blob: 60672757c10d7bb6b3019e73dc23b070351638ee [file] [log] [blame]
caryclark@google.comc6825902012-02-03 22:07:47 +00001#include "CurveIntersection.h"
caryclark@google.com639df892012-01-10 21:46:10 +00002#include "Intersections.h"
3#include "IntersectionUtilities.h"
4#include "LineIntersection.h"
5
6class QuadraticIntersections : public Intersections {
7public:
8
rmistry@google.comd6176b02012-08-23 18:14:13 +00009QuadraticIntersections(const Quadratic& q1, const Quadratic& q2, Intersections& i)
caryclark@google.com639df892012-01-10 21:46:10 +000010 : quad1(q1)
11 , quad2(q2)
12 , intersections(i)
rmistry@google.comd6176b02012-08-23 18:14:13 +000013 , depth(0)
caryclark@google.com639df892012-01-10 21:46:10 +000014 , splits(0) {
15}
16
17bool intersect() {
18 double minT1, minT2, maxT1, maxT2;
19 if (!bezier_clip(quad2, quad1, minT1, maxT1)) {
20 return false;
21 }
22 if (!bezier_clip(quad1, quad2, minT2, maxT2)) {
23 return false;
24 }
25 int split;
26 if (maxT1 - minT1 < maxT2 - minT2) {
27 intersections.swap();
28 minT2 = 0;
29 maxT2 = 1;
30 split = maxT1 - minT1 > tClipLimit;
31 } else {
32 minT1 = 0;
33 maxT1 = 1;
34 split = (maxT2 - minT2 > tClipLimit) << 1;
35 }
36 return chop(minT1, maxT1, minT2, maxT2, split);
37}
38
39protected:
rmistry@google.comd6176b02012-08-23 18:14:13 +000040
caryclark@google.com639df892012-01-10 21:46:10 +000041bool intersect(double minT1, double maxT1, double minT2, double maxT2) {
42 Quadratic smaller, larger;
rmistry@google.comd6176b02012-08-23 18:14:13 +000043 // FIXME: carry last subdivide and reduceOrder result with quad
caryclark@google.com639df892012-01-10 21:46:10 +000044 sub_divide(quad1, minT1, maxT1, intersections.swapped() ? larger : smaller);
45 sub_divide(quad2, minT2, maxT2, intersections.swapped() ? smaller : larger);
46 Quadratic smallResult;
47 if (reduceOrder(smaller, smallResult) <= 2) {
48 Quadratic largeResult;
49 if (reduceOrder(larger, largeResult) <= 2) {
caryclark@google.comc6825902012-02-03 22:07:47 +000050 double smallT[2], largeT[2];
caryclark@google.com639df892012-01-10 21:46:10 +000051 const _Line& smallLine = (const _Line&) smallResult;
52 const _Line& largeLine = (const _Line&) largeResult;
caryclark@google.comc6825902012-02-03 22:07:47 +000053 // FIXME: this doesn't detect or deal with coincident lines
54 if (!::intersect(smallLine, largeLine, smallT, largeT)) {
caryclark@google.com639df892012-01-10 21:46:10 +000055 return false;
56 }
caryclark@google.com639df892012-01-10 21:46:10 +000057 if (intersections.swapped()) {
rmistry@google.comd6176b02012-08-23 18:14:13 +000058 smallT[0] = interp(minT2, maxT2, smallT[0]);
59 largeT[0] = interp(minT1, maxT1, largeT[0]);
caryclark@google.com639df892012-01-10 21:46:10 +000060 } else {
rmistry@google.comd6176b02012-08-23 18:14:13 +000061 smallT[0] = interp(minT1, maxT1, smallT[0]);
62 largeT[0] = interp(minT2, maxT2, largeT[0]);
caryclark@google.com639df892012-01-10 21:46:10 +000063 }
caryclark@google.comc6825902012-02-03 22:07:47 +000064 intersections.add(smallT[0], largeT[0]);
caryclark@google.com639df892012-01-10 21:46:10 +000065 return true;
66 }
67 }
68 double minT, maxT;
69 if (!bezier_clip(smaller, larger, minT, maxT)) {
70 if (minT == maxT) {
71 if (intersections.swapped()) {
72 minT1 = (minT1 + maxT1) / 2;
73 minT2 = interp(minT2, maxT2, minT);
74 } else {
75 minT1 = interp(minT1, maxT1, minT);
76 minT2 = (minT2 + maxT2) / 2;
77 }
78 intersections.add(minT1, minT2);
79 return true;
80 }
81 return false;
82 }
rmistry@google.comd6176b02012-08-23 18:14:13 +000083
caryclark@google.com639df892012-01-10 21:46:10 +000084 int split;
85 if (intersections.swapped()) {
86 double newMinT1 = interp(minT1, maxT1, minT);
87 double newMaxT1 = interp(minT1, maxT1, maxT);
88 split = (newMaxT1 - newMinT1 > (maxT1 - minT1) * tClipLimit) << 1;
caryclark@google.com198e0542012-03-30 18:47:02 +000089#define VERBOSE 0
90#if VERBOSE
caryclark@google.com639df892012-01-10 21:46:10 +000091 printf("%s d=%d s=%d new1=(%g,%g) old1=(%g,%g) split=%d\n", __FUNCTION__, depth,
92 splits, newMinT1, newMaxT1, minT1, maxT1, split);
caryclark@google.com198e0542012-03-30 18:47:02 +000093#endif
caryclark@google.com639df892012-01-10 21:46:10 +000094 minT1 = newMinT1;
95 maxT1 = newMaxT1;
96 } else {
97 double newMinT2 = interp(minT2, maxT2, minT);
98 double newMaxT2 = interp(minT2, maxT2, maxT);
99 split = newMaxT2 - newMinT2 > (maxT2 - minT2) * tClipLimit;
caryclark@google.com198e0542012-03-30 18:47:02 +0000100#if VERBOSE
