}
306