blob: 202f50bbc7f12e0e85ba9298e6ade4edb26671c4 [file] [log] [blame]
Eric Laurent5fe37c62010-05-21 06:05:13 -07001/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "EffectReverb"
18//
19#define LOG_NDEBUG 0
20#include <cutils/log.h>
Eric Laurent65b65452010-06-01 23:49:17 -070021#include <stdlib.h>
22#include <string.h>
Eric Laurent5fe37c62010-05-21 06:05:13 -070023#include <stdbool.h>
24#include "EffectReverb.h"
25#include "EffectsMath.h"
26
27static int gEffectIndex;
28
29// effect_interface_t interface implementation for reverb effect
30const struct effect_interface_s gReverbInterface = {
31 Reverb_Process,
32 Reverb_Command
33};
34
35// Google auxiliary environmental reverb UUID: 1f0ae2e0-4ef7-11df-bc09-0002a5d5c51b
36static const effect_descriptor_t gAuxEnvReverbDescriptor = {
37 {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
38 {0x1f0ae2e0, 0x4ef7, 0x11df, 0xbc09, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
39 EFFECT_API_VERSION,
40 EFFECT_FLAG_TYPE_AUXILIARY,
41 "Aux Environmental Reverb",
42 "Google Inc."
43};
44
45// Google insert environmental reverb UUID: aa476040-6342-11df-91a4-0002a5d5c51b
46static const effect_descriptor_t gInsertEnvReverbDescriptor = {
47 {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
48 {0xaa476040, 0x6342, 0x11df, 0x91a4, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
49 EFFECT_API_VERSION,
50 EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
51 "Insert Environmental reverb",
52 "Google Inc."
53};
54
55// Google auxiliary preset reverb UUID: 63909320-53a6-11df-bdbd-0002a5d5c51b
56static const effect_descriptor_t gAuxPresetReverbDescriptor = {
57 {0x47382d60, 0xddd8, 0x4763, 0x11db, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
58 {0x63909320, 0x53a6, 0x11df, 0xbdbd, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
59 EFFECT_API_VERSION,
60 EFFECT_FLAG_TYPE_AUXILIARY,
61 "Aux Preset Reverb",
62 "Google Inc."
63};
64
65// Google insert preset reverb UUID: d93dc6a0-6342-11df-b128-0002a5d5c51b
66static const effect_descriptor_t gInsertPresetReverbDescriptor = {
67 {0x47382d60, 0xddd8, 0x4763, 0x11db, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
68 {0xd93dc6a0, 0x6342, 0x11df, 0xb128, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
69 EFFECT_API_VERSION,
70 EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
71 "Insert Preset Reverb",
72 "Google Inc."
73};
74
75// gDescriptors contains pointers to all defined effect descriptor in this library
76static const effect_descriptor_t * const gDescriptors[] = {
77 &gAuxEnvReverbDescriptor,
78 &gInsertEnvReverbDescriptor,
79 &gAuxPresetReverbDescriptor,
80 &gInsertPresetReverbDescriptor,
81 NULL
82};
83
84/*----------------------------------------------------------------------------
85 * Effect API implementation
86 *--------------------------------------------------------------------------*/
87
88/*--- Effect Library Interface Implementation ---*/
89
Eric Laurent65b65452010-06-01 23:49:17 -070090int EffectQueryNumberEffects(uint32_t *pNumEffects) {
Eric Laurent5fe37c62010-05-21 06:05:13 -070091 *pNumEffects = sizeof(gDescriptors) / sizeof(const effect_descriptor_t *)
92 - 1;
93 gEffectIndex = 0;
94 return 0;
95}
96
97int EffectQueryNext(effect_descriptor_t *pDescriptor) {
98 if (pDescriptor == NULL) {
99 return -EINVAL;
100 }
101 if (gDescriptors[gEffectIndex] == NULL) {
102 return -ENOENT;
103 }
104 memcpy(pDescriptor, gDescriptors[gEffectIndex++],
105 sizeof(effect_descriptor_t));
106 return 0;
107}
108
109int EffectCreate(effect_uuid_t *uuid,
110 effect_interface_t *pInterface) {
111 int ret;
112 int i;
113 reverb_module_t *module;
114 const effect_descriptor_t *desc;
115 int aux = 0;
116 int preset = 0;
117
118 LOGV("EffectLibCreateEffect start");
119
120 if (pInterface == NULL || uuid == NULL) {
121 return -EINVAL;
122 }
123
124 for (i = 0; gDescriptors[i] != NULL; i++) {
125 desc = gDescriptors[i];
126 if (memcmp(uuid, &desc->uuid, sizeof(effect_uuid_t))
127 == 0) {
128 break;
129 }
130 }
131
132 if (gDescriptors[i] == NULL) {
133 return -ENOENT;
134 }
135
136 module = malloc(sizeof(reverb_module_t));
137
138 module->itfe = &gReverbInterface;
139
140 if (memcmp(&desc->type, SL_IID_PRESETREVERB, sizeof(effect_uuid_t)) == 0) {
141 preset = 1;
142 }
143 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
144 aux = 1;
145 }
146 ret = Reverb_Init(module, aux, preset);
147 if (ret < 0) {
148 LOGW("EffectLibCreateEffect() init failed");
149 free(module);
150 return ret;
151 }
152
153 *pInterface = (effect_interface_t) module;
154
155 LOGV("EffectLibCreateEffect %p", module);
156
157 return 0;
158}
159
160int EffectRelease(effect_interface_t interface) {
161 reverb_module_t *pRvbModule = (reverb_module_t *)interface;
162
163 LOGV("EffectLibReleaseEffect %p", interface);
164 if (interface == NULL) {
165 return -EINVAL;
166 }
167
168 free(pRvbModule);
169 return 0;
170}
171
172
173/*--- Effect Control Interface Implementation ---*/
174
175static int Reverb_Process(effect_interface_t self, audio_buffer_t *inBuffer, audio_buffer_t *outBuffer) {
176 reverb_object_t *pReverb;
177 int16_t *pSrc, *pDst;
178 reverb_module_t *pRvbModule = (reverb_module_t *)self;
179
180 if (pRvbModule == NULL) {
181 return -EINVAL;
182 }
183
184 if (inBuffer == NULL || inBuffer->raw == NULL ||
185 outBuffer == NULL || outBuffer->raw == NULL ||
186 inBuffer->frameCount != outBuffer->frameCount) {
187 return -EINVAL;
188 }
189
190 pReverb = (reverb_object_t*) &pRvbModule->context;
191
192 //if bypassed or the preset forces the signal to be completely dry
193 if (pReverb->m_bBypass) {
194 if (inBuffer->raw != outBuffer->raw && !pReverb->m_Aux) {
195 memcpy(outBuffer->raw, inBuffer->raw, outBuffer->frameCount * NUM_OUTPUT_CHANNELS * sizeof(int16_t));
196 }
197 return 0;
198 }
199
200 if (pReverb->m_nNextRoom != pReverb->m_nCurrentRoom) {
201 ReverbUpdateRoom(pReverb, true);
202 }
203
204 pSrc = inBuffer->s16;
205 pDst = outBuffer->s16;
206 size_t numSamples = outBuffer->frameCount;
207 while (numSamples) {
208 uint32_t processedSamples;
209 if (numSamples > (uint32_t) pReverb->m_nUpdatePeriodInSamples) {
210 processedSamples = (uint32_t) pReverb->m_nUpdatePeriodInSamples;
211 } else {
212 processedSamples = numSamples;
213 }
214
215 /* increment update counter */
216 pReverb->m_nUpdateCounter += (int16_t) processedSamples;
217 /* check if update counter needs to be reset */
218 if (pReverb->m_nUpdateCounter >= pReverb->m_nUpdatePeriodInSamples) {
219 /* update interval has elapsed, so reset counter */
220 pReverb->m_nUpdateCounter -= pReverb->m_nUpdatePeriodInSamples;
221 ReverbUpdateXfade(pReverb, pReverb->m_nUpdatePeriodInSamples);
222
223 } /* end if m_nUpdateCounter >= update interval */
224
225 Reverb(pReverb, processedSamples, pDst, pSrc);
226
227 numSamples -= processedSamples;
228 if (pReverb->m_Aux) {
229 pDst += processedSamples;
230 } else {
231 pSrc += processedSamples * NUM_OUTPUT_CHANNELS;
232 }
233 }
234
235 return 0;
236}
237
238static int Reverb_Command(effect_interface_t self, int cmdCode, int cmdSize,
239 void *pCmdData, int *replySize, void *pReplyData) {
240 reverb_module_t *pRvbModule = (reverb_module_t *) self;
241 reverb_object_t *pReverb;
242 int retsize;
243
244 if (pRvbModule == NULL) {
245 return -EINVAL;
246 }
247
248 pReverb = (reverb_object_t*) &pRvbModule->context;
249
250 LOGV("Reverb_Command command %d cmdSize %d",cmdCode, cmdSize);
251
252 switch (cmdCode) {
253 case EFFECT_CMD_INIT:
254 if (pReplyData == NULL || *replySize != sizeof(int)) {
255 return -EINVAL;
256 }
257 *(int *) pReplyData = Reverb_Init(pRvbModule, pReverb->m_Aux, pReverb->m_Preset);
258 break;
259 case EFFECT_CMD_CONFIGURE:
260 if (pCmdData == NULL || cmdSize != sizeof(effect_config_t)
261 || pReplyData == NULL || *replySize != sizeof(int)) {
262 return -EINVAL;
263 }
264 *(int *) pReplyData = Reverb_Configure(pRvbModule,
265 (effect_config_t *)pCmdData, false);
266 break;
267 case EFFECT_CMD_RESET:
268 Reverb_Reset(pReverb, false);
269 break;
270 case EFFECT_CMD_GET_PARAM:
