blob: a8452c9427ac4ee250ceb96bf245e6c5150243ae [file] [log] [blame]
ztenghui7b4516e2014-01-07 10:42:55 -08001/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "OpenGLRenderer"
18
ztenghui512e6432014-09-10 13:08:20 -070019// The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
ztenghuic50a03d2014-08-21 13:47:54 -070020#define CASTER_Z_CAP_RATIO 0.95f
ztenghui512e6432014-09-10 13:08:20 -070021
22// When there is no umbra, then just fake the umbra using
23// centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
24#define FAKE_UMBRA_SIZE_RATIO 0.05f
25
26// When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
27// That is consider pretty fine tessllated polygon so far.
28// This is just to prevent using too much some memory when edge slicing is not
29// needed any more.
30#define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
31/**
32 * Extra vertices for the corner for smoother corner.
33 * Only for outer loop.
34 * Note that we use such extra memory to avoid an extra loop.
35 */
36// For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
37// Set to 1 if we don't want to have any.
38#define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
39
40// For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
41// therefore, the maximum number of extra vertices will be twice bigger.
42#define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
43
44// For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
45#define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
46
ztenghui7b4516e2014-01-07 10:42:55 -080047
48#include <math.h>
ztenghuif5ca8b42014-01-27 15:53:28 -080049#include <stdlib.h>
ztenghui7b4516e2014-01-07 10:42:55 -080050#include <utils/Log.h>
51
ztenghui63d41ab2014-02-14 13:13:41 -080052#include "ShadowTessellator.h"
ztenghui7b4516e2014-01-07 10:42:55 -080053#include "SpotShadow.h"
54#include "Vertex.h"
Tom Hudson2dc236b2014-10-15 15:46:42 -040055#include "VertexBuffer.h"
ztenghuic50a03d2014-08-21 13:47:54 -070056#include "utils/MathUtils.h"
ztenghui7b4516e2014-01-07 10:42:55 -080057
ztenghuic50a03d2014-08-21 13:47:54 -070058// TODO: After we settle down the new algorithm, we can remove the old one and
59// its utility functions.
60// Right now, we still need to keep it for comparison purpose and future expansion.
ztenghui7b4516e2014-01-07 10:42:55 -080061namespace android {
62namespace uirenderer {
63
ztenghui9122b1b2014-10-03 11:21:11 -070064static const float EPSILON = 1e-7;
Chris Craik726118b2014-03-07 18:27:49 -080065
ztenghui7b4516e2014-01-07 10:42:55 -080066/**
ztenghuic50a03d2014-08-21 13:47:54 -070067 * For each polygon's vertex, the light center will project it to the receiver
68 * as one of the outline vertex.
69 * For each outline vertex, we need to store the position and normal.
70 * Normal here is defined against the edge by the current vertex and the next vertex.
71 */
72struct OutlineData {
73 Vector2 position;
74 Vector2 normal;
75 float radius;
76};
77
78/**
ztenghui512e6432014-09-10 13:08:20 -070079 * For each vertex, we need to keep track of its angle, whether it is penumbra or
80 * umbra, and its corresponding vertex index.
81 */
82struct SpotShadow::VertexAngleData {
83 // The angle to the vertex from the centroid.
84 float mAngle;
85 // True is the vertex comes from penumbra, otherwise it comes from umbra.
86 bool mIsPenumbra;
87 // The index of the vertex described by this data.
88 int mVertexIndex;
89 void set(float angle, bool isPenumbra, int index) {
90 mAngle = angle;
91 mIsPenumbra = isPenumbra;
92 mVertexIndex = index;
93 }
94};
95
96/**
Chris Craik726118b2014-03-07 18:27:49 -080097 * Calculate the angle between and x and a y coordinate.
