caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame^] | 1 | #include "CubicIntersection.h" |
| 2 | |
| 3 | /* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1 |
| 4 | * |
| 5 | * This paper proves that Syvester's method can compute the implicit form of |
| 6 | * the quadratic from the parameterzied form. |
| 7 | * |
| 8 | * Given x = a*t*t*t + b*t*t + c*t + d (the parameterized form) |
| 9 | * y = e*t*t*t + f*t*t + g*t + h |
| 10 | * |
| 11 | * we want to find an equation of the implicit form: |
| 12 | * |
| 13 | * A*x^3 + B*x*x*y + C*x*y*y + D*y^3 + E*x*x + F*x*y + G*y*y + H*x + I*y + J = 0 |
| 14 | * |
| 15 | * The implicit form can be expressed as a 6x6 determinant, as shown. |
| 16 | * |
| 17 | * The resultant obtained by Syvester's method is |
| 18 | * |
| 19 | * | a b c (d - x) 0 0 | |
| 20 | * | 0 a b c (d - x) 0 | |
| 21 | * | 0 0 a b c (d - x) | |
| 22 | * | e f g (h - y) 0 0 | |
| 23 | * | 0 e f g (h - y) 0 | |
| 24 | * | 0 0 e f g (h - y) | |
| 25 | * |
| 26 | * which, according to Mathematica, expands as shown below. |
| 27 | * |
| 28 | * Resultant[a*t^3 + b*t^2 + c*t + d - x, e*t^3 + f*t^2 + g*t + h - y, t] |
| 29 | * |
| 30 | * -d^3 e^3 + c d^2 e^2 f - b d^2 e f^2 + a d^2 f^3 - c^2 d e^2 g + |
| 31 | * 2 b d^2 e^2 g + b c d e f g - 3 a d^2 e f g - a c d f^2 g - |
| 32 | * b^2 d e g^2 + 2 a c d e g^2 + a b d f g^2 - a^2 d g^3 + c^3 e^2 h - |
| 33 | * 3 b c d e^2 h + 3 a d^2 e^2 h - b c^2 e f h + 2 b^2 d e f h + |
| 34 | * a c d e f h + a c^2 f^2 h - 2 a b d f^2 h + b^2 c e g h - |
| 35 | * 2 a c^2 e g h - a b d e g h - a b c f g h + 3 a^2 d f g h + |
| 36 | * a^2 c g^2 h - b^3 e h^2 + 3 a b c e h^2 - 3 a^2 d e h^2 + |
| 37 | * a b^2 f h^2 - 2 a^2 c f h^2 - a^2 b g h^2 + a^3 h^3 + 3 d^2 e^3 x - |
| 38 | * 2 c d e^2 f x + 2 b d e f^2 x - 2 a d f^3 x + c^2 e^2 g x - |
| 39 | * 4 b d e^2 g x - b c e f g x + 6 a d e f g x + a c f^2 g x + |
| 40 | * b^2 e g^2 x - 2 a c e g^2 x - a b f g^2 x + a^2 g^3 x + |
| 41 | * 3 b c e^2 h x - 6 a d e^2 h x - 2 b^2 e f h x - a c e f h x + |
| 42 | * 2 a b f^2 h x + a b e g h x - 3 a^2 f g h x + 3 a^2 e h^2 x - |
| 43 | * 3 d e^3 x^2 + c e^2 f x^2 - b e f^2 x^2 + a f^3 x^2 + |
| 44 | * 2 b e^2 g x^2 - 3 a e f g x^2 + 3 a e^2 h x^2 + e^3 x^3 - |
| 45 | * c^3 e^2 y + 3 b c d e^2 y - 3 a d^2 e^2 y + b c^2 e f y - |
| 46 | * 2 b^2 d e f y - a c d e f y - a c^2 f^2 y + 2 a b d f^2 y - |
| 47 | * b^2 c e g y + 2 a c^2 e g y + a b d e g y + a b c f g y - |
| 48 | * 3 a^2 d f g y - a^2 c g^2 y + 2 b^3 e h y - 6 a b c e h y + |
| 49 | * 6 a^2 d e h y - 2 a b^2 f h y + 4 a^2 c f h y + 2 a^2 b g h y - |
| 50 | * 3 a^3 h^2 y - 3 b c e^2 x y + 6 a d e^2 x y + 2 b^2 e f x y + |
| 51 | * a c e f x y - 2 a b f^2 x y - a b e g x y + 3 a^2 f g x y - |
| 52 | * 6 a^2 e h x y - 3 a e^2 x^2 y - b^3 e y^2 + 3 a b c e y^2 - |
| 53 | * 3 a^2 d e y^2 + a b^2 f y^2 - 2 a^2 c f y^2 - a^2 b g y^2 + |