271 LOGV("Reverb_Command EFFECT_CMD_GET_PARAM pCmdData %p, *replySize %d, pReplyData: %p",pCmdData, *replySize, pReplyData);
272
273 if (pCmdData == NULL || cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)) ||
274 pReplyData == NULL || *replySize < (int) sizeof(effect_param_t)) {
275 return -EINVAL;
276 }
277 effect_param_t *rep = (effect_param_t *) pReplyData;
278 memcpy(pReplyData, pCmdData, sizeof(effect_param_t) + sizeof(int32_t));
279 LOGV("Reverb_Command EFFECT_CMD_GET_PARAM param %d, replySize %d",*(int32_t *)rep->data, rep->vsize);
280 rep->status = Reverb_getParameter(pReverb, *(int32_t *)rep->data, &rep->vsize,
281 rep->data + sizeof(int32_t));
282 *replySize = sizeof(effect_param_t) + sizeof(int32_t) + rep->vsize;
283 break;
284 case EFFECT_CMD_SET_PARAM:
285 LOGV("Reverb_Command EFFECT_CMD_SET_PARAM cmdSize %d pCmdData %p, *replySize %d, pReplyData %p",
286 cmdSize, pCmdData, *replySize, pReplyData);
287 if (pCmdData == NULL || (cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)))
288 || pReplyData == NULL || *replySize != (int)sizeof(int32_t)) {
289 return -EINVAL;
290 }
291 effect_param_t *cmd = (effect_param_t *) pCmdData;
292 *(int *)pReplyData = Reverb_setParameter(pReverb, *(int32_t *)cmd->data,
293 cmd->vsize, cmd->data + sizeof(int32_t));
294 break;
295 default:
296 LOGW("Reverb_Command invalid command %d",cmdCode);
297 return -EINVAL;
298 }
299
300 return 0;
301}
302
303
304/*----------------------------------------------------------------------------
305 * Reverb internal functions
306 *--------------------------------------------------------------------------*/
307
308/*----------------------------------------------------------------------------
309 * Reverb_Init()
310 *----------------------------------------------------------------------------
311 * Purpose:
312 * Initialize reverb context and apply default parameters
313 *
314 * Inputs:
315 * pRvbModule - pointer to reverb effect module
316 * aux - indicates if the reverb is used as auxiliary (1) or insert (0)
317 * preset - indicates if the reverb is used in preset (1) or environmental (0) mode
318 *
319 * Outputs:
320 *
321 * Side Effects:
322 *
323 *----------------------------------------------------------------------------
324 */
325
326int Reverb_Init(reverb_module_t *pRvbModule, int aux, int preset) {
327 int ret;
328
329 LOGV("Reverb_Init module %p, aux: %d, preset: %d", pRvbModule,aux, preset);
330
331 memset(&pRvbModule->context, 0, sizeof(reverb_object_t));
332
333 pRvbModule->context.m_Aux = (uint16_t)aux;
334 pRvbModule->context.m_Preset = (uint16_t)preset;
335
336 pRvbModule->config.inputCfg.samplingRate = 44100;
337 if (aux) {
338 pRvbModule->config.inputCfg.channels = CHANNEL_MONO;
339 } else {
340 pRvbModule->config.inputCfg.channels = CHANNEL_STEREO;
341 }
342 pRvbModule->config.inputCfg.format = PCM_FORMAT_S15;
343 pRvbModule->config.inputCfg.bufferProvider.getBuffer = NULL;
344 pRvbModule->config.inputCfg.bufferProvider.releaseBuffer = NULL;
345 pRvbModule->config.inputCfg.bufferProvider.cookie = NULL;
346 pRvbModule->config.inputCfg.accessMode = EFFECT_BUFFER_ACCESS_READ;
347 pRvbModule->config.inputCfg.mask = EFFECT_CONFIG_ALL;
348 pRvbModule->config.outputCfg.samplingRate = 44100;
349 pRvbModule->config.outputCfg.channels = CHANNEL_STEREO;
350 pRvbModule->config.outputCfg.format = PCM_FORMAT_S15;
351 pRvbModule->config.outputCfg.bufferProvider.getBuffer = NULL;
352 pRvbModule->config.outputCfg.bufferProvider.releaseBuffer = NULL;
353 pRvbModule->config.outputCfg.bufferProvider.cookie = NULL;
354 pRvbModule->config.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_ACCUMULATE;
355 pRvbModule->config.outputCfg.mask = EFFECT_CONFIG_ALL;
356
357 ret = Reverb_Configure(pRvbModule, &pRvbModule->config, true);
358 if (ret < 0) {
359 LOGV("Reverb_Init error %d on module %p", ret, pRvbModule);
360 }
361
362 return ret;
363}
364
365/*----------------------------------------------------------------------------
366 * Reverb_Init()
367 *----------------------------------------------------------------------------
368 * Purpose:
369 * Set input and output audio configuration.
370 *
371 * Inputs:
372 * pRvbModule - pointer to reverb effect module
373 * pConfig - pointer to effect_config_t structure containing input
374 * and output audio parameters configuration
375 * init - true if called from init function
376 * Outputs:
377 *
378 * Side Effects:
379 *
380 *----------------------------------------------------------------------------
381 */
382
383int Reverb_Configure(reverb_module_t *pRvbModule, effect_config_t *pConfig,
384 bool init) {
385 reverb_object_t *pReverb = &pRvbModule->context;
386 int bufferSizeInSamples;
387 int updatePeriodInSamples;
388 int xfadePeriodInSamples;
389
390 // Check configuration compatibility with build options
391 if (pConfig->inputCfg.samplingRate
392 != pConfig->outputCfg.samplingRate
393 || pConfig->outputCfg.channels != OUTPUT_CHANNELS
394 || pConfig->inputCfg.format != PCM_FORMAT_S15
395 || pConfig->outputCfg.format != PCM_FORMAT_S15) {
396 LOGV("Reverb_Configure invalid config");
397 return -EINVAL;
398 }
399 if ((pReverb->m_Aux && (pConfig->inputCfg.channels != CHANNEL_MONO)) ||
400 (!pReverb->m_Aux && (pConfig->inputCfg.channels != CHANNEL_STEREO))) {
401 LOGV("Reverb_Configure invalid config");
402 return -EINVAL;
403 }
404
405 memcpy(&pRvbModule->config, pConfig, sizeof(effect_config_t));
406
407 pReverb->m_nSamplingRate = pRvbModule->config.outputCfg.samplingRate;
408
409 switch (pReverb->m_nSamplingRate) {
410 case 8000:
411 pReverb->m_nUpdatePeriodInBits = 5;
412 bufferSizeInSamples = 4096;
413 pReverb->m_nCosWT_5KHz = -23170;
414 break;
415 case 16000:
416 pReverb->m_nUpdatePeriodInBits = 6;
417 bufferSizeInSamples = 8192;
418 pReverb->m_nCosWT_5KHz = -12540;
419 break;
420 case 22050:
421 pReverb->m_nUpdatePeriodInBits = 7;
422 bufferSizeInSamples = 8192;
423 pReverb->m_nCosWT_5KHz = 4768;
424 break;
425 case 32000:
426 pReverb->m_nUpdatePeriodInBits = 7;
427 bufferSizeInSamples = 16384;
428 pReverb->m_nCosWT_5KHz = 18205;
429 break;
430 case 44100:
431 pReverb->m_nUpdatePeriodInBits = 8;
432 bufferSizeInSamples = 16384;
433 pReverb->m_nCosWT_5KHz = 24799;
434 break;
435 case 48000:
436 pReverb->m_nUpdatePeriodInBits = 8;
437 bufferSizeInSamples = 16384;
438 pReverb->m_nCosWT_5KHz = 25997;
439 break;
440 default:
441 LOGV("Reverb_Configure invalid sampling rate %d", pReverb->m_nSamplingRate);
442 return -EINVAL;
443 }
444
445 // Define a mask for circular addressing, so that array index
446 // can wraparound and stay in array boundary of 0, 1, ..., (buffer size -1)
447 // The buffer size MUST be a power of two
448 pReverb->m_nBufferMask = (int32_t) (bufferSizeInSamples - 1);
449 /* reverb parameters are updated every 2^(pReverb->m_nUpdatePeriodInBits) samples */
450 updatePeriodInSamples = (int32_t) (0x1L << pReverb->m_nUpdatePeriodInBits);
451 /*
452 calculate the update counter by bitwise ANDING with this value to
453 generate a 2^n modulo value
454 */
455 pReverb->m_nUpdatePeriodInSamples = (int32_t) updatePeriodInSamples;
456
457 xfadePeriodInSamples = (int32_t) (REVERB_XFADE_PERIOD_IN_SECONDS
458 * (double) pReverb->m_nSamplingRate);
459
460 // set xfade parameters
461 pReverb->m_nPhaseIncrement
462 = (int16_t) (65536 / ((int16_t) xfadePeriodInSamples
463 / (int16_t) updatePeriodInSamples));
464
465 if (init) {
466 ReverbReadInPresets(pReverb);
467
468 // for debugging purposes, allow noise generator
469 pReverb->m_bUseNoise = true;
470
471 // for debugging purposes, allow bypass
472 pReverb->m_bBypass = false;
473
474 pReverb->m_nNextRoom = 1;
475
476 pReverb->m_nNoise = (int16_t) 0xABCD;
477 }
478
479 Reverb_Reset(pReverb, init);
480
481 return 0;
482}
483
484/*----------------------------------------------------------------------------
485 * Reverb_Reset()
486 *----------------------------------------------------------------------------
487 * Purpose:
488 * Reset internal states and clear delay lines.
