| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "compile/Png.h" |
| |
| #include <android-base/errors.h> |
| #include <android-base/macros.h> |
| #include <png.h> |
| #include <zlib.h> |
| #include <algorithm> |
| #include <unordered_map> |
| #include <unordered_set> |
| |
| namespace aapt { |
| |
| // Size in bytes of the PNG signature. |
| constexpr size_t kPngSignatureSize = 8u; |
| |
| /** |
| * Custom deleter that destroys libpng read and info structs. |
| */ |
| class PngReadStructDeleter { |
| public: |
| explicit PngReadStructDeleter(png_structp readPtr, png_infop infoPtr) |
| : mReadPtr(readPtr), mInfoPtr(infoPtr) {} |
| |
| ~PngReadStructDeleter() { |
| png_destroy_read_struct(&mReadPtr, &mInfoPtr, nullptr); |
| } |
| |
| private: |
| png_structp mReadPtr; |
| png_infop mInfoPtr; |
| |
| DISALLOW_COPY_AND_ASSIGN(PngReadStructDeleter); |
| }; |
| |
| /** |
| * Custom deleter that destroys libpng write and info structs. |
| */ |
| class PngWriteStructDeleter { |
| public: |
| explicit PngWriteStructDeleter(png_structp writePtr, png_infop infoPtr) |
| : mWritePtr(writePtr), mInfoPtr(infoPtr) {} |
| |
| ~PngWriteStructDeleter() { png_destroy_write_struct(&mWritePtr, &mInfoPtr); } |
| |
| private: |
| png_structp mWritePtr; |
| png_infop mInfoPtr; |
| |
| DISALLOW_COPY_AND_ASSIGN(PngWriteStructDeleter); |
| }; |
| |
| // Custom warning logging method that uses IDiagnostics. |
| static void logWarning(png_structp pngPtr, png_const_charp warningMsg) { |
| IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(pngPtr); |
| diag->warn(DiagMessage() << warningMsg); |
| } |
| |
| // Custom error logging method that uses IDiagnostics. |
| static void logError(png_structp pngPtr, png_const_charp errorMsg) { |
| IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(pngPtr); |
| diag->error(DiagMessage() << errorMsg); |
| } |
| |
| static void readDataFromStream(png_structp pngPtr, png_bytep buffer, |
| png_size_t len) { |
| io::InputStream* in = (io::InputStream*)png_get_io_ptr(pngPtr); |
| |
| const void* inBuffer; |
| int inLen; |
| if (!in->Next(&inBuffer, &inLen)) { |
| if (in->HadError()) { |
| std::string err = in->GetError(); |
| png_error(pngPtr, err.c_str()); |
| } |
| return; |
| } |
| |
| const size_t bytesRead = std::min(static_cast<size_t>(inLen), len); |
| memcpy(buffer, inBuffer, bytesRead); |
| if (bytesRead != static_cast<size_t>(inLen)) { |
| in->BackUp(inLen - static_cast<int>(bytesRead)); |
| } |
| } |
| |
| static void writeDataToStream(png_structp pngPtr, png_bytep buffer, |
| png_size_t len) { |
| io::OutputStream* out = (io::OutputStream*)png_get_io_ptr(pngPtr); |
| |
| void* outBuffer; |
| int outLen; |
| while (len > 0) { |
| if (!out->Next(&outBuffer, &outLen)) { |
| if (out->HadError()) { |
| std::string err = out->GetError(); |
| png_error(pngPtr, err.c_str()); |
| } |
| return; |
| } |
| |
| const size_t bytesWritten = std::min(static_cast<size_t>(outLen), len); |
| memcpy(outBuffer, buffer, bytesWritten); |
| |
| // Advance the input buffer. |
| buffer += bytesWritten; |
| len -= bytesWritten; |
| |
| // Advance the output buffer. |
| outLen -= static_cast<int>(bytesWritten); |
| } |
| |
| // If the entire output buffer wasn't used, backup. |
| if (outLen > 0) { |
| out->BackUp(outLen); |
| } |
| } |
| |
| std::unique_ptr<Image> readPng(IAaptContext* context, io::InputStream* in) { |
| // Read the first 8 bytes of the file looking for the PNG signature. |
| // Bail early if it does not match. |
| const png_byte* signature; |
| int bufferSize; |