| 54 | * 3 a^3 h y^2 + 3 a^2 e x y^2 - a^3 y^3 |
| 55 | */ |
| 56 | |
| 57 | enum { |
| 58 | xxx_coeff, |
| 59 | xxy_coeff, |
| 60 | xyy_coeff, |
| 61 | yyy_coeff, |
| 62 | xx_coeff, |
| 63 | xy_coeff, |
| 64 | yy_coeff, |
| 65 | x_coeff, |
| 66 | y_coeff, |
| 67 | c_coeff, |
| 68 | coeff_count |
| 69 | }; |
| 70 | |
| 71 | // FIXME: factoring version unwritten |
| 72 | // static bool straight_forward = true; |
| 73 | |
| 74 | /* from CubicParameterizationCode.cpp output: |
| 75 | * double A = e * e * e; |
| 76 | * double B = -3 * a * e * e; |
| 77 | * double C = 3 * a * a * e; |
| 78 | * double D = -a * a * a; |
| 79 | */ |
| 80 | static void calc_ABCD(double a, double e, double p[coeff_count]) { |
| 81 | double ee = e * e; |
| 82 | p[xxx_coeff] = e * ee; |
| 83 | p[xxy_coeff] = -3 * a * ee; |
| 84 | double aa = a * a; |
| 85 | p[xyy_coeff] = 3 * aa * e; |
| 86 | p[yyy_coeff] = -aa * a; |
| 87 | } |
| 88 | |
| 89 | /* CubicParameterizationCode.cpp turns Mathematica output into C. |
| 90 | * Rather than edit the lines below, please edit the code there instead. |
| 91 | */ |
| 92 | // start of generated code |
| 93 | static double calc_E(double a, double b, double c, double d, |
| 94 | double e, double f, double g, double h) { |
| 95 | return |
| 96 | -3 * d * e * e * e |
| 97 | + c * e * e * f |
| 98 | - b * e * f * f |
| 99 | + a * f * f * f |
| 100 | + 2 * b * e * e * g |
| 101 | - 3 * a * e * f * g |
| 102 | + 3 * a * e * e * h; |
| 103 | } |
| 104 | |
| 105 | static double calc_F(double a, double b, double c, double d, |
| 106 | double e, double f, double g, double h) { |
| 107 | return |
| 108 | -3 * b * c * e * e |
| 109 | + 6 * a * d * e * e |
| 110 | + 2 * b * b * e * f |
| 111 | + a * c * e * f |
| 112 | - 2 * a * b * f * f |
| 113 | - a * b * e * g |
| 114 | + 3 * a * a * f * g |
| 115 | - 6 * a * a * e * h; |
| 116 | } |
| 117 | |
| 118 | static double calc_G(double a, double b, double c, double d, |
| 119 | double e, double f, double g, double h) { |
| 120 | return |
| 121 | -b * b * b * e |
| 122 | + 3 * a * b * c * e |
| 123 | - 3 * a * a * d * e |
| 124 | + a * b * b * f |
| 125 | - 2 * a * a * c * f |
| 126 | - a * a * b * g |
| 127 | + 3 * a * a * a * h; |
| 128 | } |
| 129 | |
| 130 | static double calc_H(double a, double b, double c, double d, |
| 131 | double e, double f, double g, double h) { |
| 132 | return |
| 133 | 3 * d * d * e * e * e |
| 134 | - 2 * c * d * e * e * f |
| 135 | + 2 * b * d * e * f * f |
| 136 | - 2 * a * d * f * f * f |
| 137 | + c * c * e * e * g |
| 138 | - 4 * b * d * e * e * g |
| 139 | - b * c * e * f * g |
| 140 | + 6 * a * d * e * f * g |
| 141 | + a * c * f * f * g |
| 142 | + b * b * e * g * g |
| 143 | - 2 * a * c * e * g * g |
| 144 | - a * b * f * g * g |
| 145 | + a * a * g * g * g |
| 146 | + 3 * b * c * e * e * h |
