|  | // | 
|  | // Copyright 2006 The Android Open Source Project | 
|  | // | 
|  | // Build resource files from raw assets. | 
|  | // | 
|  |  | 
|  | #define PNG_INTERNAL | 
|  |  | 
|  | #include "Images.h" | 
|  |  | 
|  | #include <utils/ResourceTypes.h> | 
|  | #include <utils/ByteOrder.h> | 
|  |  | 
|  | #include <png.h> | 
|  |  | 
|  | #define NOISY(x) //x | 
|  |  | 
|  | static void | 
|  | png_write_aapt_file(png_structp png_ptr, png_bytep data, png_size_t length) | 
|  | { | 
|  | status_t err = ((AaptFile*)png_ptr->io_ptr)->writeData(data, length); | 
|  | if (err != NO_ERROR) { | 
|  | png_error(png_ptr, "Write Error"); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | png_flush_aapt_file(png_structp png_ptr) | 
|  | { | 
|  | } | 
|  |  | 
|  | // This holds an image as 8bpp RGBA. | 
|  | struct image_info | 
|  | { | 
|  | image_info() : rows(NULL), is9Patch(false), allocRows(NULL) { } | 
|  | ~image_info() { | 
|  | if (rows && rows != allocRows) { | 
|  | free(rows); | 
|  | } | 
|  | if (allocRows) { | 
|  | for (int i=0; i<(int)allocHeight; i++) { | 
|  | free(allocRows[i]); | 
|  | } | 
|  | free(allocRows); | 
|  | } | 
|  | free(info9Patch.xDivs); | 
|  | free(info9Patch.yDivs); | 
|  | free(info9Patch.colors); | 
|  | } | 
|  |  | 
|  | png_uint_32 width; | 
|  | png_uint_32 height; | 
|  | png_bytepp rows; | 
|  |  | 
|  | // 9-patch info. | 
|  | bool is9Patch; | 
|  | Res_png_9patch info9Patch; | 
|  |  | 
|  | png_uint_32 allocHeight; | 
|  | png_bytepp allocRows; | 
|  | }; | 
|  |  | 
|  | static void read_png(const char* imageName, | 
|  | png_structp read_ptr, png_infop read_info, | 
|  | image_info* outImageInfo) | 
|  | { | 
|  | int color_type; | 
|  | int bit_depth, interlace_type, compression_type; | 
|  | int i; | 
|  |  | 
|  | png_read_info(read_ptr, read_info); | 
|  |  | 
|  | png_get_IHDR(read_ptr, read_info, &outImageInfo->width, | 
|  | &outImageInfo->height, &bit_depth, &color_type, | 
|  | &interlace_type, &compression_type, NULL); | 
|  |  | 
|  | //printf("Image %s:\n", imageName); | 
|  | //printf("color_type=%d, bit_depth=%d, interlace_type=%d, compression_type=%d\n", | 
|  | //       color_type, bit_depth, interlace_type, compression_type); | 
|  |  | 
|  | if (color_type == PNG_COLOR_TYPE_PALETTE) | 
|  | png_set_palette_to_rgb(read_ptr); | 
|  |  | 
|  | if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) | 
|  | png_set_gray_1_2_4_to_8(read_ptr); | 
|  |  | 
|  | if (png_get_valid(read_ptr, read_info, PNG_INFO_tRNS)) { | 
|  | //printf("Has PNG_INFO_tRNS!\n"); | 
|  | png_set_tRNS_to_alpha(read_ptr); | 
|  | } | 
|  |  | 
|  | if (bit_depth == 16) | 
|  | png_set_strip_16(read_ptr); | 
|  |  | 
|  | if ((color_type&PNG_COLOR_MASK_ALPHA) == 0) | 
|  | png_set_add_alpha(read_ptr, 0xFF, PNG_FILLER_AFTER); | 
|  |  | 
|  | if (color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_GRAY_ALPHA) | 
|  | png_set_gray_to_rgb(read_ptr); | 
|  |  | 
|  | png_read_update_info(read_ptr, read_info); | 
|  |  | 
|  | outImageInfo->rows = (png_bytepp)malloc( | 
|  | outImageInfo->height * png_sizeof(png_bytep)); | 
|  | outImageInfo->allocHeight = outImageInfo->height; | 
|  | outImageInfo->allocRows = outImageInfo->rows; | 
|  |  | 
|  | png_set_rows(read_ptr, read_info, outImageInfo->rows); | 
|  |  | 
|  | for (i = 0; i < (int)outImageInfo->height; i++) | 
|  | { | 
|  | outImageInfo->rows[i] = (png_bytep) | 
|  | malloc(png_get_rowbytes(read_ptr, read_info)); | 
|  | } | 
|  |  | 
|  | png_read_image(read_ptr, outImageInfo->rows); | 
|  |  | 
|  | png_read_end(read_ptr, read_info); | 
|  |  | 
|  | NOISY(printf("Image %s: w=%d, h=%d, d=%d, colors=%d, inter=%d, comp=%d\n", | 
|  | imageName, | 
|  | (int)outImageInfo->width, (int)outImageInfo->height, | 
|  | bit_depth, color_type, | 
|  | interlace_type, compression_type)); | 
|  |  | 
|  | png_get_IHDR(read_ptr, read_info, &outImageInfo->width, | 
|  | &outImageInfo->height, &bit_depth, &color_type, | 
|  | &interlace_type, &compression_type, NULL); | 
|  | } | 
|  |  | 
|  | static bool is_tick(png_bytep p, bool transparent, const char** outError) | 
|  | { | 
|  | if (transparent) { | 
|  | if (p[3] == 0) { | 
|  | return false; | 
|  | } | 
|  | if (p[3] != 0xff) { | 
|  | *outError = "Frame pixels must be either solid or transparent (not intermediate alphas)"; | 
|  | return false; | 
|  | } | 
|  | if (p[0] != 0 || p[1] != 0 || p[2] != 0) { | 
|  | *outError = "Ticks in transparent frame must be black"; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (p[3] != 0xFF) { | 
|  | *outError = "White frame must be a solid color (no alpha)"; | 
|  | } | 