| if (!in->Next((const void**)&signature, &bufferSize)) { |
| context->getDiagnostics()->error( |
| DiagMessage() << android::base::SystemErrorCodeToString(errno)); |
| return {}; |
| } |
| |
| if (static_cast<size_t>(bufferSize) < kPngSignatureSize || |
| png_sig_cmp(signature, 0, kPngSignatureSize) != 0) { |
| context->getDiagnostics()->error( |
| DiagMessage() << "file signature does not match PNG signature"); |
| return {}; |
| } |
| |
| // Start at the beginning of the first chunk. |
| in->BackUp(bufferSize - static_cast<int>(kPngSignatureSize)); |
| |
| // Create and initialize the png_struct with the default error and warning |
| // handlers. |
| // The header version is also passed in to ensure that this was built against |
| // the same |
| // version of libpng. |
| png_structp readPtr = |
| png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr); |
| if (readPtr == nullptr) { |
| context->getDiagnostics()->error( |
| DiagMessage() << "failed to create libpng read png_struct"); |
| return {}; |
| } |
| |
| // Create and initialize the memory for image header and data. |
| png_infop infoPtr = png_create_info_struct(readPtr); |
| if (infoPtr == nullptr) { |
| context->getDiagnostics()->error( |
| DiagMessage() << "failed to create libpng read png_info"); |
| png_destroy_read_struct(&readPtr, nullptr, nullptr); |
| return {}; |
| } |
| |
| // Automatically release PNG resources at end of scope. |
| PngReadStructDeleter pngReadDeleter(readPtr, infoPtr); |
| |
| // libpng uses longjmp to jump to an error handling routine. |
| // setjmp will only return true if it was jumped to, aka there was |
| // an error. |
| if (setjmp(png_jmpbuf(readPtr))) { |
| return {}; |
| } |
| |
| // Handle warnings ourselves via IDiagnostics. |
| png_set_error_fn(readPtr, (png_voidp)context->getDiagnostics(), logError, |
| logWarning); |
| |
| // Set up the read functions which read from our custom data sources. |
| png_set_read_fn(readPtr, (png_voidp)in, readDataFromStream); |
| |
| // Skip the signature that we already read. |
| png_set_sig_bytes(readPtr, kPngSignatureSize); |
| |
| // Read the chunk headers. |
| png_read_info(readPtr, infoPtr); |
| |
| // Extract image meta-data from the various chunk headers. |
| uint32_t width, height; |
| int bitDepth, colorType, interlaceMethod, compressionMethod, filterMethod; |
| png_get_IHDR(readPtr, infoPtr, &width, &height, &bitDepth, &colorType, |
| &interlaceMethod, &compressionMethod, &filterMethod); |
| |
| // When the image is read, expand it so that it is in RGBA 8888 format |
| // so that image handling is uniform. |
| |
| if (colorType == PNG_COLOR_TYPE_PALETTE) { |
| png_set_palette_to_rgb(readPtr); |
| } |
| |
| if (colorType == PNG_COLOR_TYPE_GRAY && bitDepth < 8) { |
| png_set_expand_gray_1_2_4_to_8(readPtr); |
| } |
| |
| if (png_get_valid(readPtr, infoPtr, PNG_INFO_tRNS)) { |
| png_set_tRNS_to_alpha(readPtr); |
| } |
| |
| if (bitDepth == 16) { |
| png_set_strip_16(readPtr); |
| } |
| |
| if (!(colorType & PNG_COLOR_MASK_ALPHA)) { |
| png_set_add_alpha(readPtr, 0xFF, PNG_FILLER_AFTER); |
| } |
| |
| if (colorType == PNG_COLOR_TYPE_GRAY || |
| colorType == PNG_COLOR_TYPE_GRAY_ALPHA) { |
| png_set_gray_to_rgb(readPtr); |
| } |
| |
| if (interlaceMethod != PNG_INTERLACE_NONE) { |
| png_set_interlace_handling(readPtr); |
| } |
| |
| // Once all the options for reading have been set, we need to flush |
| // them to libpng. |
| png_read_update_info(readPtr, infoPtr); |
| |
| // 9-patch uses int32_t to index images, so we cap the image dimensions to |
| // something |