98 * The atan2 range from -PI to PI.
ztenghui7b4516e2014-01-07 10:42:55 -080099 */
Chris Craikb79a3e32014-03-11 12:20:17 -0700100static float angle(const Vector2& point, const Vector2& center) {
Chris Craik726118b2014-03-07 18:27:49 -0800101 return atan2(point.y - center.y, point.x - center.x);
102}
103
104/**
105 * Calculate the intersection of a ray with the line segment defined by two points.
106 *
107 * Returns a negative value in error conditions.
108
109 * @param rayOrigin The start of the ray
110 * @param dx The x vector of the ray
111 * @param dy The y vector of the ray
112 * @param p1 The first point defining the line segment
113 * @param p2 The second point defining the line segment
114 * @return The distance along the ray if it intersects with the line segment, negative if otherwise
115 */
Chris Craikb79a3e32014-03-11 12:20:17 -0700116static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
Chris Craik726118b2014-03-07 18:27:49 -0800117 const Vector2& p1, const Vector2& p2) {
118 // The math below is derived from solving this formula, basically the
119 // intersection point should stay on both the ray and the edge of (p1, p2).
120 // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
121
ztenghui9122b1b2014-10-03 11:21:11 -0700122 float divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
Chris Craik726118b2014-03-07 18:27:49 -0800123 if (divisor == 0) return -1.0f; // error, invalid divisor
124
125#if DEBUG_SHADOW
ztenghui9122b1b2014-10-03 11:21:11 -0700126 float interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
ztenghui99af9422014-03-14 14:35:54 -0700127 if (interpVal < 0 || interpVal > 1) {
128 ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
129 }
Chris Craik726118b2014-03-07 18:27:49 -0800130#endif
131
ztenghui9122b1b2014-10-03 11:21:11 -0700132 float distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
Chris Craik726118b2014-03-07 18:27:49 -0800133 rayOrigin.x * (p2.y - p1.y)) / divisor;
134
135 return distance; // may be negative in error cases
ztenghui7b4516e2014-01-07 10:42:55 -0800136}
137
138/**
ztenghui7b4516e2014-01-07 10:42:55 -0800139 * Sort points by their X coordinates
140 *
141 * @param points the points as a Vector2 array.
142 * @param pointsLength the number of vertices of the polygon.
143 */
144void SpotShadow::xsort(Vector2* points, int pointsLength) {
145 quicksortX(points, 0, pointsLength - 1);
146}
147
148/**
149 * compute the convex hull of a collection of Points
150 *
151 * @param points the points as a Vector2 array.
152 * @param pointsLength the number of vertices of the polygon.
153 * @param retPoly pre allocated array of floats to put the vertices
154 * @return the number of points in the polygon 0 if no intersection
155 */
156int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
157 xsort(points, pointsLength);
158 int n = pointsLength;
159 Vector2 lUpper[n];
160 lUpper[0] = points[0];
161 lUpper[1] = points[1];
162
163 int lUpperSize = 2;
164
165 for (int i = 2; i < n; i++) {
166 lUpper[lUpperSize] = points[i];
167 lUpperSize++;
168
ztenghuif5ca8b42014-01-27 15:53:28 -0800169 while (lUpperSize > 2 && !ccw(
170 lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
171 lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
172 lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800173 // Remove the middle point of the three last
174 lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
175 lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
176 lUpperSize--;
177 }
178 }
179
180 Vector2 lLower[n];
181 lLower[0] = points[n - 1];
182 lLower[1] = points[n - 2];
183
184 int lLowerSize = 2;
185
186 for (int i = n - 3; i >= 0; i--) {
187 lLower[lLowerSize] = points[i];
188 lLowerSize++;
189
ztenghuif5ca8b42014-01-27 15:53:28 -0800190 while (lLowerSize > 2 && !ccw(
191 lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
192 lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
193 lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800194 // Remove the middle point of the three last
195 lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
196 lLowerSize--;
197 }
198 }
ztenghui7b4516e2014-01-07 10:42:55 -0800199
Chris Craik726118b2014-03-07 18:27:49 -0800200 // output points in CW ordering
201 const int total = lUpperSize + lLowerSize - 2;
202 int outIndex = total - 1;
ztenghui7b4516e2014-01-07 10:42:55 -0800203 for (int i = 0; i < lUpperSize; i++) {
Chris Craik726118b2014-03-07 18:27:49 -0800204 retPoly[outIndex] = lUpper[i];
205 outIndex--;
ztenghui7b4516e2014-01-07 10:42:55 -0800206 }
207
208 for (int i = 1; i < lLowerSize - 1; i++) {
Chris Craik726118b2014-03-07 18:27:49 -0800209 retPoly[outIndex] = lLower[i];
210 outIndex--;
ztenghui7b4516e2014-01-07 10:42:55 -0800211 }
212 // TODO: Add test harness which verify that all the points are inside the hull.