| 147 | - 6 * a * d * e * e * h |
| 148 | - 2 * b * b * e * f * h |
| 149 | - a * c * e * f * h |
| 150 | + 2 * a * b * f * f * h |
| 151 | + a * b * e * g * h |
| 152 | - 3 * a * a * f * g * h |
| 153 | + 3 * a * a * e * h * h; |
| 154 | } |
| 155 | |
| 156 | static double calc_I(double a, double b, double c, double d, |
| 157 | double e, double f, double g, double h) { |
| 158 | return |
| 159 | -c * c * c * e * e |
| 160 | + 3 * b * c * d * e * e |
| 161 | - 3 * a * d * d * e * e |
| 162 | + b * c * c * e * f |
| 163 | - 2 * b * b * d * e * f |
| 164 | - a * c * d * e * f |
| 165 | - a * c * c * f * f |
| 166 | + 2 * a * b * d * f * f |
| 167 | - b * b * c * e * g |
| 168 | + 2 * a * c * c * e * g |
| 169 | + a * b * d * e * g |
| 170 | + a * b * c * f * g |
| 171 | - 3 * a * a * d * f * g |
| 172 | - a * a * c * g * g |
| 173 | + 2 * b * b * b * e * h |
| 174 | - 6 * a * b * c * e * h |
| 175 | + 6 * a * a * d * e * h |
| 176 | - 2 * a * b * b * f * h |
| 177 | + 4 * a * a * c * f * h |
| 178 | + 2 * a * a * b * g * h |
| 179 | - 3 * a * a * a * h * h; |
| 180 | } |
| 181 | |
| 182 | static double calc_J(double a, double b, double c, double d, |
| 183 | double e, double f, double g, double h) { |
| 184 | return |
| 185 | -d * d * d * e * e * e |
| 186 | + c * d * d * e * e * f |
| 187 | - b * d * d * e * f * f |
| 188 | + a * d * d * f * f * f |
| 189 | - c * c * d * e * e * g |
| 190 | + 2 * b * d * d * e * e * g |
| 191 | + b * c * d * e * f * g |
| 192 | - 3 * a * d * d * e * f * g |
| 193 | - a * c * d * f * f * g |
| 194 | - b * b * d * e * g * g |
| 195 | + 2 * a * c * d * e * g * g |
| 196 | + a * b * d * f * g * g |
| 197 | - a * a * d * g * g * g |
| 198 | + c * c * c * e * e * h |
| 199 | - 3 * b * c * d * e * e * h |
| 200 | + 3 * a * d * d * e * e * h |
| 201 | - b * c * c * e * f * h |
| 202 | + 2 * b * b * d * e * f * h |
| 203 | + a * c * d * e * f * h |
| 204 | + a * c * c * f * f * h |
| 205 | - 2 * a * b * d * f * f * h |
| 206 | + b * b * c * e * g * h |
| 207 | - 2 * a * c * c * e * g * h |
| 208 | - a * b * d * e * g * h |
| 209 | - a * b * c * f * g * h |
| 210 | + 3 * a * a * d * f * g * h |
| 211 | + a * a * c * g * g * h |
| 212 | - b * b * b * e * h * h |
| 213 | + 3 * a * b * c * e * h * h |
| 214 | - 3 * a * a * d * e * h * h |
| 215 | + a * b * b * f * h * h |
| 216 | - 2 * a * a * c * f * h * h |
| 217 | - a * a * b * g * h * h |
| 218 | + a * a * a * h * h * h; |
| 219 | } |
| 220 | // end of generated code |
| 221 | |
| 222 | static double (*calc_proc[])(double a, double b, double c, double d, |
| 223 | double e, double f, double g, double h) = { |
| 224 | calc_E, calc_F, calc_G, calc_H, calc_I, calc_J |
| 225 | }; |
| 226 | |
| 227 | /* Control points to parametric coefficients |
| 228 | s = 1 - t |
| 229 | Attt + 3Btt2 + 3Ctss + Dsss == |
| 230 | Attt + 3B(1 - t)tt + 3C(1 - t)(t - tt) + D(1 - t)(1 - 2t + tt) == |
