reed@google.com | ac10a2d | 2010-12-22 21:39:39 +0000 | [diff] [blame^] | 1 | /* |
| 2 | Copyright 2010 Google Inc. |
| 3 | |
| 4 | Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | you may not use this file except in compliance with the License. |
| 6 | You may obtain a copy of the License at |
| 7 | |
| 8 | http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | |
| 10 | Unless required by applicable law or agreed to in writing, software |
| 11 | distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | See the License for the specific language governing permissions and |
| 14 | limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | |
| 18 | #ifndef GrTArray_DEFINED |
| 19 | #define GrTArray_DEFINED |
| 20 | |
| 21 | #include <new> |
| 22 | #include "GrTypes.h" |
| 23 | |
| 24 | // TODO: convert from uint32_t to int. |
| 25 | |
| 26 | // DATA_TYPE indicates that T has a trivial cons, destructor |
| 27 | // and can be shallow-copied |
| 28 | template <typename T, bool DATA_TYPE = false> class GrTArray { |
| 29 | public: |
| 30 | GrTArray() { |
| 31 | fCount = 0; |
| 32 | fReserveCount = MIN_ALLOC_COUNT; |
| 33 | fAllocCount = 0; |
| 34 | fMemArray = NULL; |
| 35 | fPreAllocMemArray = NULL; |
| 36 | } |
| 37 | |
| 38 | GrTArray(uint32_t reserveCount) { |
| 39 | fCount = 0; |
| 40 | fReserveCount = GrMax(reserveCount, (uint32_t)MIN_ALLOC_COUNT); |
| 41 | fAllocCount = fReserveCount; |
| 42 | fMemArray = GrMalloc(sizeof(T) * fReserveCount); |
| 43 | fPreAllocMemArray = NULL; |
| 44 | } |
| 45 | |
| 46 | GrTArray(void* preAllocStorage, uint32_t preAllocCount) { |
| 47 | // we allow NULL,0 args and revert to the default cons. behavior |
| 48 | // this makes it possible for a owner-object to use same constructor |
| 49 | // to get either prealloc or nonprealloc behavior based using same line |
| 50 | GrAssert((NULL == preAllocStorage) == !preAllocCount); |
| 51 | |
| 52 | fCount = 0; |
| 53 | fReserveCount = preAllocCount > 0 ? preAllocCount : |
| 54 | MIN_ALLOC_COUNT; |
| 55 | fAllocCount = preAllocCount; |
| 56 | fMemArray = preAllocStorage; |
| 57 | fPreAllocMemArray = preAllocStorage; |
| 58 | } |
| 59 | |
| 60 | GrTArray(const GrTArray& array) { |
| 61 | fCount = array.count(); |
| 62 | fReserveCount = MIN_ALLOC_COUNT; |
| 63 | fAllocCount = GrMax(fReserveCount, fCount); |
| 64 | fMemArray = GrMalloc(sizeof(T) * fAllocCount); |
| 65 | fPreAllocMemArray = NULL; |
| 66 | if (DATA_TYPE) { |
| 67 | memcpy(fMemArray, array.fMemArray, sizeof(T) * fCount); |
| 68 | } else { |
| 69 | for (uint32_t i = 0; i < fCount; ++i) { |
| 70 | new (fItemArray + i) T(array[i]); |
| 71 | } |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | GrTArray(const T* array, uint32_t count) { |
| 76 | fCount = count; |
| 77 | fReserveCount = MIN_ALLOC_COUNT; |
| 78 | fAllocCount = GrMax(fReserveCount, fCount); |
| 79 | fMemArray = GrMalloc(sizeof(T) * fAllocCount); |
| 80 | fPreAllocMemArray = NULL; |
| 81 | if (DATA_TYPE) { |
| 82 | memcpy(fMemArray, array, sizeof(T) * fCount); |
| 83 | } else { |
| 84 | for (uint32_t i = 0; i < fCount; ++i) { |
| 85 | new (fItemArray + i) T(array[i]); |
| 86 | } |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | GrTArray(const GrTArray& array, |