| // that can always be represented by 9-patch. |
| if (width > std::numeric_limits<int32_t>::max() || |
| height > std::numeric_limits<int32_t>::max()) { |
| context->getDiagnostics()->error(DiagMessage() |
| << "PNG image dimensions are too large: " |
| << width << "x" << height); |
| return {}; |
| } |
| |
| std::unique_ptr<Image> outputImage = util::make_unique<Image>(); |
| outputImage->width = static_cast<int32_t>(width); |
| outputImage->height = static_cast<int32_t>(height); |
| |
| const size_t rowBytes = png_get_rowbytes(readPtr, infoPtr); |
| assert(rowBytes == 4 * width); // RGBA |
| |
| // Allocate one large block to hold the image. |
| outputImage->data = |
| std::unique_ptr<uint8_t[]>(new uint8_t[height * rowBytes]); |
| |
| // Create an array of rows that index into the data block. |
| outputImage->rows = std::unique_ptr<uint8_t* []>(new uint8_t*[height]); |
| for (uint32_t h = 0; h < height; h++) { |
| outputImage->rows[h] = outputImage->data.get() + (h * rowBytes); |
| } |
| |
| // Actually read the image pixels. |
| png_read_image(readPtr, outputImage->rows.get()); |
| |
| // Finish reading. This will read any other chunks after the image data. |
| png_read_end(readPtr, infoPtr); |
| |
| return outputImage; |
| } |
| |
| /** |
| * Experimentally chosen constant to be added to the overhead of using color |
| * type |
| * PNG_COLOR_TYPE_PALETTE to account for the uncompressability of the palette |
| * chunk. |
| * Without this, many small PNGs encoded with palettes are larger after |
| * compression than |
| * the same PNGs encoded as RGBA. |
| */ |
| constexpr static const size_t kPaletteOverheadConstant = 1024u * 10u; |
| |
| // Pick a color type by which to encode the image, based on which color type |
| // will take |
| // the least amount of disk space. |
| // |
| // 9-patch images traditionally have not been encoded with palettes. |
| // The original rationale was to avoid dithering until after scaling, |
| // but I don't think this would be an issue with palettes. Either way, |
| // our naive size estimation tends to be wrong for small images like 9-patches |
| // and using palettes balloons the size of the resulting 9-patch. |
| // In order to not regress in size, restrict 9-patch to not use palettes. |
| |
| // The options are: |
| // |
| // - RGB |
| // - RGBA |
| // - RGB + cheap alpha |
| // - Color palette |
| // - Color palette + cheap alpha |
| // - Color palette + alpha palette |
| // - Grayscale |
| // - Grayscale + cheap alpha |
| // - Grayscale + alpha |
| // |
| static int pickColorType(int32_t width, int32_t height, bool grayScale, |
| bool convertibleToGrayScale, bool hasNinePatch, |
| size_t colorPaletteSize, size_t alphaPaletteSize) { |
| const size_t paletteChunkSize = 16 + colorPaletteSize * 3; |
| const size_t alphaChunkSize = 16 + alphaPaletteSize; |
| const size_t colorAlphaDataChunkSize = 16 + 4 * width * height; |
| const size_t colorDataChunkSize = 16 + 3 * width * height; |
| const size_t grayScaleAlphaDataChunkSize = 16 + 2 * width * height; |
| const size_t paletteDataChunkSize = 16 + width * height; |
| |
| if (grayScale) { |
| if (alphaPaletteSize == 0) { |
| // This is the smallest the data can be. |
| return PNG_COLOR_TYPE_GRAY; |
| } else if (colorPaletteSize <= 256 && !hasNinePatch) { |
| // This grayscale has alpha and can fit within a palette. |
| // See if it is worth fitting into a palette. |
| const size_t paletteThreshold = paletteChunkSize + alphaChunkSize + |
| paletteDataChunkSize + |
| kPaletteOverheadConstant; |