caryclark@google.com639df892012-01-10 21:46:10 +0000101 printf("%s d=%d s=%d new2=(%g,%g) old2=(%g,%g) split=%d\n", __FUNCTION__, depth,
102 splits, newMinT2, newMaxT2, minT2, maxT2, split);
caryclark@google.com198e0542012-03-30 18:47:02 +0000103#endif
caryclark@google.com639df892012-01-10 21:46:10 +0000104 minT2 = newMinT2;
105 maxT2 = newMaxT2;
106 }
107 return chop(minT1, maxT1, minT2, maxT2, split);
108}
109
110bool chop(double minT1, double maxT1, double minT2, double maxT2, int split) {
111 ++depth;
112 intersections.swap();
113 if (split) {
114 ++splits;
115 if (split & 2) {
116 double middle1 = (maxT1 + minT1) / 2;
117 intersect(minT1, middle1, minT2, maxT2);
118 intersect(middle1, maxT1, minT2, maxT2);
119 } else {
120 double middle2 = (maxT2 + minT2) / 2;
121 intersect(minT1, maxT1, minT2, middle2);
122 intersect(minT1, maxT1, middle2, maxT2);
123 }
124 --splits;
125 intersections.swap();
126 --depth;
127 return intersections.intersected();
128 }
129 bool result = intersect(minT1, maxT1, minT2, maxT2);
130 intersections.swap();
131 --depth;
132 return result;
133}
134
135private:
136
137static const double tClipLimit = 0.8; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf see Multiple intersections
138const Quadratic& quad1;
139const Quadratic& quad2;
140Intersections& intersections;
141int depth;
142int splits;
143};
144
caryclark@google.comc6825902012-02-03 22:07:47 +0000145bool intersect(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000146 if (implicit_matches(q1, q2)) {
147 // FIXME: compute T values
148 // compute the intersections of the ends to find the coincident span
149 bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y);
150 double t;
151 if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) {
152 i.fT[0][0] = t;
153 i.fT[1][0] = 0;
154 i.fUsed++;
155 }
156 if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) {
157 i.fT[0][i.fUsed] = t;
158 i.fT[1][i.fUsed] = 1;
159 i.fUsed++;
160 }
161 useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y);
162 if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) {
163 i.fT[0][i.fUsed] = 0;
164 i.fT[1][i.fUsed] = t;
165 i.fUsed++;
166 }
167 if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) {
168 i.fT[0][i.fUsed] = 1;
169 i.fT[1][i.fUsed] = t;
170 i.fUsed++;
171 }
172 assert(i.fUsed <= 2);
173 return i.fUsed > 0;
174 }
caryclark@google.com639df892012-01-10 21:46:10 +0000175 QuadraticIntersections q(q1, q2, i);
176 return q.intersect();
177}
178
179
180// Another approach is to start with the implicit form of one curve and solve
181// by substituting in the parametric form of the other.
182// The downside of this approach is that early rejects are difficult to come by.
183// http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step
184/*
185given x^4 + ax^3 + bx^2 + cx + d
186the resolvent cubic is x^3 - 2bx^2 + (b^2 + ac - 4d)x + (c^2 + a^2d - abc)
187use the cubic formula (CubicRoots.cpp) to find the radical expressions t1, t2, and t3.
188
189(x - r1 r2) (x - r3 r4) = x^2 - (t2 + t3 - t1) / 2 x + d
190s = r1*r2 = ((t2 + t3 - t1) + sqrt((t2 + t3 - t1)^2 - 16*d)) / 4
191t = r3*r4 = ((t2 + t3 - t1) - sqrt((t2 + t3 - t1)^2 - 16*d)) / 4
192
193u = r1+r2 = (-a + sqrt(a^2 - 4*t1)) / 2
194v = r3+r4 = (-a - sqrt(a^2 - 4*t1)) / 2
195
196r1 = (u + sqrt(u^2 - 4*s)) / 2
197r2 = (u - sqrt(u^2 - 4*s)) / 2
198r3 = (v + sqrt(v^2 - 4*t)) / 2
199r4 = (v - sqrt(v^2 - 4*t)) / 2
200*/
201
202
203/* square root of complex number
204http://en.wikipedia.org/wiki/Square_root#Square_roots_of_negative_and_complex_numbers
205Algebraic formula
206When the number is expressed using Cartesian coordinates the following formula
207 can be used for the principal square root:[5][6]
208
209sqrt(x + iy) = sqrt((r + x) / 2) +/- i*sqrt((r - x) / 2)
210
211where the sign of the imaginary part of the root is taken to be same as the sign
212 of the imaginary part of the original number, and
rmistry@google.comd6176b02012-08-23 18:14:13 +0000213
caryclark@google.com639df892012-01-10 21:46:10 +0000214r = abs(x + iy) = sqrt(x^2 + y^2)
215
rmistry@google.comd6176b02012-08-23 18:14:13 +0000216is the absolute value or modulus of the original number. The real part of the
caryclark@google.com639df892012-01-10 21:46:10 +0000217principal value is always non-negative.
rmistry@google.comd6176b02012-08-23 18:14:13 +0000218The other square root is simply –1 times the principal square root; in other
caryclark@google.com639df892012-01-10 21:46:10 +0000219words, the two square roots of a number sum to 0.
220 */