489 *
490 * Inputs:
491 * pReverb - pointer to reverb context
492 * init - true if called from init function
493 *
494 * Outputs:
495 *
496 * Side Effects:
497 *
498 *----------------------------------------------------------------------------
499 */
500
501void Reverb_Reset(reverb_object_t *pReverb, bool init) {
502 int bufferSizeInSamples = (int32_t) (pReverb->m_nBufferMask + 1);
503 int maxApSamples;
504 int maxDelaySamples;
505 int maxEarlySamples;
506 int ap1In;
507 int delay0In;
508 int delay1In;
509 int32_t i;
510 uint16_t nOffset;
511
512 maxApSamples = ((int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16);
513 maxDelaySamples = ((int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
514 >> 16);
515 maxEarlySamples = ((int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
516 >> 16);
517
518 ap1In = (AP0_IN + maxApSamples + GUARD);
519 delay0In = (ap1In + maxApSamples + GUARD);
520 delay1In = (delay0In + maxDelaySamples + GUARD);
521 // Define the max offsets for the end points of each section
522 // i.e., we don't expect a given section's taps to go beyond
523 // the following limits
524
525 pReverb->m_nEarly0in = (delay1In + maxDelaySamples + GUARD);
526 pReverb->m_nEarly1in = (pReverb->m_nEarly0in + maxEarlySamples + GUARD);
527
528 pReverb->m_sAp0.m_zApIn = AP0_IN;
529
530 pReverb->m_zD0In = delay0In;
531
532 pReverb->m_sAp1.m_zApIn = ap1In;
533
534 pReverb->m_zD1In = delay1In;
535
536 pReverb->m_zOutLpfL = 0;
537 pReverb->m_zOutLpfR = 0;
538
539 pReverb->m_nRevFbkR = 0;
540 pReverb->m_nRevFbkL = 0;
541
542 // set base index into circular buffer
543 pReverb->m_nBaseIndex = 0;
544
545 // clear the reverb delay line
546 for (i = 0; i < bufferSizeInSamples; i++) {
547 pReverb->m_nDelayLine[i] = 0;
548 }
549
550 ReverbUpdateRoom(pReverb, init);
551
552 pReverb->m_nUpdateCounter = 0;
553
554 pReverb->m_nPhase = -32768;
555
556 pReverb->m_nSin = 0;
557 pReverb->m_nCos = 0;
558 pReverb->m_nSinIncrement = 0;
559 pReverb->m_nCosIncrement = 0;
560
561 // set delay tap lengths
562 nOffset = ReverbCalculateNoise(pReverb);
563
564 pReverb->m_zD1Cross = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
565 + nOffset;
566
567 nOffset = ReverbCalculateNoise(pReverb);
568
569 pReverb->m_zD0Cross = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
570 - nOffset;
571
572 nOffset = ReverbCalculateNoise(pReverb);
573
574 pReverb->m_zD0Self = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
575 - nOffset;
576
577 nOffset = ReverbCalculateNoise(pReverb);
578
579 pReverb->m_zD1Self = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
580 + nOffset;
581}
582
583/*----------------------------------------------------------------------------
584 * Reverb_getParameter()
585 *----------------------------------------------------------------------------
586 * Purpose:
587 * Get a Reverb parameter
588 *
589 * Inputs:
590 * pReverb - handle to instance data
591 * param - parameter
592 * pValue - pointer to variable to hold retrieved value
593 * pSize - pointer to value size: maximum size as input
594 *
595 * Outputs:
596 * *pValue updated with parameter value
597 * *pSize updated with actual value size
598 *
599 *
600 * Side Effects:
601 *
602 *----------------------------------------------------------------------------
603 */
604int Reverb_getParameter(reverb_object_t *pReverb, int32_t param, size_t *pSize,
605 void *pValue) {
606 int32_t *pValue32;
607 int16_t *pValue16;
608 t_reverb_properties *pProperties;
609 int32_t i;
610 int32_t temp;
611 int32_t temp2;
612 size_t size;
613
614 if (pReverb->m_Preset && param != REVERB_PARAM_PRESET) {
615 return -EINVAL;
616 }
617 if (!pReverb->m_Preset && param == REVERB_PARAM_PRESET) {
618 return -EINVAL;
619 }
620
621 switch (param) {
622 case REVERB_PARAM_ROOM_LEVEL:
623 case REVERB_PARAM_ROOM_HF_LEVEL:
624 case REVERB_PARAM_DECAY_HF_RATIO:
625 case REVERB_PARAM_REFLECTIONS_LEVEL:
626 case REVERB_PARAM_REVERB_LEVEL:
627 case REVERB_PARAM_DIFFUSION:
628 case REVERB_PARAM_DENSITY:
629 size = sizeof(int16_t);
630 break;
631
632 case REVERB_PARAM_BYPASS:
633 case REVERB_PARAM_PRESET:
634 case REVERB_PARAM_DECAY_TIME:
635 case REVERB_PARAM_REFLECTIONS_DELAY:
636 case REVERB_PARAM_REVERB_DELAY:
637 size = sizeof(int32_t);
638 break;
639
640 case REVERB_PARAM_PROPERTIES:
641 size = sizeof(t_reverb_properties);
642 break;
643
644 default:
645 return -EINVAL;
646 }
647
648 if (*pSize < size) {
649 return -EINVAL;
650 }
651 *pSize = size;
652 pValue32 = (int32_t *) pValue;
653 pValue16 = (int16_t *) pValue;
654 pProperties = (t_reverb_properties *) pValue;
655
656 switch (param) {
657 case REVERB_PARAM_BYPASS:
658 *(int32_t *) pValue = (int32_t) pReverb->m_bBypass;
659 break;
660 case REVERB_PARAM_PRESET:
661 *(int32_t *) pValue = (int8_t) pReverb->m_nCurrentRoom;
662 break;
663
664 case REVERB_PARAM_PROPERTIES:
665 pValue16 = &pProperties->roomLevel;
666 /* FALL THROUGH */
667
668 case REVERB_PARAM_ROOM_LEVEL:
669 // Convert m_nRoomLpfFwd to millibels
670 temp = (pReverb->m_nRoomLpfFwd << 15)
671 / (32767 - pReverb->m_nRoomLpfFbk);
672 *pValue16 = Effects_Linear16ToMillibels(temp);
673
674 LOGV("get REVERB_PARAM_ROOM_LEVEL %d, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", *pValue16, temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
675
676 if (param == REVERB_PARAM_ROOM_LEVEL) {
677 break;
678 }
679 pValue16 = &pProperties->roomHFLevel;
680 /* FALL THROUGH */
681
682 case REVERB_PARAM_ROOM_HF_LEVEL:
683 // The ratio between linear gain at 0Hz and at 5000Hz for the room low pass is:
684 // (1 + a1) / sqrt(a1^2 + 2*C*a1 + 1) where:
685 // - a1 is minus the LP feedback gain: -pReverb->m_nRoomLpfFbk
686 // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
687
688 temp = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFbk);
689 LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 %d", temp);
690 temp2 = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nCosWT_5KHz)
691 << 1;
692 LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, 2 Cos a1 %d", temp2);
693 temp = 32767 + temp - temp2;
694 LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 + 2 Cos a1 + 1 %d", temp);
695 temp = Effects_Sqrt(temp) * 181;
696 LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, SQRT(a1^2 + 2 Cos a1 + 1) %d", temp);
697 temp = ((32767 - pReverb->m_nRoomLpfFbk) << 15) / temp;
698
699 LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
700
701 *pValue16 = Effects_Linear16ToMillibels(temp);
702
703 if (param == REVERB_PARAM_ROOM_HF_LEVEL) {
704 break;
705 }
706 pValue32 = &pProperties->decayTime;
707 /* FALL THROUGH */
708
709 case REVERB_PARAM_DECAY_TIME:
710 // Calculate reverb feedback path gain
711 temp = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
712 temp = Effects_Linear16ToMillibels(temp);
713
714 // Calculate decay time: g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
715 temp = (-6000 * pReverb->m_nLateDelay) / temp;
716
717 // Convert samples to ms
718 *pValue32 = (temp * 1000) / pReverb->m_nSamplingRate;
719
720 LOGV("get REVERB_PARAM_DECAY_TIME, samples %d, ms %d", temp, *pValue32);
721
722 if (param == REVERB_PARAM_DECAY_TIME) {
723 break;
724 }
725 pValue16 = &pProperties->decayHFRatio;
726 /* FALL THROUGH */
727
728 case REVERB_PARAM_DECAY_HF_RATIO:
729 // If r is the decay HF ratio (r = REVERB_PARAM_DECAY_HF_RATIO/1000) we have:
730 // DT_5000Hz = DT_0Hz * r
731 // and G_5000Hz = -6000 * d / DT_5000Hz and G_0Hz = -6000 * d / DT_0Hz in millibels so :
732 // r = G_0Hz/G_5000Hz in millibels
733 // The linear gain at 5000Hz is b0 / sqrt(a1^2 + 2*C*a1 + 1) where:
734 // - a1 is minus the LP feedback gain: -pReverb->m_nRvbLpfFbk
735 // - b0 is the LP forward gain: pReverb->m_nRvbLpfFwd
736 // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
737 if (pReverb->m_nRvbLpfFbk == 0) {
738 *pValue16 = 1000;
739 LOGV("get REVERB_PARAM_DECAY_HF_RATIO, pReverb->m_nRvbLpfFbk == 0, ratio %d", *pValue16);
740 } else {
741 temp = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFbk);
742 temp2 = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nCosWT_5KHz)
743 << 1;
744 temp = 32767 + temp - temp2;
745 temp = Effects_Sqrt(temp) * 181;
746 temp = (pReverb->m_nRvbLpfFwd << 15) / temp;
747 // The linear gain at 0Hz is b0 / (a1 + 1)
748 temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767
749 - pReverb->m_nRvbLpfFbk);
750
751 temp = Effects_Linear16ToMillibels(temp);
752 temp2 = Effects_Linear16ToMillibels(temp2);
753 LOGV("get REVERB_PARAM_DECAY_HF_RATIO, gain 5KHz %d mB, gain DC %d mB", temp, temp2);
754
755 if (temp == 0)
756 temp = 1;
757 temp = (int16_t) ((1000 * temp2) / temp);
758 if (temp > 1000)
759 temp = 1000;
760
761 *pValue16 = temp;
762 LOGV("get REVERB_PARAM_DECAY_HF_RATIO, ratio %d", *pValue16);