|  | if (p[0] == 0xFF && p[1] == 0xFF && p[2] == 0xFF) { | 
|  | return false; | 
|  | } | 
|  | if (p[0] != 0 || p[1] != 0 || p[2] != 0) { | 
|  | *outError = "Ticks in white frame must be black"; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | TICK_START, | 
|  | TICK_INSIDE_1, | 
|  | TICK_OUTSIDE_1 | 
|  | }; | 
|  |  | 
|  | static status_t get_horizontal_ticks( | 
|  | png_bytep row, int width, bool transparent, bool required, | 
|  | int32_t* outLeft, int32_t* outRight, const char** outError, | 
|  | uint8_t* outDivs, bool multipleAllowed) | 
|  | { | 
|  | int i; | 
|  | *outLeft = *outRight = -1; | 
|  | int state = TICK_START; | 
|  | bool found = false; | 
|  |  | 
|  | for (i=1; i<width-1; i++) { | 
|  | if (is_tick(row+i*4, transparent, outError)) { | 
|  | if (state == TICK_START || | 
|  | (state == TICK_OUTSIDE_1 && multipleAllowed)) { | 
|  | *outLeft = i-1; | 
|  | *outRight = width-2; | 
|  | found = true; | 
|  | if (outDivs != NULL) { | 
|  | *outDivs += 2; | 
|  | } | 
|  | state = TICK_INSIDE_1; | 
|  | } else if (state == TICK_OUTSIDE_1) { | 
|  | *outError = "Can't have more than one marked region along edge"; | 
|  | *outLeft = i; | 
|  | return UNKNOWN_ERROR; | 
|  | } | 
|  | } else if (*outError == NULL) { | 
|  | if (state == TICK_INSIDE_1) { | 
|  | // We're done with this div.  Move on to the next. | 
|  | *outRight = i-1; | 
|  | outRight += 2; | 
|  | outLeft += 2; | 
|  | state = TICK_OUTSIDE_1; | 
|  | } | 
|  | } else { | 
|  | *outLeft = i; | 
|  | return UNKNOWN_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (required && !found) { | 
|  | *outError = "No marked region found along edge"; | 
|  | *outLeft = -1; | 
|  | return UNKNOWN_ERROR; | 
|  | } | 
|  |  | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | static status_t get_vertical_ticks( | 
|  | png_bytepp rows, int offset, int height, bool transparent, bool required, | 
|  | int32_t* outTop, int32_t* outBottom, const char** outError, | 
|  | uint8_t* outDivs, bool multipleAllowed) | 
|  | { | 
|  | int i; | 
|  | *outTop = *outBottom = -1; | 
|  | int state = TICK_START; | 
|  | bool found = false; | 
|  |  | 
|  | for (i=1; i<height-1; i++) { | 
|  | if (is_tick(rows[i]+offset, transparent, outError)) { | 
|  | if (state == TICK_START || | 
|  | (state == TICK_OUTSIDE_1 && multipleAllowed)) { | 
|  | *outTop = i-1; | 
|  | *outBottom = height-2; | 
|  | found = true; | 
|  | if (outDivs != NULL) { | 
|  | *outDivs += 2; | 
|  | } | 
|  | state = TICK_INSIDE_1; | 
|  | } else if (state == TICK_OUTSIDE_1) { | 
|  | *outError = "Can't have more than one marked region along edge"; | 
|  | *outTop = i; | 
|  | return UNKNOWN_ERROR; | 
|  | } | 
|  | } else if (*outError == NULL) { | 
|  | if (state == TICK_INSIDE_1) { | 
|  | // We're done with this div.  Move on to the next. | 
|  | *outBottom = i-1; | 
|  | outTop += 2; | 
|  | outBottom += 2; | 
|  | state = TICK_OUTSIDE_1; | 
|  | } | 
|  | } else { | 
|  | *outTop = i; | 
|  | return UNKNOWN_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (required && !found) { | 
|  | *outError = "No marked region found along edge"; | 
|  | *outTop = -1; | 
|  | return UNKNOWN_ERROR; | 
|  | } | 
|  |  | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | static uint32_t get_color( | 
|  | png_bytepp rows, int left, int top, int right, int bottom) | 
|  | { | 
|  | png_bytep color = rows[top] + left*4; | 
|  |  | 
|  | if (left > right || top > bottom) { | 
|  | return Res_png_9patch::TRANSPARENT_COLOR; | 
|  | } | 
|  |  | 
|  | while (top <= bottom) { | 
|  | for (int i = left; i <= right; i++) { | 
|  | png_bytep p = rows[top]+i*4; | 
|  | if (color[3] == 0) { | 
|  | if (p[3] != 0) { | 
|  | return Res_png_9patch::NO_COLOR; | 
|  | } | 
|  | } else if (p[0] != color[0] || p[1] != color[1] | 
|  | || p[2] != color[2] || p[3] != color[3]) { | 
|  | return Res_png_9patch::NO_COLOR; | 
|  | } | 
|  | } | 
|  | top++; | 
|  | } | 
|  |  | 
|  | if (color[3] == 0) { | 
|  | return Res_png_9patch::TRANSPARENT_COLOR; | 
|  | } | 
|  | return (color[3]<<24) | (color[0]<<16) | (color[1]<<8) | color[2]; | 
|  | } | 
|  |  | 
|  | static void select_patch( | 
|  | int which, int front, int back, int size, int* start, int* end) | 
|  | { | 
|  | switch (which) { | 
|  | case 0: | 
|  | *start = 0; | 
|  | *end = front-1; | 
|  | break; | 
|  | case 1: | 
|  | *start = front; | 
|  | *end = back-1; | 
|  | break; | 
|  | case 2: | 
|  | *start = back; | 
|  | *end = size-1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t get_color(image_info* image, int hpatch, int vpatch) | 
|  | { | 
|  | int left, right, top, bottom; | 