Chris Craik726118b2014-03-07 18:27:49 -0800213 return total;
ztenghui7b4516e2014-01-07 10:42:55 -0800214}
215
216/**
ztenghuif5ca8b42014-01-27 15:53:28 -0800217 * Test whether the 3 points form a counter clockwise turn.
ztenghui7b4516e2014-01-07 10:42:55 -0800218 *
ztenghui7b4516e2014-01-07 10:42:55 -0800219 * @return true if a right hand turn
220 */
ztenghui9122b1b2014-10-03 11:21:11 -0700221bool SpotShadow::ccw(float ax, float ay, float bx, float by,
222 float cx, float cy) {
ztenghui7b4516e2014-01-07 10:42:55 -0800223 return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
224}
225
226/**
ztenghui7b4516e2014-01-07 10:42:55 -0800227 * Sort points about a center point
228 *
229 * @param poly The in and out polyogon as a Vector2 array.
230 * @param polyLength The number of vertices of the polygon.
231 * @param center the center ctr[0] = x , ctr[1] = y to sort around.
232 */
233void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
234 quicksortCirc(poly, 0, polyLength - 1, center);
235}
236
237/**
ztenghui7b4516e2014-01-07 10:42:55 -0800238 * Swap points pointed to by i and j
239 */
240void SpotShadow::swap(Vector2* points, int i, int j) {
241 Vector2 temp = points[i];
242 points[i] = points[j];
243 points[j] = temp;
244}
245
246/**
247 * quick sort implementation about the center.
248 */
249void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
250 const Vector2& center) {
251 int i = low, j = high;
252 int p = low + (high - low) / 2;
253 float pivot = angle(points[p], center);
254 while (i <= j) {
Chris Craik726118b2014-03-07 18:27:49 -0800255 while (angle(points[i], center) > pivot) {
ztenghui7b4516e2014-01-07 10:42:55 -0800256 i++;
257 }
Chris Craik726118b2014-03-07 18:27:49 -0800258 while (angle(points[j], center) < pivot) {
ztenghui7b4516e2014-01-07 10:42:55 -0800259 j--;
260 }
261
262 if (i <= j) {
263 swap(points, i, j);
264 i++;
265 j--;
266 }
267 }
268 if (low < j) quicksortCirc(points, low, j, center);
269 if (i < high) quicksortCirc(points, i, high, center);
270}
271
272/**
273 * Sort points by x axis
274 *
275 * @param points points to sort
276 * @param low start index
277 * @param high end index
278 */
279void SpotShadow::quicksortX(Vector2* points, int low, int high) {
280 int i = low, j = high;
281 int p = low + (high - low) / 2;
282 float pivot = points[p].x;
283 while (i <= j) {
284 while (points[i].x < pivot) {
285 i++;
286 }
287 while (points[j].x > pivot) {
288 j--;
289 }
290
291 if (i <= j) {
292 swap(points, i, j);
293 i++;
294 j--;
295 }
296 }
297 if (low < j) quicksortX(points, low, j);
298 if (i < high) quicksortX(points, i, high);
299}
300
301/**
302 * Test whether a point is inside the polygon.