763 }
764
765 if (param == REVERB_PARAM_DECAY_HF_RATIO) {
766 break;
767 }
768 pValue16 = &pProperties->reflectionsLevel;
769 /* FALL THROUGH */
770
771 case REVERB_PARAM_REFLECTIONS_LEVEL:
772 *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nEarlyGain);
773
774 LOGV("get REVERB_PARAM_REFLECTIONS_LEVEL, %d", *pValue16);
775 if (param == REVERB_PARAM_REFLECTIONS_LEVEL) {
776 break;
777 }
778 pValue32 = &pProperties->reflectionsDelay;
779 /* FALL THROUGH */
780
781 case REVERB_PARAM_REFLECTIONS_DELAY:
782 // convert samples to ms
783 *pValue32 = (pReverb->m_nEarlyDelay * 1000) / pReverb->m_nSamplingRate;
784
785 LOGV("get REVERB_PARAM_REFLECTIONS_DELAY, samples %d, ms %d", pReverb->m_nEarlyDelay, *pValue32);
786
787 if (param == REVERB_PARAM_REFLECTIONS_DELAY) {
788 break;
789 }
790 pValue16 = &pProperties->reverbLevel;
791 /* FALL THROUGH */
792
793 case REVERB_PARAM_REVERB_LEVEL:
794 // Convert linear gain to millibels
795 *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nLateGain << 2);
796
797 LOGV("get REVERB_PARAM_REVERB_LEVEL %d", *pValue16);
798
799 if (param == REVERB_PARAM_REVERB_LEVEL) {
800 break;
801 }
802 pValue32 = &pProperties->reverbDelay;
803 /* FALL THROUGH */
804
805 case REVERB_PARAM_REVERB_DELAY:
806 // convert samples to ms
807 *pValue32 = (pReverb->m_nLateDelay * 1000) / pReverb->m_nSamplingRate;
808
809 LOGV("get REVERB_PARAM_REVERB_DELAY, samples %d, ms %d", pReverb->m_nLateDelay, *pValue32);
810
811 if (param == REVERB_PARAM_REVERB_DELAY) {
812 break;
813 }
814 pValue16 = &pProperties->diffusion;
815 /* FALL THROUGH */
816
817 case REVERB_PARAM_DIFFUSION:
818 temp = (int16_t) ((1000 * (pReverb->m_sAp0.m_nApGain - AP0_GAIN_BASE))
819 / AP0_GAIN_RANGE);
820
821 if (temp < 0)
822 temp = 0;
823 if (temp > 1000)
824 temp = 1000;
825
826 *pValue16 = temp;
827 LOGV("get REVERB_PARAM_DIFFUSION, %d, AP0 gain %d", *pValue16, pReverb->m_sAp0.m_nApGain);
828
829 if (param == REVERB_PARAM_DIFFUSION) {
830 break;
831 }
832 pValue16 = &pProperties->density;
833 /* FALL THROUGH */
834
835 case REVERB_PARAM_DENSITY:
836 // Calculate AP delay in time units
837 temp = ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn) << 16)
838 / pReverb->m_nSamplingRate;
839
840 temp = (int16_t) ((1000 * (temp - AP0_TIME_BASE)) / AP0_TIME_RANGE);
841
842 if (temp < 0)
843 temp = 0;
844 if (temp > 1000)
845 temp = 1000;
846
847 *pValue16 = temp;
848
849 LOGV("get REVERB_PARAM_DENSITY, %d, AP0 delay smps %d", *pValue16, pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn);
850 break;
851
852 default:
853 break;
854 }
855
856 LOGV("Reverb_getParameter, context %p, param %d, value %d",
857 pReverb, param, *(int *)pValue);
858
859 return 0;
860} /* end Reverb_getParameter */
861
862/*----------------------------------------------------------------------------
863 * Reverb_setParameter()
864 *----------------------------------------------------------------------------
865 * Purpose:
866 * Set a Reverb parameter
867 *
868 * Inputs:
869 * pReverb - handle to instance data
870 * param - parameter
871 * pValue - pointer to parameter value
872 * size - value size
873 *
874 * Outputs:
875 *
876 *
877 * Side Effects:
878 *
879 *----------------------------------------------------------------------------
880 */
881int Reverb_setParameter(reverb_object_t *pReverb, int32_t param, size_t size,
882 void *pValue) {
883 int32_t value32;
884 int16_t value16;
885 t_reverb_properties *pProperties;
886 int32_t i;
887 int32_t temp;
888 int32_t temp2;
889 reverb_preset_t *pPreset;
890 int maxSamples;
891 int32_t averageDelay;
892 size_t paramSize;
893
894 LOGV("Reverb_setParameter, context %p, param %d, value16 %d, value32 %d",
895 pReverb, param, *(int16_t *)pValue, *(int32_t *)pValue);
896
897 if (pReverb->m_Preset && param != REVERB_PARAM_PRESET) {
898 return -EINVAL;
899 }
900 if (!pReverb->m_Preset && param == REVERB_PARAM_PRESET) {
901 return -EINVAL;
902 }
903
904 switch (param) {
905 case REVERB_PARAM_ROOM_LEVEL:
906 case REVERB_PARAM_ROOM_HF_LEVEL:
907 case REVERB_PARAM_DECAY_HF_RATIO:
908 case REVERB_PARAM_REFLECTIONS_LEVEL:
909 case REVERB_PARAM_REVERB_LEVEL:
910 case REVERB_PARAM_DIFFUSION:
911 case REVERB_PARAM_DENSITY:
912 paramSize = sizeof(int16_t);
913 break;
914
915 case REVERB_PARAM_BYPASS:
916 case REVERB_PARAM_PRESET:
917 case REVERB_PARAM_DECAY_TIME:
918 case REVERB_PARAM_REFLECTIONS_DELAY:
919 case REVERB_PARAM_REVERB_DELAY:
920 paramSize = sizeof(int32_t);
921 break;
922
923 case REVERB_PARAM_PROPERTIES:
924 paramSize = sizeof(t_reverb_properties);
925 break;
926
927 default:
928 return -EINVAL;
929 }
930
931 if (size != paramSize) {
932 return -EINVAL;
933 }
934
935 if (paramSize == sizeof(int16_t)) {
936 value16 = *(int16_t *) pValue;
937 } else if (paramSize == sizeof(int32_t)) {
938 value32 = *(int32_t *) pValue;
939 } else {
940 pProperties = (t_reverb_properties *) pValue;
941 }
942
943 pPreset = &pReverb->m_sPreset.m_sPreset[pReverb->m_nCurrentRoom];
944
945 switch (param) {
946 case REVERB_PARAM_BYPASS:
947 pReverb->m_bBypass = (uint16_t)value32;
948 break;
949 case REVERB_PARAM_PRESET:
950 if (value32 != REVERB_PRESET_LARGE_HALL && value32
951 != REVERB_PRESET_HALL && value32 != REVERB_PRESET_CHAMBER
952 && value32 != REVERB_PRESET_ROOM)
953 return -EINVAL;
954 pReverb->m_nNextRoom = (int16_t) value32;
955 break;
956
957 case REVERB_PARAM_PROPERTIES:
958 value16 = pProperties->roomLevel;
959 /* FALL THROUGH */
960
961 case REVERB_PARAM_ROOM_LEVEL:
962 // Convert millibels to linear 16 bit signed => m_nRoomLpfFwd
963 if (value16 > 0)
964 return -EINVAL;
965
966 temp = Effects_MillibelsToLinear16(value16);
967
968 pReverb->m_nRoomLpfFwd
969 = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRoomLpfFbk));
970
971 LOGV("REVERB_PARAM_ROOM_LEVEL, gain %d, new m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
972 if (param == REVERB_PARAM_ROOM_LEVEL)
973 break;
974 value16 = pProperties->roomHFLevel;
975 /* FALL THROUGH */
976
977 case REVERB_PARAM_ROOM_HF_LEVEL:
978
979 // Limit to 0 , -40dB range because of low pass implementation
980 if (value16 > 0 || value16 < -4000)
981 return -EINVAL;
982 // Convert attenuation @ 5000H expressed in millibels to => m_nRoomLpfFbk
983 // m_nRoomLpfFbk is -a1 where a1 is the solution of:
984 // a1^2 + 2*(C-dG^2)/(1-dG^2)*a1 + 1 = 0 where:
985 // - C is cos(2*pi*5000/Fs) (pReverb->m_nCosWT_5KHz)
986 // - dG is G0/Gf (G0 is the linear gain at DC and Gf is the wanted gain at 5000Hz)
987
988 // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
989 // while changing HF level
990 temp2 = (pReverb->m_nRoomLpfFwd << 15) / (32767
991 - pReverb->m_nRoomLpfFbk);
992 if (value16 == 0) {
993 pReverb->m_nRoomLpfFbk = 0;
994 } else {
995 int32_t dG2, b, delta;
996
997 // dG^2
998 temp = Effects_MillibelsToLinear16(value16);
999 LOGV("REVERB_PARAM_ROOM_HF_LEVEL, HF gain %d", temp);
1000 temp = (1 << 30) / temp;
1001 LOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain %d", temp);
1002 dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
1003 LOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain ^ 2 %d", dG2);
1004 // b = 2*(C-dG^2)/(1-dG^2)
1005 b = (int32_t) ((((int64_t) 1 << (15 + 1))
1006 * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
1007 / ((int64_t) 32767 - (int64_t) dG2));
1008
1009 // delta = b^2 - 4
1010 delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
1011 + 2)));
1012
1013 LOGV_IF(delta > (1<<30), " delta overflow %d", delta);
1014
1015 LOGV("REVERB_PARAM_ROOM_HF_LEVEL, dG2 %d, b %d, delta %d, m_nCosWT_5KHz %d", dG2, b, delta, pReverb->m_nCosWT_5KHz);
1016 // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
1017 pReverb->m_nRoomLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
1018 }
1019 LOGV("REVERB_PARAM_ROOM_HF_LEVEL, olg DC gain %d new m_nRoomLpfFbk %d, old m_nRoomLpfFwd %d",
1020 temp2, pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFwd);
1021
1022 pReverb->m_nRoomLpfFwd
1023 = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRoomLpfFbk));
1024 LOGV("REVERB_PARAM_ROOM_HF_LEVEL, new m_nRoomLpfFwd %d", pReverb->m_nRoomLpfFwd);
1025
1026 if (param == REVERB_PARAM_ROOM_HF_LEVEL)
1027 break;
1028 value32 = pProperties->decayTime;
1029 /* FALL THROUGH */
1030
1031 case REVERB_PARAM_DECAY_TIME:
1032
1033 // Convert milliseconds to => m_nRvbLpfFwd (function of m_nRvbLpfFbk)
1034 // convert ms to samples
1035 value32 = (value32 * pReverb->m_nSamplingRate) / 1000;
1036 // calculate valid decay time range as a function of current reverb delay and
1037 // max feed back gain. Min value <=> -40dB in one pass, Max value <=> feedback gain = -1 dB
1038 // Calculate attenuation for each round in late reverb given a total attenuation of -6000 millibels.