|  | select_patch( | 
|  | hpatch, image->info9Patch.xDivs[0], image->info9Patch.xDivs[1], | 
|  | image->width, &left, &right); | 
|  | select_patch( | 
|  | vpatch, image->info9Patch.yDivs[0], image->info9Patch.yDivs[1], | 
|  | image->height, &top, &bottom); | 
|  | //printf("Selecting h=%d v=%d: (%d,%d)-(%d,%d)\n", | 
|  | //       hpatch, vpatch, left, top, right, bottom); | 
|  | const uint32_t c = get_color(image->rows, left, top, right, bottom); | 
|  | NOISY(printf("Color in (%d,%d)-(%d,%d): #%08x\n", left, top, right, bottom, c)); | 
|  | return c; | 
|  | } | 
|  |  | 
|  | static status_t do_9patch(const char* imageName, image_info* image) | 
|  | { | 
|  | image->is9Patch = true; | 
|  |  | 
|  | int W = image->width; | 
|  | int H = image->height; | 
|  | int i, j; | 
|  |  | 
|  | int maxSizeXDivs = W * sizeof(int32_t); | 
|  | int maxSizeYDivs = H * sizeof(int32_t); | 
|  | int32_t* xDivs = (int32_t*) malloc(maxSizeXDivs); | 
|  | int32_t* yDivs = (int32_t*) malloc(maxSizeYDivs); | 
|  | uint8_t  numXDivs = 0; | 
|  | uint8_t  numYDivs = 0; | 
|  | int8_t numColors; | 
|  | int numRows; | 
|  | int numCols; | 
|  | int top; | 
|  | int left; | 
|  | int right; | 
|  | int bottom; | 
|  | memset(xDivs, -1, maxSizeXDivs); | 
|  | memset(yDivs, -1, maxSizeYDivs); | 
|  | image->info9Patch.paddingLeft = image->info9Patch.paddingRight = | 
|  | image->info9Patch.paddingTop = image->info9Patch.paddingBottom = -1; | 
|  |  | 
|  | png_bytep p = image->rows[0]; | 
|  | bool transparent = p[3] == 0; | 
|  | bool hasColor = false; | 
|  |  | 
|  | const char* errorMsg = NULL; | 
|  | int errorPixel = -1; | 
|  | const char* errorEdge = NULL; | 
|  |  | 
|  | int colorIndex = 0; | 
|  |  | 
|  | // Validate size... | 
|  | if (W < 3 || H < 3) { | 
|  | errorMsg = "Image must be at least 3x3 (1x1 without frame) pixels"; | 
|  | goto getout; | 
|  | } | 
|  |  | 
|  | // Validate frame... | 
|  | if (!transparent && | 
|  | (p[0] != 0xFF || p[1] != 0xFF || p[2] != 0xFF || p[3] != 0xFF)) { | 
|  | errorMsg = "Must have one-pixel frame that is either transparent or white"; | 
|  | goto getout; | 
|  | } | 
|  |  | 
|  | // Find left and right of sizing areas... | 
|  | if (get_horizontal_ticks(p, W, transparent, true, &xDivs[0], | 
|  | &xDivs[1], &errorMsg, &numXDivs, true) != NO_ERROR) { | 
|  | errorPixel = xDivs[0]; | 
|  | errorEdge = "top"; | 
|  | goto getout; | 
|  | } | 
|  |  | 
|  | // Find top and bottom of sizing areas... | 
|  | if (get_vertical_ticks(image->rows, 0, H, transparent, true, &yDivs[0], | 
|  | &yDivs[1], &errorMsg, &numYDivs, true) != NO_ERROR) { | 
|  | errorPixel = yDivs[0]; | 
|  | errorEdge = "left"; | 
|  | goto getout; | 
|  | } | 
|  |  | 
|  | // Find left and right of padding area... | 
|  | if (get_horizontal_ticks(image->rows[H-1], W, transparent, false, &image->info9Patch.paddingLeft, | 
|  | &image->info9Patch.paddingRight, &errorMsg, NULL, false) != NO_ERROR) { | 
|  | errorPixel = image->info9Patch.paddingLeft; | 
|  | errorEdge = "bottom"; | 
|  | goto getout; | 
|  | } | 
|  |  | 
|  | // Find top and bottom of padding area... | 
|  | if (get_vertical_ticks(image->rows, (W-1)*4, H, transparent, false, &image->info9Patch.paddingTop, | 
|  | &image->info9Patch.paddingBottom, &errorMsg, NULL, false) != NO_ERROR) { | 
|  | errorPixel = image->info9Patch.paddingTop; | 
|  | errorEdge = "right"; | 
|  | goto getout; | 
|  | } | 
|  |  | 
|  | // Copy patch data into image | 
|  | image->info9Patch.numXDivs = numXDivs; | 
|  | image->info9Patch.numYDivs = numYDivs; | 
|  | image->info9Patch.xDivs = xDivs; | 
|  | image->info9Patch.yDivs = yDivs; | 
|  |  | 
|  | // If padding is not yet specified, take values from size. | 
|  | if (image->info9Patch.paddingLeft < 0) { | 
|  | image->info9Patch.paddingLeft = xDivs[0]; | 
|  | image->info9Patch.paddingRight = W - 2 - xDivs[1]; | 
|  | } else { | 
|  | // Adjust value to be correct! | 
|  | image->info9Patch.paddingRight = W - 2 - image->info9Patch.paddingRight; | 
|  | } | 
|  | if (image->info9Patch.paddingTop < 0) { | 
|  | image->info9Patch.paddingTop = yDivs[0]; | 
|  | image->info9Patch.paddingBottom = H - 2 - yDivs[1]; | 
|  | } else { | 
|  | // Adjust value to be correct! | 
|  | image->info9Patch.paddingBottom = H - 2 - image->info9Patch.paddingBottom; | 
|  | } | 
|  |  | 
|  | NOISY(printf("Size ticks for %s: x0=%d, x1=%d, y0=%d, y1=%d\n", imageName, | 
|  | image->info9Patch.xDivs[0], image->info9Patch.xDivs[1], | 
|  | image->info9Patch.yDivs[0], image->info9Patch.yDivs[1])); | 
|  | NOISY(printf("padding ticks for %s: l=%d, r=%d, t=%d, b=%d\n", imageName, | 