| if (grayScaleAlphaDataChunkSize > paletteThreshold) { |
| return PNG_COLOR_TYPE_PALETTE; |
| } |
| } |
| return PNG_COLOR_TYPE_GRAY_ALPHA; |
| } |
| |
| if (colorPaletteSize <= 256 && !hasNinePatch) { |
| // This image can fit inside a palette. Let's see if it is worth it. |
| size_t totalSizeWithPalette = paletteDataChunkSize + paletteChunkSize; |
| size_t totalSizeWithoutPalette = colorDataChunkSize; |
| if (alphaPaletteSize > 0) { |
| totalSizeWithPalette += alphaPaletteSize; |
| totalSizeWithoutPalette = colorAlphaDataChunkSize; |
| } |
| |
| if (totalSizeWithoutPalette > |
| totalSizeWithPalette + kPaletteOverheadConstant) { |
| return PNG_COLOR_TYPE_PALETTE; |
| } |
| } |
| |
| if (convertibleToGrayScale) { |
| if (alphaPaletteSize == 0) { |
| return PNG_COLOR_TYPE_GRAY; |
| } else { |
| return PNG_COLOR_TYPE_GRAY_ALPHA; |
| } |
| } |
| |
| if (alphaPaletteSize == 0) { |
| return PNG_COLOR_TYPE_RGB; |
| } |
| return PNG_COLOR_TYPE_RGBA; |
| } |
| |
| // Assigns indices to the color and alpha palettes, encodes them, and then |
| // invokes |
| // png_set_PLTE/png_set_tRNS. |
| // This must be done before writing image data. |
| // Image data must be transformed to use the indices assigned within the |
| // palette. |
| static void writePalette(png_structp writePtr, png_infop writeInfoPtr, |
| std::unordered_map<uint32_t, int>* colorPalette, |
| std::unordered_set<uint32_t>* alphaPalette) { |
| assert(colorPalette->size() <= 256); |
| assert(alphaPalette->size() <= 256); |
| |
| // Populate the PNG palette struct and assign indices to the color |
| // palette. |
| |
| // Colors in the alpha palette should have smaller indices. |
| // This will ensure that we can truncate the alpha palette if it is |
| // smaller than the color palette. |
| int index = 0; |
| for (uint32_t color : *alphaPalette) { |
| (*colorPalette)[color] = index++; |
| } |
| |
| // Assign the rest of the entries. |
| for (auto& entry : *colorPalette) { |
| if (entry.second == -1) { |
| entry.second = index++; |
| } |
| } |
| |
| // Create the PNG color palette struct. |
| auto colorPaletteBytes = |
| std::unique_ptr<png_color[]>(new png_color[colorPalette->size()]); |
| |
| std::unique_ptr<png_byte[]> alphaPaletteBytes; |
| if (!alphaPalette->empty()) { |
| alphaPaletteBytes = |
| std::unique_ptr<png_byte[]>(new png_byte[alphaPalette->size()]); |
| } |
| |
| for (const auto& entry : *colorPalette) { |
| const uint32_t color = entry.first; |
| const int index = entry.second; |
| assert(index >= 0); |
| assert(static_cast<size_t>(index) < colorPalette->size()); |
| |
| png_colorp slot = colorPaletteBytes.get() + index; |
| slot->red = color >> 24; |
| slot->green = color >> 16; |
| slot->blue = color >> 8; |
| |
| const png_byte alpha = color & 0x000000ff; |
| if (alpha != 0xff && alphaPaletteBytes) { |
| assert(static_cast<size_t>(index) < alphaPalette->size()); |
| alphaPaletteBytes[index] = alpha; |
| } |
| } |
| |
| // The bytes get copied here, so it is safe to release colorPaletteBytes at |
| // the end of function |
| // scope. |
| png_set_PLTE(writePtr, writeInfoPtr, colorPaletteBytes.get(), |
| colorPalette->size()); |
| |
| if (alphaPaletteBytes) { |
| png_set_tRNS(writePtr, writeInfoPtr, alphaPaletteBytes.get(), |
| alphaPalette->size(), nullptr); |
| } |
| } |
| |
| // Write the 9-patch custom PNG chunks to writeInfoPtr. This must be done before |
| // writing image data. |
| static void writeNinePatch(png_structp writePtr, png_infop writeInfoPtr, |
| const NinePatch* ninePatch) { |
| // The order of the chunks is important. |