1039 // g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
1040 averageDelay = pReverb->m_nLateDelay - pReverb->m_nMaxExcursion;
1041 averageDelay += ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn)
1042 + (pReverb->m_sAp1.m_zApOut - pReverb->m_sAp1.m_zApIn)) >> 1;
1043
1044 temp = (-6000 * averageDelay) / value32;
1045 LOGV("REVERB_PARAM_DECAY_TIME, delay smps %d, DT smps %d, gain mB %d",averageDelay, value32, temp);
1046 if (temp < -4000 || temp > -100)
1047 return -EINVAL;
1048
1049 // calculate low pass gain by adding reverb input attenuation (pReverb->m_nLateGain) and substrating output
1050 // xfade and sum gain (max +9dB)
1051 temp -= Effects_Linear16ToMillibels(pReverb->m_nLateGain) + 900;
1052 temp = Effects_MillibelsToLinear16(temp);
1053
1054 // DC gain (temp) = b0 / (1 + a1) = pReverb->m_nRvbLpfFwd / (32767 - pReverb->m_nRvbLpfFbk)
1055 pReverb->m_nRvbLpfFwd
1056 = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRvbLpfFbk));
1057
1058 LOGV("REVERB_PARAM_DECAY_TIME, gain %d, new m_nRvbLpfFwd %d, old m_nRvbLpfFbk %d, reverb gain %d", temp, pReverb->m_nRvbLpfFwd, pReverb->m_nRvbLpfFbk, Effects_Linear16ToMillibels(pReverb->m_nLateGain));
1059
1060 if (param == REVERB_PARAM_DECAY_TIME)
1061 break;
1062 value16 = pProperties->decayHFRatio;
1063 /* FALL THROUGH */
1064
1065 case REVERB_PARAM_DECAY_HF_RATIO:
1066
1067 // We limit max value to 1000 because reverb filter is lowpass only
1068 if (value16 < 100 || value16 > 1000)
1069 return -EINVAL;
1070 // Convert per mille to => m_nLpfFwd, m_nLpfFbk
1071
1072 // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
1073 // while changing HF level
1074 temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
1075
1076 if (value16 == 1000) {
1077 pReverb->m_nRvbLpfFbk = 0;
1078 } else {
1079 int32_t dG2, b, delta;
1080
1081 temp = Effects_Linear16ToMillibels(temp2);
1082 // G_5000Hz = G_DC * (1000/REVERB_PARAM_DECAY_HF_RATIO) in millibels
1083
1084 value32 = ((int32_t) 1000 << 15) / (int32_t) value16;
1085 LOGV("REVERB_PARAM_DECAY_HF_RATIO, DC gain %d, DC gain mB %d, 1000/R %d", temp2, temp, value32);
1086
1087 temp = (int32_t) (((int64_t) temp * (int64_t) value32) >> 15);
1088
1089 if (temp < -4000) {
1090 LOGV("REVERB_PARAM_DECAY_HF_RATIO HF gain overflow %d mB", temp);
1091 temp = -4000;
1092 }
1093
1094 temp = Effects_MillibelsToLinear16(temp);
1095 LOGV("REVERB_PARAM_DECAY_HF_RATIO, HF gain %d", temp);
1096 // dG^2
1097 temp = (temp2 << 15) / temp;
1098 dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
1099
1100 // b = 2*(C-dG^2)/(1-dG^2)
1101 b = (int32_t) ((((int64_t) 1 << (15 + 1))
1102 * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
1103 / ((int64_t) 32767 - (int64_t) dG2));
1104
1105 // delta = b^2 - 4
1106 delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
1107 + 2)));
1108
1109 // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
1110 pReverb->m_nRvbLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
1111
1112 LOGV("REVERB_PARAM_DECAY_HF_RATIO, dG2 %d, b %d, delta %d", dG2, b, delta);
1113
1114 }
1115
1116 LOGV("REVERB_PARAM_DECAY_HF_RATIO, gain %d, m_nRvbLpfFbk %d, m_nRvbLpfFwd %d", temp2, pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFwd);
1117
1118 pReverb->m_nRvbLpfFwd
1119 = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRvbLpfFbk));
1120
1121 if (param == REVERB_PARAM_DECAY_HF_RATIO)
1122 break;
1123 value16 = pProperties->reflectionsLevel;
1124 /* FALL THROUGH */
1125
1126 case REVERB_PARAM_REFLECTIONS_LEVEL:
1127 // We limit max value to 0 because gain is limited to 0dB
1128 if (value16 > 0 || value16 < -6000)
1129 return -EINVAL;
1130
1131 // Convert millibels to linear 16 bit signed and recompute m_sEarlyL.m_nGain[i] and m_sEarlyR.m_nGain[i].
1132 value16 = Effects_MillibelsToLinear16(value16);
1133 for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1134 pReverb->m_sEarlyL.m_nGain[i]
1135 = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],value16);
1136 pReverb->m_sEarlyR.m_nGain[i]
1137 = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],value16);
1138 }
1139 pReverb->m_nEarlyGain = value16;
1140 LOGV("REVERB_PARAM_REFLECTIONS_LEVEL, m_nEarlyGain %d", pReverb->m_nEarlyGain);
1141
1142 if (param == REVERB_PARAM_REFLECTIONS_LEVEL)
1143 break;
1144 value32 = pProperties->reflectionsDelay;
1145 /* FALL THROUGH */
1146
1147 case REVERB_PARAM_REFLECTIONS_DELAY:
1148 // We limit max value MAX_EARLY_TIME
1149 // convert ms to time units
1150 temp = (value32 * 65536) / 1000;
1151 if (temp < 0 || temp > MAX_EARLY_TIME)
1152 return -EINVAL;
1153
1154 maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
1155 >> 16;
1156 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1157 for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1158 temp2 = temp + (((int32_t) pPreset->m_sEarlyL.m_zDelay[i]
1159 * pReverb->m_nSamplingRate) >> 16);
1160 if (temp2 > maxSamples)
1161 temp2 = maxSamples;
1162 pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp2;
1163 temp2 = temp + (((int32_t) pPreset->m_sEarlyR.m_zDelay[i]
1164 * pReverb->m_nSamplingRate) >> 16);
1165 if (temp2 > maxSamples)
1166 temp2 = maxSamples;
1167 pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp2;
1168 }
1169 pReverb->m_nEarlyDelay = temp;
1170
1171 LOGV("REVERB_PARAM_REFLECTIONS_DELAY, m_nEarlyDelay smps %d max smp delay %d", pReverb->m_nEarlyDelay, maxSamples);
1172
1173 // Convert milliseconds to sample count => m_nEarlyDelay
1174 if (param == REVERB_PARAM_REFLECTIONS_DELAY)
1175 break;
1176 value16 = pProperties->reverbLevel;
1177 /* FALL THROUGH */
1178
1179 case REVERB_PARAM_REVERB_LEVEL:
1180 // We limit max value to 0 because gain is limited to 0dB
1181 if (value16 > 0 || value16 < -6000)
1182 return -EINVAL;
1183 // Convert millibels to linear 16 bits (gange 0 - 8191) => m_nLateGain.
1184 pReverb->m_nLateGain = Effects_MillibelsToLinear16(value16) >> 2;
1185
1186 LOGV("REVERB_PARAM_REVERB_LEVEL, m_nLateGain %d", pReverb->m_nLateGain);
1187
1188 if (param == REVERB_PARAM_REVERB_LEVEL)
1189 break;
1190 value32 = pProperties->reverbDelay;
1191 /* FALL THROUGH */
1192
1193 case REVERB_PARAM_REVERB_DELAY:
1194 // We limit max value to MAX_DELAY_TIME
1195 // convert ms to time units
1196 temp = (value32 * 65536) / 1000;
1197 if (temp < 0 || temp > MAX_DELAY_TIME)
1198 return -EINVAL;
1199
1200 maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
1201 >> 16;
1202 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1203 if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
1204 temp = maxSamples - pReverb->m_nMaxExcursion;
1205 }
1206 if (temp < pReverb->m_nMaxExcursion) {
1207 temp = pReverb->m_nMaxExcursion;
1208 }
1209
1210 temp -= pReverb->m_nLateDelay;
1211 pReverb->m_nDelay0Out += temp;
1212 pReverb->m_nDelay1Out += temp;
1213 pReverb->m_nLateDelay += temp;
1214
1215 LOGV("REVERB_PARAM_REVERB_DELAY, m_nLateDelay smps %d max smp delay %d", pReverb->m_nLateDelay, maxSamples);
1216
1217 // Convert milliseconds to sample count => m_nDelay1Out + m_nMaxExcursion
1218 if (param == REVERB_PARAM_REVERB_DELAY)
1219 break;
1220
1221 value16 = pProperties->diffusion;
1222 /* FALL THROUGH */
1223
1224 case REVERB_PARAM_DIFFUSION:
1225 if (value16 < 0 || value16 > 1000)
1226 return -EINVAL;
1227
1228 // Convert per mille to m_sAp0.m_nApGain, m_sAp1.m_nApGain
1229 pReverb->m_sAp0.m_nApGain = AP0_GAIN_BASE + ((int32_t) value16
1230 * AP0_GAIN_RANGE) / 1000;
1231 pReverb->m_sAp1.m_nApGain = AP1_GAIN_BASE + ((int32_t) value16
1232 * AP1_GAIN_RANGE) / 1000;
1233
1234 LOGV("REVERB_PARAM_DIFFUSION, m_sAp0.m_nApGain %d m_sAp1.m_nApGain %d", pReverb->m_sAp0.m_nApGain, pReverb->m_sAp1.m_nApGain);
1235
1236 if (param == REVERB_PARAM_DIFFUSION)
1237 break;
1238
1239 value16 = pProperties->density;
1240 /* FALL THROUGH */
1241
1242 case REVERB_PARAM_DENSITY:
1243 if (value16 < 0 || value16 > 1000)
1244 return -EINVAL;
1245
1246 // Convert per mille to m_sAp0.m_zApOut, m_sAp1.m_zApOut
1247 maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
1248
1249 temp = AP0_TIME_BASE + ((int32_t) value16 * AP0_TIME_RANGE) / 1000;
1250 /*lint -e{702} shift for performance */
1251 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1252 if (temp > maxSamples)
1253 temp = maxSamples;
1254 pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
1255
1256 LOGV("REVERB_PARAM_DENSITY, Ap0 delay smps %d", temp);
1257
1258 temp = AP1_TIME_BASE + ((int32_t) value16 * AP1_TIME_RANGE) / 1000;
1259 /*lint -e{702} shift for performance */
1260 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1261 if (temp > maxSamples)
1262 temp = maxSamples;
1263 pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
1264
1265 LOGV("Ap1 delay smps %d", temp);
1266
1267 break;
1268
1269 default:
1270 break;
1271 }
1272 return 0;
1273} /* end Reverb_setParameter */
1274
1275/*----------------------------------------------------------------------------
1276 * ReverbUpdateXfade
1277 *----------------------------------------------------------------------------
1278 * Purpose:
1279 * Update the xfade parameters as required
1280 *
1281 * Inputs:
1282 * nNumSamplesToAdd - number of samples to write to buffer