|  | image->info9Patch.paddingLeft, image->info9Patch.paddingRight, | 
|  | image->info9Patch.paddingTop, image->info9Patch.paddingBottom)); | 
|  |  | 
|  | // Remove frame from image. | 
|  | image->rows = (png_bytepp)malloc((H-2) * png_sizeof(png_bytep)); | 
|  | for (i=0; i<(H-2); i++) { | 
|  | image->rows[i] = image->allocRows[i+1]; | 
|  | memmove(image->rows[i], image->rows[i]+4, (W-2)*4); | 
|  | } | 
|  | image->width -= 2; | 
|  | W = image->width; | 
|  | image->height -= 2; | 
|  | H = image->height; | 
|  |  | 
|  | // Figure out the number of rows and columns in the N-patch | 
|  | numCols = numXDivs + 1; | 
|  | if (xDivs[0] == 0) {  // Column 1 is strechable | 
|  | numCols--; | 
|  | } | 
|  | if (xDivs[numXDivs - 1] == W) { | 
|  | numCols--; | 
|  | } | 
|  | numRows = numYDivs + 1; | 
|  | if (yDivs[0] == 0) {  // Row 1 is strechable | 
|  | numRows--; | 
|  | } | 
|  | if (yDivs[numYDivs - 1] == H) { | 
|  | numRows--; | 
|  | } | 
|  |  | 
|  | // Make sure the amount of rows and columns will fit in the number of | 
|  | // colors we can use in the 9-patch format. | 
|  | if (numRows * numCols > 0x7F) { | 
|  | errorMsg = "Too many rows and columns in 9-patch perimeter"; | 
|  | goto getout; | 
|  | } | 
|  |  | 
|  | numColors = numRows * numCols; | 
|  | image->info9Patch.numColors = numColors; | 
|  | image->info9Patch.colors = (uint32_t*)malloc(numColors * sizeof(uint32_t)); | 
|  |  | 
|  | // Fill in color information for each patch. | 
|  |  | 
|  | uint32_t c; | 
|  | top = 0; | 
|  |  | 
|  | // The first row always starts with the top being at y=0 and the bottom | 
|  | // being either yDivs[1] (if yDivs[0]=0) of yDivs[0].  In the former case | 
|  | // the first row is stretchable along the Y axis, otherwise it is fixed. | 
|  | // The last row always ends with the bottom being bitmap.height and the top | 
|  | // being either yDivs[numYDivs-2] (if yDivs[numYDivs-1]=bitmap.height) or | 
|  | // yDivs[numYDivs-1]. In the former case the last row is stretchable along | 
|  | // the Y axis, otherwise it is fixed. | 
|  | // | 
|  | // The first and last columns are similarly treated with respect to the X | 
|  | // axis. | 
|  | // | 
|  | // The above is to help explain some of the special casing that goes on the | 
|  | // code below. | 
|  |  | 
|  | // The initial yDiv and whether the first row is considered stretchable or | 
|  | // not depends on whether yDiv[0] was zero or not. | 
|  | for (j = (yDivs[0] == 0 ? 1 : 0); | 
|  | j <= numYDivs && top < H; | 
|  | j++) { | 
|  | if (j == numYDivs) { | 
|  | bottom = H; | 
|  | } else { | 
|  | bottom = yDivs[j]; | 
|  | } | 
|  | left = 0; | 
|  | // The initial xDiv and whether the first column is considered | 
|  | // stretchable or not depends on whether xDiv[0] was zero or not. | 
|  | for (i = xDivs[0] == 0 ? 1 : 0; | 
|  | i <= numXDivs && left < W; | 
|  | i++) { | 
|  | if (i == numXDivs) { | 
|  | right = W; | 
|  | } else { | 
|  | right = xDivs[i]; | 
|  | } | 
|  | c = get_color(image->rows, left, top, right - 1, bottom - 1); | 
|  | image->info9Patch.colors[colorIndex++] = c; | 
|  | NOISY(if (c != Res_png_9patch::NO_COLOR) hasColor = true); | 
|  | left = right; | 
|  | } | 
|  | top = bottom; | 
|  | } | 
|  |  | 
|  | assert(colorIndex == numColors); | 
|  |  | 
|  | for (i=0; i<numColors; i++) { | 
|  | if (hasColor) { | 
|  | if (i == 0) printf("Colors in %s:\n ", imageName); | 
|  | printf(" #%08x", image->info9Patch.colors[i]); | 
|  | if (i == numColors - 1) printf("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | image->is9Patch = true; | 
|  | image->info9Patch.deviceToFile(); | 
|  |  | 
|  | getout: | 
|  | if (errorMsg) { | 
|  | fprintf(stderr, | 
|  | "ERROR: 9-patch image %s malformed.\n" | 
|  | "       %s.\n", imageName, errorMsg); | 
|  | if (errorEdge != NULL) { | 
|  | if (errorPixel >= 0) { | 
|  | fprintf(stderr, | 
|  | "       Found at pixel #%d along %s edge.\n", errorPixel, errorEdge); | 
|  | } else { | 
|  | fprintf(stderr, | 
|  | "       Found along %s edge.\n", errorEdge); | 
|  | } | 
|  | } | 
|  | return UNKNOWN_ERROR; | 
|  | } | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | static void checkNinePatchSerialization(Res_png_9patch* inPatch,  void * data) | 
|  | { | 
|  | if (sizeof(void*) != sizeof(int32_t)) { | 
|  | // can't deserialize on a non-32 bit system | 
|  | return; | 
|  | } | 
|  | size_t patchSize = inPatch->serializedSize(); | 
|  | void * newData = malloc(patchSize); | 
|  | memcpy(newData, data, patchSize); | 
|  | Res_png_9patch* outPatch = inPatch->deserialize(newData); | 
|  | // deserialization is done in place, so outPatch == newData | 