| // 9-patch code in older platforms expects the 9-patch chunk to |
| // be last. |
| |
| png_unknown_chunk unknownChunks[3]; |
| memset(unknownChunks, 0, sizeof(unknownChunks)); |
| |
| size_t index = 0; |
| size_t chunkLen = 0; |
| |
| std::unique_ptr<uint8_t[]> serializedOutline = |
| ninePatch->serializeRoundedRectOutline(&chunkLen); |
| strcpy((char*)unknownChunks[index].name, "npOl"); |
| unknownChunks[index].size = chunkLen; |
| unknownChunks[index].data = (png_bytep)serializedOutline.get(); |
| unknownChunks[index].location = PNG_HAVE_PLTE; |
| index++; |
| |
| std::unique_ptr<uint8_t[]> serializedLayoutBounds; |
| if (ninePatch->layoutBounds.nonZero()) { |
| serializedLayoutBounds = ninePatch->serializeLayoutBounds(&chunkLen); |
| strcpy((char*)unknownChunks[index].name, "npLb"); |
| unknownChunks[index].size = chunkLen; |
| unknownChunks[index].data = (png_bytep)serializedLayoutBounds.get(); |
| unknownChunks[index].location = PNG_HAVE_PLTE; |
| index++; |
| } |
| |
| std::unique_ptr<uint8_t[]> serializedNinePatch = |
| ninePatch->serializeBase(&chunkLen); |
| strcpy((char*)unknownChunks[index].name, "npTc"); |
| unknownChunks[index].size = chunkLen; |
| unknownChunks[index].data = (png_bytep)serializedNinePatch.get(); |
| unknownChunks[index].location = PNG_HAVE_PLTE; |
| index++; |
| |
| // Handle all unknown chunks. We are manually setting the chunks here, |
| // so we will only ever handle our custom chunks. |
| png_set_keep_unknown_chunks(writePtr, PNG_HANDLE_CHUNK_ALWAYS, nullptr, 0); |
| |
| // Set the actual chunks here. The data gets copied, so our buffers can |
| // safely go out of scope. |
| png_set_unknown_chunks(writePtr, writeInfoPtr, unknownChunks, index); |
| } |
| |
| bool writePng(IAaptContext* context, const Image* image, |
| const NinePatch* ninePatch, io::OutputStream* out, |
| const PngOptions& options) { |
| // Create and initialize the write png_struct with the default error and |
| // warning handlers. |
| // The header version is also passed in to ensure that this was built against |
| // the same |
| // version of libpng. |
| png_structp writePtr = |
| png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr); |
| if (writePtr == nullptr) { |
| context->getDiagnostics()->error( |
| DiagMessage() << "failed to create libpng write png_struct"); |
| return false; |
| } |
| |
| // Allocate memory to store image header data. |
| png_infop writeInfoPtr = png_create_info_struct(writePtr); |
| if (writeInfoPtr == nullptr) { |
| context->getDiagnostics()->error( |
| DiagMessage() << "failed to create libpng write png_info"); |
| png_destroy_write_struct(&writePtr, nullptr); |
| return false; |
| } |
| |
| // Automatically release PNG resources at end of scope. |
| PngWriteStructDeleter pngWriteDeleter(writePtr, writeInfoPtr); |
| |
| // libpng uses longjmp to jump to error handling routines. |
| // setjmp will return true only if it was jumped to, aka, there was an error. |
| if (setjmp(png_jmpbuf(writePtr))) { |
| return false; |
| } |
| |
| // Handle warnings with our IDiagnostics. |
| png_set_error_fn(writePtr, (png_voidp)context->getDiagnostics(), logError, |
| logWarning); |
| |
| // Set up the write functions which write to our custom data sources. |
| png_set_write_fn(writePtr, (png_voidp)out, writeDataToStream, nullptr); |
| |
| // We want small files and can take the performance hit to achieve this goal. |
| png_set_compression_level(writePtr, Z_BEST_COMPRESSION); |
| |
| // Begin analysis of the image data. |
| // Scan the entire image and determine if: |