1283 *
1284 * Outputs:
1285 *
1286 *
1287 * Side Effects:
1288 * - xfade parameters will be changed
1289 *
1290 *----------------------------------------------------------------------------
1291 */
1292static int ReverbUpdateXfade(reverb_object_t *pReverb, int nNumSamplesToAdd) {
1293 uint16_t nOffset;
1294 int16_t tempCos;
1295 int16_t tempSin;
1296
1297 if (pReverb->m_nXfadeCounter >= pReverb->m_nXfadeInterval) {
1298 /* update interval has elapsed, so reset counter */
1299 pReverb->m_nXfadeCounter = 0;
1300
1301 // Pin the sin,cos values to min / max values to ensure that the
1302 // modulated taps' coefs are zero (thus no clicks)
1303 if (pReverb->m_nPhaseIncrement > 0) {
1304 // if phase increment > 0, then sin -> 1, cos -> 0
1305 pReverb->m_nSin = 32767;
1306 pReverb->m_nCos = 0;
1307
1308 // reset the phase to match the sin, cos values
1309 pReverb->m_nPhase = 32767;
1310
1311 // modulate the cross taps because their tap coefs are zero
1312 nOffset = ReverbCalculateNoise(pReverb);
1313
1314 pReverb->m_zD1Cross = pReverb->m_nDelay1Out
1315 - pReverb->m_nMaxExcursion + nOffset;
1316
1317 nOffset = ReverbCalculateNoise(pReverb);
1318
1319 pReverb->m_zD0Cross = pReverb->m_nDelay0Out
1320 - pReverb->m_nMaxExcursion - nOffset;
1321 } else {
1322 // if phase increment < 0, then sin -> 0, cos -> 1
1323 pReverb->m_nSin = 0;
1324 pReverb->m_nCos = 32767;
1325
1326 // reset the phase to match the sin, cos values
1327 pReverb->m_nPhase = -32768;
1328
1329 // modulate the self taps because their tap coefs are zero
1330 nOffset = ReverbCalculateNoise(pReverb);
1331
1332 pReverb->m_zD0Self = pReverb->m_nDelay0Out
1333 - pReverb->m_nMaxExcursion - nOffset;
1334
1335 nOffset = ReverbCalculateNoise(pReverb);
1336
1337 pReverb->m_zD1Self = pReverb->m_nDelay1Out
1338 - pReverb->m_nMaxExcursion + nOffset;
1339
1340 } // end if-else (pReverb->m_nPhaseIncrement > 0)
1341
1342 // Reverse the direction of the sin,cos so that the
1343 // tap whose coef was previously increasing now decreases
1344 // and vice versa
1345 pReverb->m_nPhaseIncrement = -pReverb->m_nPhaseIncrement;
1346
1347 } // end if counter >= update interval
1348
1349 //compute what phase will be next time
1350 pReverb->m_nPhase += pReverb->m_nPhaseIncrement;
1351
1352 //calculate what the new sin and cos need to reach by the next update
1353 ReverbCalculateSinCos(pReverb->m_nPhase, &tempSin, &tempCos);
1354
1355 //calculate the per-sample increment required to get there by the next update
1356 /*lint -e{702} shift for performance */
1357 pReverb->m_nSinIncrement = (tempSin - pReverb->m_nSin)
1358 >> pReverb->m_nUpdatePeriodInBits;
1359
1360 /*lint -e{702} shift for performance */
1361 pReverb->m_nCosIncrement = (tempCos - pReverb->m_nCos)
1362 >> pReverb->m_nUpdatePeriodInBits;
1363
1364 /* increment update counter */
1365 pReverb->m_nXfadeCounter += (uint16_t) nNumSamplesToAdd;
1366
1367 return 0;
1368
1369} /* end ReverbUpdateXfade */
1370
1371/*----------------------------------------------------------------------------
1372 * ReverbCalculateNoise
1373 *----------------------------------------------------------------------------
1374 * Purpose:
1375 * Calculate a noise sample and limit its value
1376 *
1377 * Inputs:
1378 * nMaxExcursion - noise value is limited to this value
1379 * pnNoise - return new noise sample in this (not limited)
1380 *
1381 * Outputs:
1382 * new limited noise value
1383 *
1384 * Side Effects:
1385 * - *pnNoise noise value is updated
1386 *
1387 *----------------------------------------------------------------------------
1388 */
1389static uint16_t ReverbCalculateNoise(reverb_object_t *pReverb) {
1390 int16_t nNoise = pReverb->m_nNoise;
1391
1392 // calculate new noise value
1393 if (pReverb->m_bUseNoise) {
1394 nNoise = (int16_t) (nNoise * 5 + 1);
1395 } else {
1396 nNoise = 0;
1397 }
1398
1399 pReverb->m_nNoise = nNoise;
1400 // return the limited noise value
1401 return (pReverb->m_nMaxExcursion & nNoise);
1402
1403} /* end ReverbCalculateNoise */
1404
1405/*----------------------------------------------------------------------------
1406 * ReverbCalculateSinCos
1407 *----------------------------------------------------------------------------
1408 * Purpose:
1409 * Calculate a new sin and cosine value based on the given phase
1410 *
1411 * Inputs:
1412 * nPhase - phase angle
1413 * pnSin - input old value, output new value
1414 * pnCos - input old value, output new value
1415 *
1416 * Outputs:
1417 *
1418 * Side Effects:
1419 * - *pnSin, *pnCos are updated
1420 *
1421 *----------------------------------------------------------------------------
1422 */
1423static int ReverbCalculateSinCos(int16_t nPhase, int16_t *pnSin, int16_t *pnCos) {
1424 int32_t nTemp;
1425 int32_t nNetAngle;
1426
1427 // -1 <= nPhase < 1
1428 // However, for the calculation, we need a value
1429 // that ranges from -1/2 to +1/2, so divide the phase by 2
1430 /*lint -e{702} shift for performance */
1431 nNetAngle = nPhase >> 1;
1432
1433 /*
1434 Implement the following
1435 sin(x) = (2-4*c)*x^2 + c + x
1436 cos(x) = (2-4*c)*x^2 + c - x
1437
1438 where c = 1/sqrt(2)
1439 using the a0 + x*(a1 + x*a2) approach
1440 */
1441
1442 /* limit the input "angle" to be between -0.5 and +0.5 */
1443 if (nNetAngle > EG1_HALF) {
1444 nNetAngle = EG1_HALF;
1445 } else if (nNetAngle < EG1_MINUS_HALF) {
1446 nNetAngle = EG1_MINUS_HALF;
1447 }
1448
1449 /* calculate sin */
1450 nTemp = EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
1451 nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
1452 *pnSin = (int16_t) SATURATE_EG1(nTemp);
1453
1454 /* calculate cos */
1455 nTemp = -EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
1456 nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
1457 *pnCos = (int16_t) SATURATE_EG1(nTemp);
1458
1459 return 0;
1460} /* end ReverbCalculateSinCos */
1461
1462/*----------------------------------------------------------------------------
1463 * Reverb
1464 *----------------------------------------------------------------------------
1465 * Purpose:
1466 * apply reverb to the given signal
1467 *
1468 * Inputs:
1469 * nNu
1470 * pnSin - input old value, output new value
1471 * pnCos - input old value, output new value
1472 *
1473 * Outputs:
1474 * number of samples actually reverberated
1475 *
1476 * Side Effects:
1477 *
1478 *----------------------------------------------------------------------------
1479 */
1480static int Reverb(reverb_object_t *pReverb, int nNumSamplesToAdd,
1481 short *pOutputBuffer, short *pInputBuffer) {
1482 int32_t i;
1483 int32_t nDelayOut0;
1484 int32_t nDelayOut1;
1485 uint16_t nBase;
1486
1487 uint32_t nAddr;
1488 int32_t nTemp1;
1489 int32_t nTemp2;
1490 int32_t nApIn;
1491 int32_t nApOut;
1492
1493 int32_t j;
1494 int32_t nEarlyOut;
1495
1496 int32_t tempValue;
1497
1498 // get the base address
1499 nBase = pReverb->m_nBaseIndex;
1500
1501 for (i = 0; i < nNumSamplesToAdd; i++) {
1502 // ********** Left Allpass - start
1503 nApIn = *pInputBuffer;
1504 if (!pReverb->m_Aux) {
1505 pInputBuffer++;
1506 }
1507 // store to early delay line
1508 nAddr = CIRCULAR(nBase, pReverb->m_nEarly0in, pReverb->m_nBufferMask);
1509 pReverb->m_nDelayLine[nAddr] = (short) nApIn;
1510
1511 // left input = (left dry * m_nLateGain) + right feedback from previous period
1512
1513 nApIn = SATURATE(nApIn + pReverb->m_nRevFbkR);
1514 nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
1515
1516 // fetch allpass delay line out
1517 //nAddr = CIRCULAR(nBase, psAp0->m_zApOut, pReverb->m_nBufferMask);
1518 nAddr
1519 = CIRCULAR(nBase, pReverb->m_sAp0.m_zApOut, pReverb->m_nBufferMask);
1520 nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1521
1522 // calculate allpass feedforward; subtract the feedforward result
1523 nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp0.m_nApGain);
1524 nApOut = SATURATE(nDelayOut0 - nTemp1); // allpass output
1525
1526 // calculate allpass feedback; add the feedback result
1527 nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp0.m_nApGain);
1528 nTemp1 = SATURATE(nApIn + nTemp1);
1529
1530 // inject into allpass delay
1531 nAddr
1532 = CIRCULAR(nBase, pReverb->m_sAp0.m_zApIn, pReverb->m_nBufferMask);
1533 pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
1534
1535 // inject allpass output into delay line
1536 nAddr = CIRCULAR(nBase, pReverb->m_zD0In, pReverb->m_nBufferMask);
1537 pReverb->m_nDelayLine[nAddr] = (short) nApOut;
1538
1539 // ********** Left Allpass - end
1540
1541 // ********** Right Allpass - start
1542 nApIn = (*pInputBuffer++);
1543 // store to early delay line
1544 nAddr = CIRCULAR(nBase, pReverb->m_nEarly1in, pReverb->m_nBufferMask);
1545 pReverb->m_nDelayLine[nAddr] = (short) nApIn;
1546
1547 // right input = (right dry * m_nLateGain) + left feedback from previous period
1548 /*lint -e{702} use shift for performance */
1549 nApIn = SATURATE(nApIn + pReverb->m_nRevFbkL);
1550 nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
1551
1552 // fetch allpass delay line out
1553 nAddr
1554 = CIRCULAR(nBase, pReverb->m_sAp1.m_zApOut, pReverb->m_nBufferMask);
1555 nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1556