| 91 | void* preAllocStorage, uint32_t preAllocCount) { |
| 92 | |
| 93 | // for same reason as non-copying cons we allow NULL, 0 for prealloc |
| 94 | GrAssert((NULL == preAllocStorage) == !preAllocCount); |
| 95 | |
| 96 | fCount = array.count(); |
| 97 | fReserveCount = preAllocCount > 0 ? preAllocCount : |
| 98 | MIN_ALLOC_COUNT; |
| 99 | fPreAllocMemArray = preAllocStorage; |
| 100 | |
| 101 | if (fReserveCount >= fCount && preAllocCount) { |
| 102 | fAllocCount = fReserveCount; |
| 103 | fMemArray = preAllocStorage; |
| 104 | } else { |
| 105 | fAllocCount = GrMax(fCount, fReserveCount); |
| 106 | fMemArray = GrMalloc(fAllocCount * sizeof(T)); |
| 107 | } |
| 108 | |
| 109 | if (DATA_TYPE) { |
| 110 | memcpy(fMemArray, array.fMemArray, sizeof(T) * fCount); |
| 111 | } else { |
| 112 | for (uint32_t i = 0; i < fCount; ++i) { |
| 113 | new (fItemArray + i) T(array[i]); |
| 114 | } |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | GrTArray(const T* array, uint32_t count, |
| 119 | void* preAllocStorage, uint32_t preAllocCount) { |
| 120 | |
| 121 | // for same reason as non-copying cons we allow NULL, 0 for prealloc |
| 122 | GrAssert((NULL == preAllocStorage) == !preAllocCount); |
| 123 | |
| 124 | fCount = count; |
| 125 | fReserveCount = (preAllocCount > 0) ? preAllocCount : |
| 126 | MIN_ALLOC_COUNT; |
| 127 | fPreAllocMemArray = preAllocStorage; |
| 128 | |
| 129 | if (fReserveCount >= fCount && preAllocCount) { |
| 130 | fAllocCount = fReserveCount; |
| 131 | fMemArray = preAllocStorage; |
| 132 | } else { |
| 133 | fAllocCount = GrMax(fCount, fReserveCount); |
| 134 | fMemArray = GrMalloc(fAllocCount * sizeof(T)); |
| 135 | } |
| 136 | |
| 137 | if (DATA_TYPE) { |
| 138 | memcpy(fMemArray, array, sizeof(T) * fCount); |
| 139 | } else { |
| 140 | for (uint32_t i = 0; i < fCount; ++i) { |
| 141 | new (fItemArray + i) T(array[i]); |
| 142 | } |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | GrTArray& operator =(const GrTArray& array) { |
| 147 | for (uint32_t i = 0; i < fCount; ++i) { |
| 148 | fItemArray[i].~T(); |
| 149 | } |
| 150 | fCount = 0; |
| 151 | checkRealloc((int)array.count()); |
| 152 | fCount = array.count(); |
| 153 | if (DATA_TYPE) { |
| 154 | memcpy(fMemArray, array.fMemArray, sizeof(T) * fCount); |
| 155 | } else { |
| 156 | for (uint32_t i = 0; i < fCount; ++i) { |
| 157 | new (fItemArray + i) T(array[i]); |
| 158 | } |
| 159 | } |
| 160 | return *this; |
| 161 | } |
| 162 | |
| 163 | ~GrTArray() { |
| 164 | for (uint32_t i = 0; i < fCount; ++i) { |
| 165 | fItemArray[i].~T(); |
| 166 | } |
| 167 | if (fMemArray != fPreAllocMemArray) { |
| 168 | GrFree(fMemArray); |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | uint32_t count() const { return fCount; } |
| 173 | |
| 174 | bool empty() const { return !fCount; } |
| 175 | |
| 176 | T& push_back() { |
| 177 | checkRealloc(1); |
| 178 | new ((char*)fMemArray+sizeof(T)*fCount) T; |
| 179 | ++fCount; |
| 180 | return fItemArray[fCount-1]; |
| 181 | } |
| 182 | |
| 183 | void push_back_n(uint32_t n) { |
| 184 | checkRealloc(n); |
| 185 | for (uint32_t i = 0; i < n; ++i) { |
| 186 | new (fItemArray + fCount + i) T; |
| 187 | } |
| 188 | fCount += n; |
| 189 | } |
| 190 | |
| 191 | void pop_back() { |