| 231 | Attt + 3B(tt - ttt) + 3C(t - tt - tt + ttt) + D(1-2t+tt-t+2tt-ttt) == |
| 232 | Attt + 3Btt - 3Bttt + 3Ct - 6Ctt + 3Cttt + D - 3Dt + 3Dtt - Dttt == |
| 233 | D + (3C - 3D)t + (3B - 6C + 3D)tt + (A - 3B + 3C - D)ttt |
| 234 | a = A - 3*B + 3*C - D |
| 235 | b = 3*B - 6*C + 3*D |
| 236 | c = 3*C - 3*D |
| 237 | d = D |
| 238 | */ |
| 239 | static void set_abcd(const double* cubic, double& a, double& b, double& c, |
| 240 | double& d) { |
| 241 | a = cubic[0]; // a = A |
| 242 | b = 3 * cubic[2]; // b = 3*B (compute rest of b lazily) |
| 243 | c = 3 * cubic[4]; // c = 3*C (compute rest of c lazily) |
| 244 | d = cubic[6]; // d = D |
| 245 | a += -b + c - d; // a = A - 3*B + 3*C - D |
| 246 | } |
| 247 | |
| 248 | static void calc_bc(const double d, double& b, double& c) { |
| 249 | b -= 3 * c; // b = 3*B - 3*C |
| 250 | c -= 3 * d; // c = 3*C - 3*D |
| 251 | b -= c; // b = 3*B - 6*C + 3*D |
| 252 | } |
| 253 | |
| 254 | bool implicit_matches(const Cubic& one, const Cubic& two) { |
| 255 | double p1[coeff_count]; // a'xxx , b'xxy , c'xyy , d'xx , e'xy , f'yy, etc. |
| 256 | double p2[coeff_count]; |
| 257 | double a1, b1, c1, d1; |
| 258 | set_abcd(&one[0].x, a1, b1, c1, d1); |
| 259 | double e1, f1, g1, h1; |
| 260 | set_abcd(&one[0].y, e1, f1, g1, h1); |
| 261 | calc_ABCD(a1, e1, p1); |
| 262 | double a2, b2, c2, d2; |
| 263 | set_abcd(&two[0].x, a2, b2, c2, d2); |
| 264 | double e2, f2, g2, h2; |
| 265 | set_abcd(&two[0].y, e2, f2, g2, h2); |
| 266 | calc_ABCD(a2, e2, p2); |
| 267 | int first = 0; |
| 268 | for (int index = 0; index < coeff_count; ++index) { |
| 269 | if (index == xx_coeff) { |
| 270 | calc_bc(d1, b1, c1); |
| 271 | calc_bc(h1, f1, g1); |
| 272 | calc_bc(d2, b2, c2); |
| 273 | calc_bc(h2, f2, g2); |
| 274 | } |
| 275 | if (index >= xx_coeff) { |
| 276 | int procIndex = index - xx_coeff; |
| 277 | p1[index] = (*calc_proc[procIndex])(a1, b1, c1, d1, e1, f1, g1, h1); |
| 278 | p2[index] = (*calc_proc[procIndex])(a2, b2, c2, d2, e2, f2, g2, h2); |
| 279 | } |
| 280 | if (approximately_zero(p1[index]) || approximately_zero(p2[index])) { |
| 281 | first += first == index; |
| 282 | continue; |
| 283 | } |
| 284 | if (first == index) { |
| 285 | continue; |
| 286 | } |
| 287 | if (!approximately_equal(p1[index] * p2[first], |
| 288 | p1[first] * p2[index])) { |
| 289 | return false; |
| 290 | } |
| 291 | } |
| 292 | return true; |
| 293 | } |
| 294 | |
| 295 | static double tangent(const double* cubic, double t) { |
| 296 | double a, b, c, d; |
| 297 | set_abcd(cubic, a, b, c, d); |
| 298 | calc_bc(d, b, c); |
| 299 | return 3 * a * t * t + 2 * b * t + c; |
| 300 | } |
| 301 | |
| 302 | void tangent(const Cubic& cubic, double t, _Point& result) { |
| 303 | result.x = tangent(&cubic[0].x, t); |
| 304 | result.y = tangent(&cubic[0].y, t); |
| 305 | } |
| 306 | |