| // 1. Every pixel has R == G == B (grayscale) |
| // 2. Every pixel has A == 255 (opaque) |
| // 3. There are no more than 256 distinct RGBA colors (palette). |
| std::unordered_map<uint32_t, int> colorPalette; |
| std::unordered_set<uint32_t> alphaPalette; |
| bool needsToZeroRGBChannelsOfTransparentPixels = false; |
| bool grayScale = true; |
| int maxGrayDeviation = 0; |
| |
| for (int32_t y = 0; y < image->height; y++) { |
| const uint8_t* row = image->rows[y]; |
| for (int32_t x = 0; x < image->width; x++) { |
| int red = *row++; |
| int green = *row++; |
| int blue = *row++; |
| int alpha = *row++; |
| |
| if (alpha == 0) { |
| // The color is completely transparent. |
| // For purposes of palettes and grayscale optimization, |
| // treat all channels as 0x00. |
| needsToZeroRGBChannelsOfTransparentPixels = |
| needsToZeroRGBChannelsOfTransparentPixels || |
| (red != 0 || green != 0 || blue != 0); |
| red = green = blue = 0; |
| } |
| |
| // Insert the color into the color palette. |
| const uint32_t color = red << 24 | green << 16 | blue << 8 | alpha; |
| colorPalette[color] = -1; |
| |
| // If the pixel has non-opaque alpha, insert it into the |
| // alpha palette. |
| if (alpha != 0xff) { |
| alphaPalette.insert(color); |
| } |
| |
| // Check if the image is indeed grayscale. |
| if (grayScale) { |
| if (red != green || red != blue) { |
| grayScale = false; |
| } |
| } |
| |
| // Calculate the gray scale deviation so that it can be compared |
| // with the threshold. |
| maxGrayDeviation = std::max(std::abs(red - green), maxGrayDeviation); |
| maxGrayDeviation = std::max(std::abs(green - blue), maxGrayDeviation); |
| maxGrayDeviation = std::max(std::abs(blue - red), maxGrayDeviation); |
| } |
| } |
| |
| if (context->verbose()) { |
| DiagMessage msg; |
| msg << " paletteSize=" << colorPalette.size() |
| << " alphaPaletteSize=" << alphaPalette.size() |
| << " maxGrayDeviation=" << maxGrayDeviation |
| << " grayScale=" << (grayScale ? "true" : "false"); |
| context->getDiagnostics()->note(msg); |
| } |
| |
| const bool convertibleToGrayScale = |
| maxGrayDeviation <= options.grayScaleTolerance; |
| |
| const int newColorType = pickColorType( |
| image->width, image->height, grayScale, convertibleToGrayScale, |
| ninePatch != nullptr, colorPalette.size(), alphaPalette.size()); |
| |
| if (context->verbose()) { |
| DiagMessage msg; |
| msg << "encoding PNG "; |
| if (ninePatch) { |
| msg << "(with 9-patch) as "; |
| } |
| switch (newColorType) { |
| case PNG_COLOR_TYPE_GRAY: |
| msg << "GRAY"; |
| break; |
| case PNG_COLOR_TYPE_GRAY_ALPHA: |
| msg << "GRAY + ALPHA"; |
| break; |
| case PNG_COLOR_TYPE_RGB: |
| msg << "RGB"; |
| break; |
| case PNG_COLOR_TYPE_RGB_ALPHA: |
| msg << "RGBA"; |
| break; |
| case PNG_COLOR_TYPE_PALETTE: |
| msg << "PALETTE"; |
| break; |
| default: |
| msg << "unknown type " << newColorType; |
| break; |
| } |
| context->getDiagnostics()->note(msg); |
| } |
| |
| png_set_IHDR(writePtr, writeInfoPtr, image->width, image->height, 8, |
| newColorType, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, |
| PNG_FILTER_TYPE_DEFAULT); |
| |
| if (newColorType & PNG_COLOR_MASK_PALETTE) { |
| // Assigns indices to the palette, and writes the encoded palette to the |
| // libpng writePtr. |
| writePalette(writePtr, writeInfoPtr, &colorPalette, &alphaPalette); |
| png_set_filter(writePtr, 0, PNG_NO_FILTERS); |
| } else { |
| png_set_filter(writePtr, 0, PNG_ALL_FILTERS); |
| } |
| |
| if (ninePatch) { |
| writeNinePatch(writePtr, writeInfoPtr, ninePatch); |
| } |
| |