| 192 | GrAssert(0 != fCount); |
| 193 | --fCount; |
| 194 | fItemArray[fCount].~T(); |
| 195 | checkRealloc(0); |
| 196 | } |
| 197 | |
| 198 | void pop_back_n(uint32_t n) { |
| 199 | GrAssert(fCount >= n); |
| 200 | fCount -= n; |
| 201 | for (uint32_t i = 0; i < n; ++i) { |
| 202 | fItemArray[i].~T(); |
| 203 | } |
| 204 | checkRealloc(0); |
| 205 | } |
| 206 | |
| 207 | // pushes or pops from the back to resize |
| 208 | void resize_back(uint32_t newCount) { |
| 209 | if (newCount > fCount) { |
| 210 | push_back_n(newCount - fCount); |
| 211 | } else if (newCount < fCount) { |
| 212 | pop_back_n(fCount - newCount); |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | T& operator[] (uint32_t i) { |
| 217 | GrAssert(i < fCount); |
| 218 | return fItemArray[i]; |
| 219 | } |
| 220 | |
| 221 | const T& operator[] (uint32_t i) const { |
| 222 | GrAssert(i < fCount); |
| 223 | return fItemArray[i]; |
| 224 | } |
| 225 | |
| 226 | T& front() { GrAssert(fCount); return fItemArray[0];} |
| 227 | |
| 228 | const T& front() const { GrAssert(fCount); return fItemArray[0];} |
| 229 | |
| 230 | T& back() { GrAssert(fCount); return fItemArray[fCount - 1];} |
| 231 | |
| 232 | const T& back() const { GrAssert(fCount); return fItemArray[fCount - 1];} |
| 233 | |
| 234 | T& fromBack(uint32_t i) { |
| 235 | GrAssert(i < fCount); |
| 236 | return fItemArray[fCount - i - 1]; |
| 237 | } |
| 238 | |
| 239 | const T& fromBack(uint32_t i) const { |
| 240 | GrAssert(i < fCount); |
| 241 | return fItemArray[fCount - i - 1]; |
| 242 | } |
| 243 | |
| 244 | private: |
| 245 | static const uint32_t MIN_ALLOC_COUNT = 8; |
| 246 | |
| 247 | inline void checkRealloc(int32_t delta) { |
| 248 | GrAssert(-delta <= (int32_t)fCount); |
| 249 | |
| 250 | uint32_t newCount = fCount + delta; |
| 251 | uint32_t fNewAllocCount = fAllocCount; |
| 252 | |
| 253 | if (newCount > fAllocCount) { |
| 254 | fNewAllocCount = GrMax(newCount + ((newCount + 1) >> 1), |
| 255 | fReserveCount); |
| 256 | } else if (newCount < fAllocCount / 3) { |
| 257 | fNewAllocCount = GrMax(fAllocCount / 2, fReserveCount); |
| 258 | } |
| 259 | |
| 260 | if (fNewAllocCount != fAllocCount) { |
| 261 | |
| 262 | fAllocCount = fNewAllocCount; |
| 263 | char* fNewMemArray; |
| 264 | |
| 265 | if (fAllocCount == fReserveCount && NULL != fPreAllocMemArray) { |
| 266 | fNewMemArray = (char*) fPreAllocMemArray; |
| 267 | } else { |
| 268 | fNewMemArray = (char*) GrMalloc(fAllocCount*sizeof(T)); |
| 269 | } |
| 270 | |
| 271 | if (DATA_TYPE) { |
| 272 | memcpy(fNewMemArray, fMemArray, fCount * sizeof(T)); |
| 273 | } else { |
| 274 | for (uint32_t i = 0; i < fCount; ++i) { |
| 275 | new (fNewMemArray + sizeof(T) * i) T(fItemArray[i]); |
| 276 | fItemArray[i].~T(); |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | if (fMemArray != fPreAllocMemArray) { |
| 281 | GrFree(fMemArray); |
| 282 | } |
| 283 | fMemArray = fNewMemArray; |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | uint32_t fReserveCount; |
| 288 | uint32_t fCount; |
| 289 | uint32_t fAllocCount; |
| 290 | void* fPreAllocMemArray; |
| 291 | union { |
| 292 | T* fItemArray; |
| 293 | void* fMemArray; |
| 294 | }; |
| 295 | }; |
| 296 | |
| 297 | #endif |
| 298 | |