303 *
304 * @param testPoint the point to test
305 * @param poly the polygon
306 * @return true if the testPoint is inside the poly.
307 */
308bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
309 const Vector2* poly, int len) {
310 bool c = false;
ztenghui9122b1b2014-10-03 11:21:11 -0700311 float testx = testPoint.x;
312 float testy = testPoint.y;
ztenghui7b4516e2014-01-07 10:42:55 -0800313 for (int i = 0, j = len - 1; i < len; j = i++) {
ztenghui9122b1b2014-10-03 11:21:11 -0700314 float startX = poly[j].x;
315 float startY = poly[j].y;
316 float endX = poly[i].x;
317 float endY = poly[i].y;
ztenghui7b4516e2014-01-07 10:42:55 -0800318
ztenghui512e6432014-09-10 13:08:20 -0700319 if (((endY > testy) != (startY > testy))
320 && (testx < (startX - endX) * (testy - endY)
ztenghui7b4516e2014-01-07 10:42:55 -0800321 / (startY - endY) + endX)) {
322 c = !c;
323 }
324 }
325 return c;
326}
327
328/**
329 * Make the polygon turn clockwise.
330 *
331 * @param polygon the polygon as a Vector2 array.
332 * @param len the number of points of the polygon
333 */
334void SpotShadow::makeClockwise(Vector2* polygon, int len) {
335 if (polygon == 0 || len == 0) {
336 return;
337 }
ztenghui2e023f32014-04-28 16:43:13 -0700338 if (!ShadowTessellator::isClockwise(polygon, len)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800339 reverse(polygon, len);
340 }
341}
342
343/**
ztenghui7b4516e2014-01-07 10:42:55 -0800344 * Reverse the polygon
345 *
346 * @param polygon the polygon as a Vector2 array
347 * @param len the number of points of the polygon
348 */
349void SpotShadow::reverse(Vector2* polygon, int len) {
350 int n = len / 2;
351 for (int i = 0; i < n; i++) {
352 Vector2 tmp = polygon[i];
353 int k = len - 1 - i;
354 polygon[i] = polygon[k];
355 polygon[k] = tmp;
356 }
357}
358
359/**
ztenghui7b4516e2014-01-07 10:42:55 -0800360 * Compute a horizontal circular polygon about point (x , y , height) of radius
361 * (size)
362 *
363 * @param points number of the points of the output polygon.
364 * @param lightCenter the center of the light.
365 * @param size the light size.
366 * @param ret result polygon.
367 */
368void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
369 float size, Vector3* ret) {
370 // TODO: Caching all the sin / cos values and store them in a look up table.
371 for (int i = 0; i < points; i++) {
ztenghui9122b1b2014-10-03 11:21:11 -0700372 float angle = 2 * i * M_PI / points;
Chris Craik726118b2014-03-07 18:27:49 -0800373 ret[i].x = cosf(angle) * size + lightCenter.x;
374 ret[i].y = sinf(angle) * size + lightCenter.y;
ztenghui7b4516e2014-01-07 10:42:55 -0800375 ret[i].z = lightCenter.z;
376 }
377}
378
379/**
ztenghui512e6432014-09-10 13:08:20 -0700380 * From light center, project one vertex to the z=0 surface and get the outline.
ztenghui7b4516e2014-01-07 10:42:55 -0800381 *
ztenghui512e6432014-09-10 13:08:20 -0700382 * @param outline The result which is the outline position.
383 * @param lightCenter The center of light.
384 * @param polyVertex The input polygon's vertex.