| // Flush our updates to the header. |
| png_write_info(writePtr, writeInfoPtr); |
| |
| // Write out each row of image data according to its encoding. |
| if (newColorType == PNG_COLOR_TYPE_PALETTE) { |
| // 1 byte/pixel. |
| auto outRow = std::unique_ptr<png_byte[]>(new png_byte[image->width]); |
| |
| for (int32_t y = 0; y < image->height; y++) { |
| png_const_bytep inRow = image->rows[y]; |
| for (int32_t x = 0; x < image->width; x++) { |
| int rr = *inRow++; |
| int gg = *inRow++; |
| int bb = *inRow++; |
| int aa = *inRow++; |
| if (aa == 0) { |
| // Zero out color channels when transparent. |
| rr = gg = bb = 0; |
| } |
| |
| const uint32_t color = rr << 24 | gg << 16 | bb << 8 | aa; |
| const int idx = colorPalette[color]; |
| assert(idx != -1); |
| outRow[x] = static_cast<png_byte>(idx); |
| } |
| png_write_row(writePtr, outRow.get()); |
| } |
| } else if (newColorType == PNG_COLOR_TYPE_GRAY || |
| newColorType == PNG_COLOR_TYPE_GRAY_ALPHA) { |
| const size_t bpp = newColorType == PNG_COLOR_TYPE_GRAY ? 1 : 2; |
| auto outRow = std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]); |
| |
| for (int32_t y = 0; y < image->height; y++) { |
| png_const_bytep inRow = image->rows[y]; |
| for (int32_t x = 0; x < image->width; x++) { |
| int rr = inRow[x * 4]; |
| int gg = inRow[x * 4 + 1]; |
| int bb = inRow[x * 4 + 2]; |
| int aa = inRow[x * 4 + 3]; |
| if (aa == 0) { |
| // Zero out the gray channel when transparent. |
| rr = gg = bb = 0; |
| } |
| |
| if (grayScale) { |
| // The image was already grayscale, red == green == blue. |
| outRow[x * bpp] = inRow[x * 4]; |
| } else { |
| // The image is convertible to grayscale, use linear-luminance of |
| // sRGB colorspace: |
| // https://en.wikipedia.org/wiki/Grayscale#Colorimetric_.28luminance-preserving.29_conversion_to_grayscale |
| outRow[x * bpp] = |
| (png_byte)(rr * 0.2126f + gg * 0.7152f + bb * 0.0722f); |
| } |
| |
| if (bpp == 2) { |
| // Write out alpha if we have it. |
| outRow[x * bpp + 1] = aa; |
| } |
| } |
| png_write_row(writePtr, outRow.get()); |
| } |
| } else if (newColorType == PNG_COLOR_TYPE_RGB || |
| newColorType == PNG_COLOR_TYPE_RGBA) { |
| const size_t bpp = newColorType == PNG_COLOR_TYPE_RGB ? 3 : 4; |
| if (needsToZeroRGBChannelsOfTransparentPixels) { |
| // The source RGBA data can't be used as-is, because we need to zero out |
| // the RGB |
| // values of transparent pixels. |
| auto outRow = |
| std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]); |
| |
| for (int32_t y = 0; y < image->height; y++) { |
| png_const_bytep inRow = image->rows[y]; |
| for (int32_t x = 0; x < image->width; x++) { |
| int rr = *inRow++; |
| int gg = *inRow++; |
| int bb = *inRow++; |
| int aa = *inRow++; |
| if (aa == 0) { |
| // Zero out the RGB channels when transparent. |
| rr = gg = bb = 0; |
| } |
| outRow[x * bpp] = rr; |
| outRow[x * bpp + 1] = gg; |
| outRow[x * bpp + 2] = bb; |
| if (bpp == 4) { |
| outRow[x * bpp + 3] = aa; |
| } |
| } |
| png_write_row(writePtr, outRow.get()); |
| } |
| } else { |
| // The source image can be used as-is, just tell libpng whether or not to |
| // ignore |
| // the alpha channel. |
| if (newColorType == PNG_COLOR_TYPE_RGB) { |
| // Delete the extraneous alpha values that we appended to our buffer |
| // when reading the original values. |
| png_set_filler(writePtr, 0, PNG_FILLER_AFTER); |
| } |
| png_write_image(writePtr, image->rows.get()); |
| } |
| } else { |
| assert(false && "unreachable"); |
| } |
| |
| png_write_end(writePtr, writeInfoPtr); |
| return true; |
| } |
| |
| } // namespace aapt |