1557 // calculate allpass feedforward; subtract the feedforward result
1558 nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp1.m_nApGain);
1559 nApOut = SATURATE(nDelayOut1 - nTemp1); // allpass output
1560
1561 // calculate allpass feedback; add the feedback result
1562 nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp1.m_nApGain);
1563 nTemp1 = SATURATE(nApIn + nTemp1);
1564
1565 // inject into allpass delay
1566 nAddr
1567 = CIRCULAR(nBase, pReverb->m_sAp1.m_zApIn, pReverb->m_nBufferMask);
1568 pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
1569
1570 // inject allpass output into delay line
1571 nAddr = CIRCULAR(nBase, pReverb->m_zD1In, pReverb->m_nBufferMask);
1572 pReverb->m_nDelayLine[nAddr] = (short) nApOut;
1573
1574 // ********** Right Allpass - end
1575
1576 // ********** D0 output - start
1577 // fetch delay line self out
1578 nAddr = CIRCULAR(nBase, pReverb->m_zD0Self, pReverb->m_nBufferMask);
1579 nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1580
1581 // calculate delay line self out
1582 nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nSin);
1583
1584 // fetch delay line cross out
1585 nAddr = CIRCULAR(nBase, pReverb->m_zD1Cross, pReverb->m_nBufferMask);
1586 nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1587
1588 // calculate delay line self out
1589 nTemp2 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nCos);
1590
1591 // calculate unfiltered delay out
1592 nDelayOut0 = SATURATE(nTemp1 + nTemp2);
1593
1594 // ********** D0 output - end
1595
1596 // ********** D1 output - start
1597 // fetch delay line self out
1598 nAddr = CIRCULAR(nBase, pReverb->m_zD1Self, pReverb->m_nBufferMask);
1599 nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1600
1601 // calculate delay line self out
1602 nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nSin);
1603
1604 // fetch delay line cross out
1605 nAddr = CIRCULAR(nBase, pReverb->m_zD0Cross, pReverb->m_nBufferMask);
1606 nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1607
1608 // calculate delay line self out
1609 nTemp2 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nCos);
1610
1611 // calculate unfiltered delay out
1612 nDelayOut1 = SATURATE(nTemp1 + nTemp2);
1613
1614 // ********** D1 output - end
1615
1616 // ********** mixer and feedback - start
1617 // sum is fedback to right input (R + L)
1618 nDelayOut0 = (short) SATURATE(nDelayOut0 + nDelayOut1);
1619
1620 // difference is feedback to left input (R - L)
1621 /*lint -e{685} lint complains that it can't saturate negative */
1622 nDelayOut1 = (short) SATURATE(nDelayOut1 - nDelayOut0);
1623
1624 // ********** mixer and feedback - end
1625
1626 // calculate lowpass filter (mixer scale factor included in LPF feedforward)
1627 nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRvbLpfFwd);
1628
1629 nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkL, pReverb->m_nRvbLpfFbk);
1630
1631 // calculate filtered delay out and simultaneously update LPF state variable
1632 // filtered delay output is stored in m_nRevFbkL
1633 pReverb->m_nRevFbkL = (short) SATURATE(nTemp1 + nTemp2);
1634
1635 // calculate lowpass filter (mixer scale factor included in LPF feedforward)
1636 nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRvbLpfFwd);
1637
1638 nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkR, pReverb->m_nRvbLpfFbk);
1639
1640 // calculate filtered delay out and simultaneously update LPF state variable
1641 // filtered delay output is stored in m_nRevFbkR
1642 pReverb->m_nRevFbkR = (short) SATURATE(nTemp1 + nTemp2);
1643
1644 // ********** start early reflection generator, left
1645 //psEarly = &(pReverb->m_sEarlyL);
1646
1647
1648 for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
1649 // fetch delay line out
1650 //nAddr = CIRCULAR(nBase, psEarly->m_zDelay[j], pReverb->m_nBufferMask);
1651 nAddr
1652 = CIRCULAR(nBase, pReverb->m_sEarlyL.m_zDelay[j], pReverb->m_nBufferMask);
1653
1654 nTemp1 = pReverb->m_nDelayLine[nAddr];
1655
1656 // calculate reflection
1657 //nTemp1 = MULT_EG1_EG1(nDelayOut0, psEarly->m_nGain[j]);
1658 nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyL.m_nGain[j]);
1659
1660 nDelayOut0 = SATURATE(nDelayOut0 + nTemp1);
1661
1662 } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
1663
1664 // apply lowpass to early reflections and reverb output
1665 //nTemp1 = MULT_EG1_EG1(nEarlyOut, psEarly->m_nRvbLpfFwd);
1666 nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRoomLpfFwd);
1667
1668 //nTemp2 = MULT_EG1_EG1(psEarly->m_zLpf, psEarly->m_nLpfFbk);
1669 nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfL, pReverb->m_nRoomLpfFbk);
1670
1671 // calculate filtered out and simultaneously update LPF state variable
1672 // filtered output is stored in m_zOutLpfL
1673 pReverb->m_zOutLpfL = (short) SATURATE(nTemp1 + nTemp2);
1674
1675 //sum with output buffer
1676 tempValue = *pOutputBuffer;
1677 *pOutputBuffer++ = (short) SATURATE(tempValue+pReverb->m_zOutLpfL);
1678
1679 // ********** end early reflection generator, left
1680
1681 // ********** start early reflection generator, right
1682 //psEarly = &(pReverb->m_sEarlyR);
1683
1684 for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
1685 // fetch delay line out
1686 nAddr
1687 = CIRCULAR(nBase, pReverb->m_sEarlyR.m_zDelay[j], pReverb->m_nBufferMask);
1688 nTemp1 = pReverb->m_nDelayLine[nAddr];
1689
1690 // calculate reflection
1691 nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyR.m_nGain[j]);
1692
1693 nDelayOut1 = SATURATE(nDelayOut1 + nTemp1);
1694
1695 } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
1696
1697 // apply lowpass to early reflections
1698 nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRoomLpfFwd);
1699
1700 nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfR, pReverb->m_nRoomLpfFbk);
1701
1702 // calculate filtered out and simultaneously update LPF state variable
1703 // filtered output is stored in m_zOutLpfR
1704 pReverb->m_zOutLpfR = (short) SATURATE(nTemp1 + nTemp2);
1705
1706 //sum with output buffer
1707 tempValue = *pOutputBuffer;
1708 *pOutputBuffer++ = (short) SATURATE(tempValue + pReverb->m_zOutLpfR);
1709
1710 // ********** end early reflection generator, right
1711
1712 // decrement base addr for next sample period
1713 nBase--;
1714
1715 pReverb->m_nSin += pReverb->m_nSinIncrement;
1716 pReverb->m_nCos += pReverb->m_nCosIncrement;
1717
1718 } // end for (i=0; i < nNumSamplesToAdd; i++)
1719
1720 // store the most up to date version
1721 pReverb->m_nBaseIndex = nBase;
1722
1723 return 0;
1724} /* end Reverb */
1725
1726/*----------------------------------------------------------------------------
1727 * ReverbUpdateRoom
1728 *----------------------------------------------------------------------------
1729 * Purpose:
1730 * Update the room's preset parameters as required
1731 *
1732 * Inputs:
1733 *
1734 * Outputs:
1735 *
1736 *
1737 * Side Effects:
1738 * - reverb paramters (fbk, fwd, etc) will be changed
1739 * - m_nCurrentRoom := m_nNextRoom
1740 *----------------------------------------------------------------------------
1741 */
1742static int ReverbUpdateRoom(reverb_object_t *pReverb, bool fullUpdate) {
1743 int temp;
1744 int i;
1745 int maxSamples;
1746 int earlyDelay;
1747 int earlyGain;
1748
1749 reverb_preset_t *pPreset =
1750 &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
1751
1752 if (fullUpdate) {
1753 pReverb->m_nRvbLpfFwd = pPreset->m_nRvbLpfFwd;
1754 pReverb->m_nRvbLpfFbk = pPreset->m_nRvbLpfFbk;
1755
1756 pReverb->m_nEarlyGain = pPreset->m_nEarlyGain;
1757 //stored as time based, convert to sample based
1758 pReverb->m_nLateGain = pPreset->m_nLateGain;
1759 pReverb->m_nRoomLpfFbk = pPreset->m_nRoomLpfFbk;
1760 pReverb->m_nRoomLpfFwd = pPreset->m_nRoomLpfFwd;
1761
1762 // set the early reflections gains
1763 earlyGain = pPreset->m_nEarlyGain;
1764 for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1765 pReverb->m_sEarlyL.m_nGain[i]
1766 = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],earlyGain);
1767 pReverb->m_sEarlyR.m_nGain[i]
1768 = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],earlyGain);
1769 }
1770
1771 pReverb->m_nMaxExcursion = pPreset->m_nMaxExcursion;
1772
1773 pReverb->m_sAp0.m_nApGain = pPreset->m_nAp0_ApGain;
1774 pReverb->m_sAp1.m_nApGain = pPreset->m_nAp1_ApGain;
1775
1776 // set the early reflections delay
1777 earlyDelay = ((int) pPreset->m_nEarlyDelay * pReverb->m_nSamplingRate)
1778 >> 16;
1779 pReverb->m_nEarlyDelay = earlyDelay;
1780 maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
1781 >> 16;
1782 for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1783 //stored as time based, convert to sample based
1784 temp = earlyDelay + (((int) pPreset->m_sEarlyL.m_zDelay[i]
1785 * pReverb->m_nSamplingRate) >> 16);
1786 if (temp > maxSamples)
1787 temp = maxSamples;
1788 pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp;
1789 //stored as time based, convert to sample based
1790 temp = earlyDelay + (((int) pPreset->m_sEarlyR.m_zDelay[i]
1791 * pReverb->m_nSamplingRate) >> 16);
1792 if (temp > maxSamples)
1793 temp = maxSamples;