385 *
386 * @return float The ratio of (polygon.z / light.z - polygon.z)
ztenghui7b4516e2014-01-07 10:42:55 -0800387 */
ztenghuic50a03d2014-08-21 13:47:54 -0700388float SpotShadow::projectCasterToOutline(Vector2& outline,
389 const Vector3& lightCenter, const Vector3& polyVertex) {
390 float lightToPolyZ = lightCenter.z - polyVertex.z;
391 float ratioZ = CASTER_Z_CAP_RATIO;
392 if (lightToPolyZ != 0) {
393 // If any caster's vertex is almost above the light, we just keep it as 95%
394 // of the height of the light.
ztenghui3bd3fa12014-08-25 14:42:27 -0700395 ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
ztenghuic50a03d2014-08-21 13:47:54 -0700396 }
397
398 outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
399 outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
400 return ratioZ;
401}
402
403/**
404 * Generate the shadow spot light of shape lightPoly and a object poly
405 *
406 * @param isCasterOpaque whether the caster is opaque
407 * @param lightCenter the center of the light
408 * @param lightSize the radius of the light
409 * @param poly x,y,z vertexes of a convex polygon that occludes the light source
410 * @param polyLength number of vertexes of the occluding polygon
411 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
412 * empty strip if error.
413 */
414void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
415 float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
416 VertexBuffer& shadowTriangleStrip) {
ztenghui3bd3fa12014-08-25 14:42:27 -0700417 if (CC_UNLIKELY(lightCenter.z <= 0)) {
418 ALOGW("Relative Light Z is not positive. No spot shadow!");
419 return;
420 }
ztenghui512e6432014-09-10 13:08:20 -0700421 if (CC_UNLIKELY(polyLength < 3)) {
422#if DEBUG_SHADOW
423 ALOGW("Invalid polygon length. No spot shadow!");
424#endif
425 return;
426 }
ztenghuic50a03d2014-08-21 13:47:54 -0700427 OutlineData outlineData[polyLength];
428 Vector2 outlineCentroid;
429 // Calculate the projected outline for each polygon's vertices from the light center.
430 //
431 // O Light
432 // /
433 // /
434 // . Polygon vertex
435 // /
436 // /
437 // O Outline vertices
438 //
439 // Ratio = (Poly - Outline) / (Light - Poly)
440 // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
441 // Outline's radius / Light's radius = Ratio
442
443 // Compute the last outline vertex to make sure we can get the normal and outline
444 // in one single loop.
445 projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
446 poly[polyLength - 1]);
447
448 // Take the outline's polygon, calculate the normal for each outline edge.
449 int currentNormalIndex = polyLength - 1;
450 int nextNormalIndex = 0;
451
452 for (int i = 0; i < polyLength; i++) {
453 float ratioZ = projectCasterToOutline(outlineData[i].position,
454 lightCenter, poly[i]);
455 outlineData[i].radius = ratioZ * lightSize;
456
457 outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
458 outlineData[currentNormalIndex].position,
459 outlineData[nextNormalIndex].position);
460 currentNormalIndex = (currentNormalIndex + 1) % polyLength;
461 nextNormalIndex++;
462 }
463
464 projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
465
466 int penumbraIndex = 0;
ztenghui512e6432014-09-10 13:08:20 -0700467 // Then each polygon's vertex produce at minmal 2 penumbra vertices.
468 // Since the size can be dynamic here, we keep track of the size and update
469 // the real size at the end.
470 int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
471 Vector2 penumbra[allocatedPenumbraLength];
472 int totalExtraCornerSliceNumber = 0;
ztenghuic50a03d2014-08-21 13:47:54 -0700473
474 Vector2 umbra[polyLength];
ztenghuic50a03d2014-08-21 13:47:54 -0700475
ztenghui512e6432014-09-10 13:08:20 -0700476 // When centroid is covered by all circles from outline, then we consider
477 // the umbra is invalid, and we will tune down the shadow strength.