|  | assert(outPatch == newData); | 
|  | assert(outPatch->numXDivs == inPatch->numXDivs); | 
|  | assert(outPatch->numYDivs == inPatch->numYDivs); | 
|  | assert(outPatch->paddingLeft == inPatch->paddingLeft); | 
|  | assert(outPatch->paddingRight == inPatch->paddingRight); | 
|  | assert(outPatch->paddingTop == inPatch->paddingTop); | 
|  | assert(outPatch->paddingBottom == inPatch->paddingBottom); | 
|  | for (int i = 0; i < outPatch->numXDivs; i++) { | 
|  | assert(outPatch->xDivs[i] == inPatch->xDivs[i]); | 
|  | } | 
|  | for (int i = 0; i < outPatch->numYDivs; i++) { | 
|  | assert(outPatch->yDivs[i] == inPatch->yDivs[i]); | 
|  | } | 
|  | for (int i = 0; i < outPatch->numColors; i++) { | 
|  | assert(outPatch->colors[i] == inPatch->colors[i]); | 
|  | } | 
|  | free(newData); | 
|  | } | 
|  |  | 
|  | static bool patch_equals(Res_png_9patch& patch1, Res_png_9patch& patch2) { | 
|  | if (!(patch1.numXDivs == patch2.numXDivs && | 
|  | patch1.numYDivs == patch2.numYDivs && | 
|  | patch1.numColors == patch2.numColors && | 
|  | patch1.paddingLeft == patch2.paddingLeft && | 
|  | patch1.paddingRight == patch2.paddingRight && | 
|  | patch1.paddingTop == patch2.paddingTop && | 
|  | patch1.paddingBottom == patch2.paddingBottom)) { | 
|  | return false; | 
|  | } | 
|  | for (int i = 0; i < patch1.numColors; i++) { | 
|  | if (patch1.colors[i] != patch2.colors[i]) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | for (int i = 0; i < patch1.numXDivs; i++) { | 
|  | if (patch1.xDivs[i] != patch2.xDivs[i]) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | for (int i = 0; i < patch1.numYDivs; i++) { | 
|  | if (patch1.yDivs[i] != patch2.yDivs[i]) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void dump_image(int w, int h, png_bytepp rows, int color_type) | 
|  | { | 
|  | int i, j, rr, gg, bb, aa; | 
|  |  | 
|  | int bpp; | 
|  | if (color_type == PNG_COLOR_TYPE_PALETTE || color_type == PNG_COLOR_TYPE_GRAY) { | 
|  | bpp = 1; | 
|  | } else if (color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { | 
|  | bpp = 2; | 
|  | } else if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) { | 
|  | // We use a padding byte even when there is no alpha | 
|  | bpp = 4; | 
|  | } else { | 
|  | printf("Unknown color type %d.\n", color_type); | 
|  | } | 
|  |  | 
|  | for (j = 0; j < h; j++) { | 
|  | png_bytep row = rows[j]; | 
|  | for (i = 0; i < w; i++) { | 
|  | rr = row[0]; | 
|  | gg = row[1]; | 
|  | bb = row[2]; | 
|  | aa = row[3]; | 
|  | row += bpp; | 
|  |  | 
|  | if (i == 0) { | 
|  | printf("Row %d:", j); | 
|  | } | 
|  | switch (bpp) { | 
|  | case 1: | 
|  | printf(" (%d)", rr); | 
|  | break; | 
|  | case 2: | 
|  | printf(" (%d %d", rr, gg); | 
|  | break; | 
|  | case 3: | 
|  | printf(" (%d %d %d)", rr, gg, bb); | 
|  | break; | 
|  | case 4: | 
|  | printf(" (%d %d %d %d)", rr, gg, bb, aa); | 
|  | break; | 
|  | } | 
|  | if (i == (w - 1)) { | 
|  | NOISY(printf("\n")); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #define MAX(a,b) ((a)>(b)?(a):(b)) | 
|  | #define ABS(a)   ((a)<0?-(a):(a)) | 
|  |  | 
|  | static void analyze_image(const char *imageName, image_info &imageInfo, int grayscaleTolerance, | 
|  | png_colorp rgbPalette, png_bytep alphaPalette, | 
|  | int *paletteEntries, bool *hasTransparency, int *colorType, | 
|  | png_bytepp outRows) | 
|  | { | 
|  | int w = imageInfo.width; | 
|  | int h = imageInfo.height; | 
|  | int i, j, rr, gg, bb, aa, idx; | 
|  | uint32_t colors[256], col; | 
|  | int num_colors = 0; | 
|  | int maxGrayDeviation = 0; | 
|  |  | 
|  | bool isOpaque = true; | 
|  | bool isPalette = true; | 
|  | bool isGrayscale = true; | 
|  |  | 
|  | // Scan the entire image and determine if: | 
|  | // 1. Every pixel has R == G == B (grayscale) | 
|  | // 2. Every pixel has A == 255 (opaque) | 
|  | // 3. There are no more than 256 distinct RGBA colors | 
|  |  | 
|  | // NOISY(printf("Initial image data:\n")); | 
|  | // dump_image(w, h, imageInfo.rows, PNG_COLOR_TYPE_RGB_ALPHA); | 
|  |  | 
|  | for (j = 0; j < h; j++) { | 
|  | png_bytep row = imageInfo.rows[j]; | 
|  | png_bytep out = outRows[j]; | 
|  | for (i = 0; i < w; i++) { | 
|  | rr = *row++; | 
|  | gg = *row++; | 
|  | bb = *row++; | 
|  | aa = *row++; | 
|  |  | 
|  | int odev = maxGrayDeviation; | 
|  | maxGrayDeviation = MAX(ABS(rr - gg), maxGrayDeviation); | 
|  | maxGrayDeviation = MAX(ABS(gg - bb), maxGrayDeviation); | 
|  | maxGrayDeviation = MAX(ABS(bb - rr), maxGrayDeviation); | 
|  | if (maxGrayDeviation > odev) { | 
|  | NOISY(printf("New max dev. = %d at pixel (%d, %d) = (%d %d %d %d)\n", | 
|  | maxGrayDeviation, i, j, rr, gg, bb, aa)); | 
