Herb Derby | 5f7a503 | 2023-05-17 16:33:23 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2023 Google LLC |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "fuzz/Fuzz.h" |
| 9 | #include "include/private/base/SkAssert.h" |
| 10 | #include "include/private/base/SkFloatingPoint.h" |
| 11 | #include "src/base/SkCubics.h" |
| 12 | #include "src/base/SkQuads.h" |
| 13 | #include "src/base/SkUtils.h" |
| 14 | |
| 15 | #include <cmath> |
| 16 | |
| 17 | static void fuzz_quad_real_roots(double A, double B, double C) { |
| 18 | double roots[2]; |
| 19 | const int numSolutions = SkQuads::RootsReal(A, B, C, roots); |
| 20 | SkASSERT_RELEASE(numSolutions >= 0 && numSolutions <= 2); |
| 21 | for (int i = 0; i < numSolutions; i++) { |
| 22 | SkASSERT_RELEASE(std::isfinite(roots[i])); |
| 23 | // You may be tempted to add assertions that plug the provided solutions into |
| 24 | // the quadratic equation and verify that the result is zero. Be advised |
| 25 | // that the fuzzer is very good at finding float values that result in |
| 26 | // seemingly arbitrarily large errors, due to the imprecision of floating |
| 27 | // point math. Unless the input range is sufficiently small, such an |
| 28 | // effort seems fruitless. |
| 29 | } |
| 30 | if (numSolutions == 2) { |
| 31 | // Roots should not be duplicated |
| 32 | SkASSERT_RELEASE(!sk_doubles_nearly_equal_ulps(roots[0], roots[1])); |
| 33 | } |
| 34 | } |
| 35 | |
| 36 | DEF_FUZZ(QuadRoots, fuzz) { |
| 37 | double A, B, C; |
| 38 | fuzz->next(&A); |
| 39 | fuzz->next(&B); |
| 40 | fuzz->next(&C); |
| 41 | |
| 42 | // Uncomment for easy test case creation |
| 43 | // SkDebugf("A %16e (0x%lx) B %16e (0x%lx) C %16e (0x%lx)\n", |
| 44 | // A, sk_bit_cast<uint64_t>(A), B, sk_bit_cast<uint64_t>(B), |
| 45 | // C, sk_bit_cast<uint64_t>(C)); |
| 46 | |
| 47 | fuzz_quad_real_roots(A, B, C); |
| 48 | } |