ztenghuic50a03d2014-08-21 13:47:54 -0700478 bool hasValidUmbra = true;
ztenghui512e6432014-09-10 13:08:20 -0700479 // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
480 float minRaitoVI = FLT_MAX;
ztenghuic50a03d2014-08-21 13:47:54 -0700481
482 for (int i = 0; i < polyLength; i++) {
483 // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
484 // There is no guarantee that the penumbra is still convex, but for
485 // each outline vertex, it will connect to all its corresponding penumbra vertices as
486 // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
487 //
488 // Penumbra Vertices marked as Pi
489 // Outline Vertices marked as Vi
490 // (P3)
491 // (P2) | ' (P4)
492 // (P1)' | | '
493 // ' | | '
494 // (P0) ------------------------------------------------(P5)
495 // | (V0) |(V1)
496 // | |
497 // | |
498 // | |
499 // | |
500 // | |
501 // | |
502 // | |
503 // | |
504 // (V3)-----------------------------------(V2)
505 int preNormalIndex = (i + polyLength - 1) % polyLength;
ztenghuic50a03d2014-08-21 13:47:54 -0700506
ztenghui512e6432014-09-10 13:08:20 -0700507 const Vector2& previousNormal = outlineData[preNormalIndex].normal;
508 const Vector2& currentNormal = outlineData[i].normal;
509
510 // Depending on how roundness we want for each corner, we can subdivide
ztenghuic50a03d2014-08-21 13:47:54 -0700511 // further here and/or introduce some heuristic to decide how much the
512 // subdivision should be.
ztenghui512e6432014-09-10 13:08:20 -0700513 int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
514 previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
ztenghuic50a03d2014-08-21 13:47:54 -0700515
ztenghui512e6432014-09-10 13:08:20 -0700516 int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
517 totalExtraCornerSliceNumber += currentExtraSliceNumber;
518#if DEBUG_SHADOW
519 ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
520 ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
521 ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
522#endif
523 if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
524 currentCornerSliceNumber = 1;
525 }
526 for (int k = 0; k <= currentCornerSliceNumber; k++) {
527 Vector2 avgNormal =
528 (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
529 currentCornerSliceNumber;
530 avgNormal.normalize();
531 penumbra[penumbraIndex++] = outlineData[i].position +
532 avgNormal * outlineData[i].radius;
533 }
ztenghuic50a03d2014-08-21 13:47:54 -0700534
ztenghuic50a03d2014-08-21 13:47:54 -0700535
536 // Compute the umbra by the intersection from the outline's centroid!
537 //
538 // (V) ------------------------------------
539 // | ' |
540 // | ' |
541 // | ' (I) |
542 // | ' |
543 // | ' (C) |
544 // | |
545 // | |
546 // | |
547 // | |
548 // ------------------------------------
549 //
550 // Connect a line b/t the outline vertex (V) and the centroid (C), it will
551 // intersect with the outline vertex's circle at point (I).
552 // Now, ratioVI = VI / VC, ratioIC = IC / VC
553 // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
554 //
ztenghui512e6432014-09-10 13:08:20 -0700555 // When all of the outline circles cover the the outline centroid, (like I is
ztenghuic50a03d2014-08-21 13:47:54 -0700556 // on the other side of C), there is no real umbra any more, so we just fake
557 // a small area around the centroid as the umbra, and tune down the spot
558 // shadow's umbra strength to simulate the effect the whole shadow will
559 // become lighter in this case.
560 // The ratio can be simulated by using the inverse of maximum of ratioVI for
561 // all (V).
ztenghui512e6432014-09-10 13:08:20 -0700562 float distOutline = (outlineData[i].position - outlineCentroid).length();
ztenghui3bd3fa12014-08-25 14:42:27 -0700563 if (CC_UNLIKELY(distOutline == 0)) {
ztenghuic50a03d2014-08-21 13:47:54 -0700564 // If the outline has 0 area, then there is no spot shadow anyway.