|  | } | 
|  |  | 
|  | // Check if image is really grayscale | 
|  | if (isGrayscale) { | 
|  | if (rr != gg || rr != bb) { | 
|  | NOISY(printf("Found a non-gray pixel at %d, %d = (%d %d %d %d)\n", | 
|  | i, j, rr, gg, bb, aa)); | 
|  | isGrayscale = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if image is really opaque | 
|  | if (isOpaque) { | 
|  | if (aa != 0xff) { | 
|  | NOISY(printf("Found a non-opaque pixel at %d, %d = (%d %d %d %d)\n", | 
|  | i, j, rr, gg, bb, aa)); | 
|  | isOpaque = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if image is really <= 256 colors | 
|  | if (isPalette) { | 
|  | col = (uint32_t) ((rr << 24) | (gg << 16) | (bb << 8) | aa); | 
|  | bool match = false; | 
|  | for (idx = 0; idx < num_colors; idx++) { | 
|  | if (colors[idx] == col) { | 
|  | match = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Write the palette index for the pixel to outRows optimistically | 
|  | // We might overwrite it later if we decide to encode as gray or | 
|  | // gray + alpha | 
|  | *out++ = idx; | 
|  | if (!match) { | 
|  | if (num_colors == 256) { | 
|  | NOISY(printf("Found 257th color at %d, %d\n", i, j)); | 
|  | isPalette = false; | 
|  | } else { | 
|  | colors[num_colors++] = col; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | *paletteEntries = 0; | 
|  | *hasTransparency = !isOpaque; | 
|  | int bpp = isOpaque ? 3 : 4; | 
|  | int paletteSize = w * h + bpp * num_colors; | 
|  |  | 
|  | NOISY(printf("isGrayscale = %s\n", isGrayscale ? "true" : "false")); | 
|  | NOISY(printf("isOpaque = %s\n", isOpaque ? "true" : "false")); | 
|  | NOISY(printf("isPalette = %s\n", isPalette ? "true" : "false")); | 
|  | NOISY(printf("Size w/ palette = %d, gray+alpha = %d, rgb(a) = %d\n", | 
|  | paletteSize, 2 * w * h, bpp * w * h)); | 
|  | NOISY(printf("Max gray deviation = %d, tolerance = %d\n", maxGrayDeviation, grayscaleTolerance)); | 
|  |  | 
|  | // Choose the best color type for the image. | 
|  | // 1. Opaque gray - use COLOR_TYPE_GRAY at 1 byte/pixel | 
|  | // 2. Gray + alpha - use COLOR_TYPE_PALETTE if the number of distinct combinations | 
|  | //     is sufficiently small, otherwise use COLOR_TYPE_GRAY_ALPHA | 
|  | // 3. RGB(A) - use COLOR_TYPE_PALETTE if the number of distinct colors is sufficiently | 
|  | //     small, otherwise use COLOR_TYPE_RGB{_ALPHA} | 
|  | if (isGrayscale) { | 
|  | if (isOpaque) { | 
|  | *colorType = PNG_COLOR_TYPE_GRAY; // 1 byte/pixel | 
|  | } else { | 
|  | // Use a simple heuristic to determine whether using a palette will | 
|  | // save space versus using gray + alpha for each pixel. | 
|  | // This doesn't take into account chunk overhead, filtering, LZ | 
|  | // compression, etc. | 
|  | if (isPalette && (paletteSize < 2 * w * h)) { | 
|  | *colorType = PNG_COLOR_TYPE_PALETTE; // 1 byte/pixel + 4 bytes/color | 
|  | } else { | 
|  | *colorType = PNG_COLOR_TYPE_GRAY_ALPHA; // 2 bytes per pixel | 
|  | } | 
|  | } | 
|  | } else if (isPalette && (paletteSize < bpp * w * h)) { | 
|  | *colorType = PNG_COLOR_TYPE_PALETTE; | 
|  | } else { | 
|  | if (maxGrayDeviation <= grayscaleTolerance) { | 
|  | printf("%s: forcing image to gray (max deviation = %d)\n", imageName, maxGrayDeviation); | 
|  | *colorType = isOpaque ? PNG_COLOR_TYPE_GRAY : PNG_COLOR_TYPE_GRAY_ALPHA; | 
|  | } else { | 
|  | *colorType = isOpaque ? PNG_COLOR_TYPE_RGB : PNG_COLOR_TYPE_RGB_ALPHA; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Perform postprocessing of the image or palette data based on the final | 
|  | // color type chosen | 
|  |  | 
|  | if (*colorType == PNG_COLOR_TYPE_PALETTE) { | 
|  | // Create separate RGB and Alpha palettes and set the number of colors | 
|  | *paletteEntries = num_colors; | 
|  |  | 
|  | // Create the RGB and alpha palettes | 
|  | for (int idx = 0; idx < num_colors; idx++) { | 
|  | col = colors[idx]; | 
|  | rgbPalette[idx].red   = (png_byte) ((col >> 24) & 0xff); | 
|  | rgbPalette[idx].green = (png_byte) ((col >> 16) & 0xff); | 
|  | rgbPalette[idx].blue  = (png_byte) ((col >>  8) & 0xff); | 
|  | alphaPalette[idx]     = (png_byte)  (col        & 0xff); | 
|  | } | 
|  | } else if (*colorType == PNG_COLOR_TYPE_GRAY || *colorType == PNG_COLOR_TYPE_GRAY_ALPHA) { | 
|  | // If the image is gray or gray + alpha, compact the pixels into outRows | 
|  | for (j = 0; j < h; j++) { | 
|  | png_bytep row = imageInfo.rows[j]; | 
|  | png_bytep out = outRows[j]; | 
|  | for (i = 0; i < w; i++) { | 
|  | rr = *row++; | 
|  | gg = *row++; | 
|  | bb = *row++; | 
|  | aa = *row++; | 
|  |  | 
|  | if (isGrayscale) { | 
|  | *out++ = rr; | 
|  | } else { | 