1794 pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp;
1795 }
1796
1797 maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
1798 >> 16;
1799 //stored as time based, convert to sample based
1800 /*lint -e{702} shift for performance */
1801 temp = (pPreset->m_nLateDelay * pReverb->m_nSamplingRate) >> 16;
1802 if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
1803 temp = maxSamples - pReverb->m_nMaxExcursion;
1804 }
1805 temp -= pReverb->m_nLateDelay;
1806 pReverb->m_nDelay0Out += temp;
1807 pReverb->m_nDelay1Out += temp;
1808 pReverb->m_nLateDelay += temp;
1809
1810 maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
1811 //stored as time based, convert to absolute sample value
1812 temp = pPreset->m_nAp0_ApOut;
1813 /*lint -e{702} shift for performance */
1814 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1815 if (temp > maxSamples)
1816 temp = maxSamples;
1817 pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
1818
1819 //stored as time based, convert to absolute sample value
1820 temp = pPreset->m_nAp1_ApOut;
1821 /*lint -e{702} shift for performance */
1822 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1823 if (temp > maxSamples)
1824 temp = maxSamples;
1825 pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
1826 //gpsReverbObject->m_sAp1.m_zApOut = pPreset->m_nAp1_ApOut;
1827 }
1828
1829 //stored as time based, convert to sample based
1830 temp = pPreset->m_nXfadeInterval;
1831 /*lint -e{702} shift for performance */
1832 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1833 pReverb->m_nXfadeInterval = (uint16_t) temp;
1834 //gsReverbObject.m_nXfadeInterval = pPreset->m_nXfadeInterval;
1835 pReverb->m_nXfadeCounter = pReverb->m_nXfadeInterval + 1; // force update on first iteration
1836
1837
1838 pReverb->m_nCurrentRoom = pReverb->m_nNextRoom;
1839
1840 return 0;
1841
1842} /* end ReverbUpdateRoom */
1843
1844/*----------------------------------------------------------------------------
1845 * ReverbReadInPresets()
1846 *----------------------------------------------------------------------------
1847 * Purpose: sets global reverb preset bank to defaults
1848 *
1849 * Inputs:
1850 *
1851 * Outputs:
1852 *
1853 *----------------------------------------------------------------------------
1854 */
1855static int ReverbReadInPresets(reverb_object_t *pReverb) {
1856
1857 int preset = 0;
1858 int defaultPreset = 0;
1859
1860 //now init any remaining presets to defaults
1861 for (defaultPreset = preset; defaultPreset < REVERB_MAX_ROOM_TYPE; defaultPreset++) {
1862 reverb_preset_t *pPreset = &pReverb->m_sPreset.m_sPreset[defaultPreset];
1863 if (defaultPreset == 0 || defaultPreset > REVERB_MAX_ROOM_TYPE - 1) {
1864 pPreset->m_nRvbLpfFbk = 8307;
1865 pPreset->m_nRvbLpfFwd = 14768;
1866 pPreset->m_nEarlyGain = 27690;
1867 pPreset->m_nEarlyDelay = 1311;
1868 pPreset->m_nLateGain = 8191;
1869 pPreset->m_nLateDelay = 3932;
1870 pPreset->m_nRoomLpfFbk = 3692;
1871 pPreset->m_nRoomLpfFwd = 24569;
1872 pPreset->m_sEarlyL.m_zDelay[0] = 1376;
1873 pPreset->m_sEarlyL.m_nGain[0] = 22152;
1874 pPreset->m_sEarlyL.m_zDelay[1] = 2163;
1875 pPreset->m_sEarlyL.m_nGain[1] = 17537;
1876 pPreset->m_sEarlyL.m_zDelay[2] = 0;
1877 pPreset->m_sEarlyL.m_nGain[2] = 14768;
1878 pPreset->m_sEarlyL.m_zDelay[3] = 1835;
1879 pPreset->m_sEarlyL.m_nGain[3] = 14307;
1880 pPreset->m_sEarlyL.m_zDelay[4] = 0;
1881 pPreset->m_sEarlyL.m_nGain[4] = 13384;
1882 pPreset->m_sEarlyR.m_zDelay[0] = 721;
1883 pPreset->m_sEarlyR.m_nGain[0] = 20306;
1884 pPreset->m_sEarlyR.m_zDelay[1] = 2621;
1885 pPreset->m_sEarlyR.m_nGain[1] = 17537;
1886 pPreset->m_sEarlyR.m_zDelay[2] = 0;
1887 pPreset->m_sEarlyR.m_nGain[2] = 14768;
1888 pPreset->m_sEarlyR.m_zDelay[3] = 0;
1889 pPreset->m_sEarlyR.m_nGain[3] = 16153;
1890 pPreset->m_sEarlyR.m_zDelay[4] = 0;
1891 pPreset->m_sEarlyR.m_nGain[4] = 13384;
1892 pPreset->m_nMaxExcursion = 127;
1893 pPreset->m_nXfadeInterval = 6388;
1894 pPreset->m_nAp0_ApGain = 15691;
1895 pPreset->m_nAp0_ApOut = 711;
1896 pPreset->m_nAp1_ApGain = 16317;
1897 pPreset->m_nAp1_ApOut = 1029;
1898 pPreset->m_rfu4 = 0;
1899 pPreset->m_rfu5 = 0;
1900 pPreset->m_rfu6 = 0;
1901 pPreset->m_rfu7 = 0;
1902 pPreset->m_rfu8 = 0;
1903 pPreset->m_rfu9 = 0;
1904 pPreset->m_rfu10 = 0;
1905 } else if (defaultPreset == 1) {
1906 pPreset->m_nRvbLpfFbk = 6461;
1907 pPreset->m_nRvbLpfFwd = 14307;
1908 pPreset->m_nEarlyGain = 27690;
1909 pPreset->m_nEarlyDelay = 1311;
1910 pPreset->m_nLateGain = 8191;
1911 pPreset->m_nLateDelay = 3932;
1912 pPreset->m_nRoomLpfFbk = 3692;
1913 pPreset->m_nRoomLpfFwd = 24569;
1914 pPreset->m_sEarlyL.m_zDelay[0] = 1376;
1915 pPreset->m_sEarlyL.m_nGain[0] = 22152;
1916 pPreset->m_sEarlyL.m_zDelay[1] = 1462;
1917 pPreset->m_sEarlyL.m_nGain[1] = 17537;
1918 pPreset->m_sEarlyL.m_zDelay[2] = 0;
1919 pPreset->m_sEarlyL.m_nGain[2] = 14768;
1920 pPreset->m_sEarlyL.m_zDelay[3] = 1835;
1921 pPreset->m_sEarlyL.m_nGain[3] = 14307;
1922 pPreset->m_sEarlyL.m_zDelay[4] = 0;
1923 pPreset->m_sEarlyL.m_nGain[4] = 13384;
1924 pPreset->m_sEarlyR.m_zDelay[0] = 721;
1925 pPreset->m_sEarlyR.m_nGain[0] = 20306;
1926 pPreset->m_sEarlyR.m_zDelay[1] = 2621;
1927 pPreset->m_sEarlyR.m_nGain[1] = 17537;
1928 pPreset->m_sEarlyR.m_zDelay[2] = 0;
1929 pPreset->m_sEarlyR.m_nGain[2] = 14768;
1930 pPreset->m_sEarlyR.m_zDelay[3] = 0;
1931 pPreset->m_sEarlyR.m_nGain[3] = 16153;
1932 pPreset->m_sEarlyR.m_zDelay[4] = 0;
1933 pPreset->m_sEarlyR.m_nGain[4] = 13384;
1934 pPreset->m_nMaxExcursion = 127;
1935 pPreset->m_nXfadeInterval = 6391;
1936 pPreset->m_nAp0_ApGain = 15230;
1937 pPreset->m_nAp0_ApOut = 708;
1938 pPreset->m_nAp1_ApGain = 15547;
1939 pPreset->m_nAp1_ApOut = 1023;
1940 pPreset->m_rfu4 = 0;
1941 pPreset->m_rfu5 = 0;
1942 pPreset->m_rfu6 = 0;
1943 pPreset->m_rfu7 = 0;
1944 pPreset->m_rfu8 = 0;
1945 pPreset->m_rfu9 = 0;
1946 pPreset->m_rfu10 = 0;
1947 } else if (defaultPreset == 2) {
1948 pPreset->m_nRvbLpfFbk = 5077;
1949 pPreset->m_nRvbLpfFwd = 12922;
1950 pPreset->m_nEarlyGain = 27690;
1951 pPreset->m_nEarlyDelay = 1311;
1952 pPreset->m_nLateGain = 8191;
1953 pPreset->m_nLateDelay = 3932;
1954 pPreset->m_nRoomLpfFbk = 3692;
1955 pPreset->m_nRoomLpfFwd = 21703;
1956 pPreset->m_sEarlyL.m_zDelay[0] = 1376;
1957 pPreset->m_sEarlyL.m_nGain[0] = 22152;
1958 pPreset->m_sEarlyL.m_zDelay[1] = 1462;
1959 pPreset->m_sEarlyL.m_nGain[1] = 17537;
1960 pPreset->m_sEarlyL.m_zDelay[2] = 0;
1961 pPreset->m_sEarlyL.m_nGain[2] = 14768;
1962 pPreset->m_sEarlyL.m_zDelay[3] = 1835;
1963 pPreset->m_sEarlyL.m_nGain[3] = 14307;
1964 pPreset->m_sEarlyL.m_zDelay[4] = 0;
1965 pPreset->m_sEarlyL.m_nGain[4] = 13384;
1966 pPreset->m_sEarlyR.m_zDelay[0] = 721;
1967 pPreset->m_sEarlyR.m_nGain[0] = 20306;
1968 pPreset->m_sEarlyR.m_zDelay[1] = 2621;
1969 pPreset->m_sEarlyR.m_nGain[1] = 17537;
1970 pPreset->m_sEarlyR.m_zDelay[2] = 0;
1971 pPreset->m_sEarlyR.m_nGain[2] = 14768;
1972 pPreset->m_sEarlyR.m_zDelay[3] = 0;
1973 pPreset->m_sEarlyR.m_nGain[3] = 16153;
1974 pPreset->m_sEarlyR.m_zDelay[4] = 0;
1975 pPreset->m_sEarlyR.m_nGain[4] = 13384;
1976 pPreset->m_nMaxExcursion = 127;
1977 pPreset->m_nXfadeInterval = 6449;
1978 pPreset->m_nAp0_ApGain = 15691;
1979 pPreset->m_nAp0_ApOut = 774;
1980 pPreset->m_nAp1_ApGain = 16317;
1981 pPreset->m_nAp1_ApOut = 1155;
1982 pPreset->m_rfu4 = 0;
1983 pPreset->m_rfu5 = 0;
1984 pPreset->m_rfu6 = 0;
1985 pPreset->m_rfu7 = 0;
1986 pPreset->m_rfu8 = 0;
1987 pPreset->m_rfu9 = 0;
1988 pPreset->m_rfu10 = 0;
1989 } else if (defaultPreset == 3) {
1990 pPreset->m_nRvbLpfFbk = 5077;
1991 pPreset->m_nRvbLpfFwd = 11076;
1992 pPreset->m_nEarlyGain = 27690;
1993 pPreset->m_nEarlyDelay = 1311;
1994 pPreset->m_nLateGain = 8191;
1995 pPreset->m_nLateDelay = 3932;
1996 pPreset->m_nRoomLpfFbk = 3692;
1997 pPreset->m_nRoomLpfFwd = 20474;
1998 pPreset->m_sEarlyL.m_zDelay[0] = 1376;
1999 pPreset->m_sEarlyL.m_nGain[0] = 22152;
2000 pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2001 pPreset->m_sEarlyL.m_nGain[1] = 17537;
2002 pPreset->m_sEarlyL.m_zDelay[2] = 0;
2003 pPreset->m_sEarlyL.m_nGain[2] = 14768;
2004 pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2005 pPreset->m_sEarlyL.m_nGain[3] = 14307;
2006 pPreset->m_sEarlyL.m_zDelay[4] = 0;
2007 pPreset->m_sEarlyL.m_nGain[4] = 13384;
2008 pPreset->m_sEarlyR.m_zDelay[0] = 721;
2009 pPreset->m_sEarlyR.m_nGain[0] = 20306;
2010 pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2011 pPreset->m_sEarlyR.m_nGain[1] = 17537;
2012 pPreset->m_sEarlyR.m_zDelay[2] = 0;
2013 pPreset->m_sEarlyR.m_nGain[2] = 14768;
2014 pPreset->m_sEarlyR.m_zDelay[3] = 0;
2015 pPreset->m_sEarlyR.m_nGain[3] = 16153;
2016 pPreset->m_sEarlyR.m_zDelay[4] = 0;
2017 pPreset->m_sEarlyR.m_nGain[4] = 13384;
2018 pPreset->m_nMaxExcursion = 127;
2019 pPreset->m_nXfadeInterval = 6470; //6483;
2020 pPreset->m_nAp0_ApGain = 14768;
2021 pPreset->m_nAp0_ApOut = 792;
2022 pPreset->m_nAp1_ApGain = 14777;
2023 pPreset->m_nAp1_ApOut = 1191;
2024 pPreset->m_rfu4 = 0;
2025 pPreset->m_rfu5 = 0;
2026 pPreset->m_rfu6 = 0;
2027 pPreset->m_rfu7 = 0;
2028 pPreset->m_rfu8 = 0;
2029 pPreset->m_rfu9 = 0;
2030 pPreset->m_rfu10 = 0;
2031 }
2032 }
2033
2034 return 0;
2035}