565 ALOGW("Outline has 0 area, no spot shadow!");
566 return;
567 }
ztenghui512e6432014-09-10 13:08:20 -0700568
569 float ratioVI = outlineData[i].radius / distOutline;
570 minRaitoVI = MathUtils::min(minRaitoVI, ratioVI);
571 if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
572 ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
ztenghuic50a03d2014-08-21 13:47:54 -0700573 }
574 // When we know we don't have valid umbra, don't bother to compute the
575 // values below. But we can't skip the loop yet since we want to know the
576 // maximum ratio.
ztenghui512e6432014-09-10 13:08:20 -0700577 float ratioIC = 1 - ratioVI;
578 umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
ztenghuic50a03d2014-08-21 13:47:54 -0700579 }
580
ztenghui512e6432014-09-10 13:08:20 -0700581 hasValidUmbra = (minRaitoVI <= 1.0);
ztenghuic50a03d2014-08-21 13:47:54 -0700582 float shadowStrengthScale = 1.0;
583 if (!hasValidUmbra) {
ztenghui512e6432014-09-10 13:08:20 -0700584#if DEBUG_SHADOW
ztenghuic50a03d2014-08-21 13:47:54 -0700585 ALOGW("The object is too close to the light or too small, no real umbra!");
ztenghui512e6432014-09-10 13:08:20 -0700586#endif
ztenghuic50a03d2014-08-21 13:47:54 -0700587 for (int i = 0; i < polyLength; i++) {
588 umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
ztenghui512e6432014-09-10 13:08:20 -0700589 outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
ztenghuic50a03d2014-08-21 13:47:54 -0700590 }
ztenghui512e6432014-09-10 13:08:20 -0700591 shadowStrengthScale = 1.0 / minRaitoVI;
ztenghuic50a03d2014-08-21 13:47:54 -0700592 }
593
ztenghui512e6432014-09-10 13:08:20 -0700594 int penumbraLength = penumbraIndex;
595 int umbraLength = polyLength;
596
ztenghuic50a03d2014-08-21 13:47:54 -0700597#if DEBUG_SHADOW
ztenghui512e6432014-09-10 13:08:20 -0700598 ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength);
ztenghuic50a03d2014-08-21 13:47:54 -0700599 dumpPolygon(poly, polyLength, "input poly");
ztenghuic50a03d2014-08-21 13:47:54 -0700600 dumpPolygon(penumbra, penumbraLength, "penumbra");
ztenghui512e6432014-09-10 13:08:20 -0700601 dumpPolygon(umbra, umbraLength, "umbra");
ztenghuic50a03d2014-08-21 13:47:54 -0700602 ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
603#endif
604
ztenghui512e6432014-09-10 13:08:20 -0700605 // The penumbra and umbra needs to be in convex shape to keep consistency
606 // and quality.
607 // Since we are still shooting rays to penumbra, it needs to be convex.
608 // Umbra can be represented as a fan from the centroid, but visually umbra
609 // looks nicer when it is convex.
610 Vector2 finalUmbra[umbraLength];
611 Vector2 finalPenumbra[penumbraLength];
612 int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
613 int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
614
615 generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra,
616 finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength,
617 shadowTriangleStrip, outlineCentroid);
618
ztenghuic50a03d2014-08-21 13:47:54 -0700619}
620
ztenghui7b4516e2014-01-07 10:42:55 -0800621/**
Chris Craik726118b2014-03-07 18:27:49 -0800622 * Converts a polygon specified with CW vertices into an array of distance-from-centroid values.
623 *
624 * Returns false in error conditions
625 *
626 * @param poly Array of vertices. Note that these *must* be CW.
627 * @param polyLength The number of vertices in the polygon.
628 * @param polyCentroid The centroid of the polygon, from which rays will be cast
629 * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size
630 */
631bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid,
632 float* rayDist) {
633 const int rays = SHADOW_RAY_COUNT;
634 const float step = M_PI * 2 / rays;
635
636 const Vector2* lastVertex = &(poly[polyLength - 1]);
637 float startAngle = angle(*lastVertex, polyCentroid);
638
639 // Start with the ray that's closest to and less than startAngle
640 int rayIndex = floor((startAngle - EPSILON) / step);
641 rayIndex = (rayIndex + rays) % rays; // ensure positive
642
643 for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) {
644 /*
645 * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that
646 * intersect these will be those that are between the two angles from the centroid that the
647 * vertices define.