|  | *out++ = (png_byte) (rr * 0.2126f + gg * 0.7152f + bb * 0.0722f); | 
|  | } | 
|  | if (!isOpaque) { | 
|  | *out++ = aa; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void write_png(const char* imageName, | 
|  | png_structp write_ptr, png_infop write_info, | 
|  | image_info& imageInfo, int grayscaleTolerance) | 
|  | { | 
|  | bool optimize = true; | 
|  | png_uint_32 width, height; | 
|  | int color_type; | 
|  | int bit_depth, interlace_type, compression_type; | 
|  | int i; | 
|  |  | 
|  | png_unknown_chunk unknowns[1]; | 
|  | unknowns[0].data = NULL; | 
|  |  | 
|  | png_bytepp outRows = (png_bytepp) malloc((int) imageInfo.height * png_sizeof(png_bytep)); | 
|  | if (outRows == (png_bytepp) 0) { | 
|  | printf("Can't allocate output buffer!\n"); | 
|  | exit(1); | 
|  | } | 
|  | for (i = 0; i < (int) imageInfo.height; i++) { | 
|  | outRows[i] = (png_bytep) malloc(2 * (int) imageInfo.width); | 
|  | if (outRows[i] == (png_bytep) 0) { | 
|  | printf("Can't allocate output buffer!\n"); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | png_set_compression_level(write_ptr, Z_BEST_COMPRESSION); | 
|  |  | 
|  | NOISY(printf("Writing image %s: w = %d, h = %d\n", imageName, | 
|  | (int) imageInfo.width, (int) imageInfo.height)); | 
|  |  | 
|  | png_color rgbPalette[256]; | 
|  | png_byte alphaPalette[256]; | 
|  | bool hasTransparency; | 
|  | int paletteEntries; | 
|  |  | 
|  | analyze_image(imageName, imageInfo, grayscaleTolerance, rgbPalette, alphaPalette, | 
|  | &paletteEntries, &hasTransparency, &color_type, outRows); | 
|  |  | 
|  | // If the image is a 9-patch, we need to preserve it as a ARGB file to make | 
|  | // sure the pixels will not be pre-dithered/clamped until we decide they are | 
|  | if (imageInfo.is9Patch && (color_type == PNG_COLOR_TYPE_RGB || | 
|  | color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_PALETTE)) { | 
|  | color_type = PNG_COLOR_TYPE_RGB_ALPHA; | 
|  | } | 
|  |  | 
|  | switch (color_type) { | 
|  | case PNG_COLOR_TYPE_PALETTE: | 
|  | NOISY(printf("Image %s has %d colors%s, using PNG_COLOR_TYPE_PALETTE\n", | 
|  | imageName, paletteEntries, | 
|  | hasTransparency ? " (with alpha)" : "")); | 
|  | break; | 
|  | case PNG_COLOR_TYPE_GRAY: | 
|  | NOISY(printf("Image %s is opaque gray, using PNG_COLOR_TYPE_GRAY\n", imageName)); | 
|  | break; | 
|  | case PNG_COLOR_TYPE_GRAY_ALPHA: | 
|  | NOISY(printf("Image %s is gray + alpha, using PNG_COLOR_TYPE_GRAY_ALPHA\n", imageName)); | 
|  | break; | 
|  | case PNG_COLOR_TYPE_RGB: | 
|  | NOISY(printf("Image %s is opaque RGB, using PNG_COLOR_TYPE_RGB\n", imageName)); | 
|  | break; | 
|  | case PNG_COLOR_TYPE_RGB_ALPHA: | 
|  | NOISY(printf("Image %s is RGB + alpha, using PNG_COLOR_TYPE_RGB_ALPHA\n", imageName)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | png_set_IHDR(write_ptr, write_info, imageInfo.width, imageInfo.height, | 
|  | 8, color_type, PNG_INTERLACE_NONE, | 
|  | PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); | 
|  |  | 
|  | if (color_type == PNG_COLOR_TYPE_PALETTE) { | 
|  | png_set_PLTE(write_ptr, write_info, rgbPalette, paletteEntries); | 
|  | if (hasTransparency) { | 
|  | png_set_tRNS(write_ptr, write_info, alphaPalette, paletteEntries, (png_color_16p) 0); | 
|  | } | 
|  | png_set_filter(write_ptr, 0, PNG_NO_FILTERS); | 
|  | } else { | 
|  | png_set_filter(write_ptr, 0, PNG_ALL_FILTERS); | 
|  | } | 
|  |  | 
|  | if (imageInfo.is9Patch) { | 
|  | NOISY(printf("Adding 9-patch info...\n")); | 
|  | strcpy((char*)unknowns[0].name, "npTc"); | 
|  | unknowns[0].data = (png_byte*)imageInfo.info9Patch.serialize(); | 
|  | unknowns[0].size = imageInfo.info9Patch.serializedSize(); | 
|  | // TODO: remove the check below when everything works | 
|  | checkNinePatchSerialization(&imageInfo.info9Patch, unknowns[0].data); | 
|  | png_set_keep_unknown_chunks(write_ptr, PNG_HANDLE_CHUNK_ALWAYS, | 
|  | (png_byte*)"npTc", 1); | 
|  | png_set_unknown_chunks(write_ptr, write_info, unknowns, 1); | 
|  | // XXX I can't get this to work without forcibly changing | 
|  | // the location to what I want...  which apparently is supposed | 
|  | // to be a private API, but everything else I have tried results | 
|  | // in the location being set to what I -last- wrote so I never | 
|  | // get written. :p | 
|  | png_set_unknown_chunk_location(write_ptr, write_info, 0, PNG_HAVE_PLTE); | 
|  | } | 
|  |  | 
|  | png_write_info(write_ptr, write_info); | 
|  |  | 
|  | png_bytepp rows; | 
|  | if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) { | 
|  | png_set_filler(write_ptr, 0, PNG_FILLER_AFTER); | 
|  | rows = imageInfo.rows; | 
|  | } else { | 
|  | rows = outRows; | 
|  | } | 
|  | png_write_image(write_ptr, rows); | 
|  |  | 
|  | //     NOISY(printf("Final image data:\n")); | 
|  | //     dump_image(imageInfo.width, imageInfo.height, rows, color_type); | 
|  |  | 
|  | png_write_end(write_ptr, write_info); | 
|  |  | 
|  | for (i = 0; i < (int) imageInfo.height; i++) { | 
|  | free(outRows[i]); | 
|  | } | 
|  | free(outRows); | 
|  | free(unknowns[0].data); | 
|  |  | 
|  | png_get_IHDR(write_ptr, write_info, &width, &height, | 
|  | &bit_depth, &color_type, &interlace_type, | 
|  | &compression_type, NULL); | 
|  |  | 
|  | NOISY(printf("Image written: w=%d, h=%d, d=%d, colors=%d, inter=%d, comp=%d\n", | 
|  | (int)width, (int)height, bit_depth, color_type, interlace_type, | 
|  | compression_type)); | 
|  | } | 
|  |  | 
|  | status_t preProcessImage(Bundle* bundle, const sp<AaptAssets>& assets, | 
|  | const sp<AaptFile>& file, String8* outNewLeafName) | 
|  | { | 
|  | String8 ext(file->getPath().getPathExtension()); | 
|  |  | 
|  | // We currently only process PNG images. | 
|  | if (strcmp(ext.string(), ".png") != 0) { | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | // Example of renaming a file: | 
|  | //*outNewLeafName = file->getPath().getBasePath().getFileName(); | 
|  | //outNewLeafName->append(".nupng"); | 
|  |  | 
|  | String8 printableName(file->getPrintableSource()); | 
|  |  | 
|  | png_structp read_ptr = NULL; | 
|  | png_infop read_info = NULL; | 
|  | FILE* fp; | 
|  |  | 
|  | image_info imageInfo; | 
|  |  | 
|  | png_structp write_ptr = NULL; | 
|  | png_infop write_info = NULL; | 
|  |  | 
|  | status_t error = UNKNOWN_ERROR; | 
|  |  | 
|  | const size_t nameLen = file->getPath().length(); | 
|  |  | 
|  | fp = fopen(file->getSourceFile().string(), "rb"); | 
|  | if (fp == NULL) { | 
|  | fprintf(stderr, "%s: ERROR: Unable to open PNG file\n", printableName.string()); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, (png_error_ptr)NULL, | 
|  | (png_error_ptr)NULL); | 
|  | if (!read_ptr) { | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | read_info = png_create_info_struct(read_ptr); | 
|  | if (!read_info) { | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | if (setjmp(png_jmpbuf(read_ptr))) { | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | png_init_io(read_ptr, fp); | 
|  |  | 
|  | read_png(printableName.string(), read_ptr, read_info, &imageInfo); | 
|  |  | 
|  | if (nameLen > 6) { | 
|  | const char* name = file->getPath().string(); | 
|  | if (name[nameLen-5] == '9' && name[nameLen-6] == '.') { | 
|  | if (do_9patch(printableName.string(), &imageInfo) != NO_ERROR) { | 
|  | goto bail; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, 0, (png_error_ptr)NULL, | 
|  | (png_error_ptr)NULL); | 
|  | if (!write_ptr) | 
|  | { | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | write_info = png_create_info_struct(write_ptr); | 
|  | if (!write_info) | 
|  | { | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | png_set_write_fn(write_ptr, (void*)file.get(), | 
|  | png_write_aapt_file, png_flush_aapt_file); | 
|  |  | 
|  | if (setjmp(png_jmpbuf(write_ptr))) | 
|  | { | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | write_png(printableName.string(), write_ptr, write_info, imageInfo, | 
|  | bundle->getGrayscaleTolerance()); | 
|  |  | 
|  | error = NO_ERROR; | 
|  |  | 
|  | if (bundle->getVerbose()) { | 
|  | fseek(fp, 0, SEEK_END); | 
|  | size_t oldSize = (size_t)ftell(fp); | 
|  | size_t newSize = file->getSize(); | 
|  | float factor = ((float)newSize)/oldSize; | 
|  | int percent = (int)(factor*100); | 
|  | printf("    (processed image %s: %d%% size of source)\n", printableName.string(), percent); | 
|  | } | 
|  |  | 
|  | bail: | 
|  | if (read_ptr) { | 
|  | png_destroy_read_struct(&read_ptr, &read_info, (png_infopp)NULL); | 
|  | } | 
|  | if (fp) { | 
|  | fclose(fp); | 
|  | } | 
|  | if (write_ptr) { | 
|  | png_destroy_write_struct(&write_ptr, &write_info); | 
|  | } | 
|  |  | 
|  | if (error != NO_ERROR) { | 
|  | fprintf(stderr, "ERROR: Failure processing PNG image %s\n", | 
|  | file->getPrintableSource().string()); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | status_t postProcessImage(const sp<AaptAssets>& assets, | 
|  | ResourceTable* table, const sp<AaptFile>& file) | 
|  | { | 
|  | String8 ext(file->getPath().getPathExtension()); | 
|  |  | 
|  | // At this point, now that we have all the resource data, all we need to | 
|  | // do is compile XML files. | 
|  | if (strcmp(ext.string(), ".xml") == 0) { | 
|  | return compileXmlFile(assets, file, table); | 
|  | } | 
|  |  | 
|  | return NO_ERROR; | 
|  | } |