648 *
649 * Because the polygon vertices are stored clockwise, the closest ray with an angle
650 * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does
651 * not intersect with poly[i-1], poly[i].
652 */
653 float currentAngle = angle(poly[polyIndex], polyCentroid);
654
655 // find first ray that will not intersect the line segment poly[i-1] & poly[i]
656 int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step);
657 firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive
658
659 // Iterate through all rays that intersect with poly[i-1], poly[i] line segment.
660 // This may be 0 rays.
661 while (rayIndex != firstRayIndexOnNextSegment) {
662 float distanceToIntersect = rayIntersectPoints(polyCentroid,
663 cos(rayIndex * step),
664 sin(rayIndex * step),
665 *lastVertex, poly[polyIndex]);
ztenghui50ecf842014-03-11 16:52:30 -0700666 if (distanceToIntersect < 0) {
667#if DEBUG_SHADOW
668 ALOGW("ERROR: convertPolyToRayDist failed");
669#endif
670 return false; // error case, abort
671 }
Chris Craik726118b2014-03-07 18:27:49 -0800672
673 rayDist[rayIndex] = distanceToIntersect;
674
675 rayIndex = (rayIndex - 1 + rays) % rays;
676 }
677 lastVertex = &poly[polyIndex];
678 }
679
ztenghui512e6432014-09-10 13:08:20 -0700680 return true;
Chris Craik726118b2014-03-07 18:27:49 -0800681}
682
683/**
ztenghui7b4516e2014-01-07 10:42:55 -0800684 * This is only for experimental purpose.
685 * After intersections are calculated, we could smooth the polygon if needed.
686 * So far, we don't think it is more appealing yet.
687 *
688 * @param level The level of smoothness.
689 * @param rays The total number of rays.
690 * @param rayDist (In and Out) The distance for each ray.
691 *
692 */
693void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
694 for (int k = 0; k < level; k++) {
695 for (int i = 0; i < rays; i++) {
696 float p1 = rayDist[(rays - 1 + i) % rays];
697 float p2 = rayDist[i];
698 float p3 = rayDist[(i + 1) % rays];
699 rayDist[i] = (p1 + p2 * 2 + p3) / 4;
700 }
701 }
702}
703
ztenghui512e6432014-09-10 13:08:20 -0700704/**
705 * Generate a array of the angleData for either umbra or penumbra vertices.
706 *
707 * This array will be merged and used to guide where to shoot the rays, in clockwise order.
708 *
709 * @param angleDataList The result array of angle data.
710 *
711 * @return int The maximum angle's index in the array.
712 */
713int SpotShadow::setupAngleList(VertexAngleData* angleDataList,
714 int polyLength, const Vector2* polygon, const Vector2& centroid,
715 bool isPenumbra, const char* name) {
716 float maxAngle = FLT_MIN;
717 int maxAngleIndex = 0;
718 for (int i = 0; i < polyLength; i++) {
719 float currentAngle = angle(polygon[i], centroid);
720 if (currentAngle > maxAngle) {
721 maxAngle = currentAngle;
722 maxAngleIndex = i;
723 }
724 angleDataList[i].set(currentAngle, isPenumbra, i);
725#if DEBUG_SHADOW
726 ALOGD("%s AngleList i %d %f", name, i, currentAngle);
727#endif
728 }
729 return maxAngleIndex;
730}
731
732/**
733 * Make sure the polygons are indeed in clockwise order.
734 *
735 * Possible reasons to return false: 1. The input polygon is not setup properly. 2. The hull
736 * algorithm is not able to generate it properly.
737 *
738 * Anyway, since the algorithm depends on the clockwise, when these kind of unexpected error
739 * situation is found, we need to detect it and early return without corrupting the memory.
740 *
741 * @return bool True if the angle list is actually from big to small.
742 */
743bool SpotShadow::checkClockwise(int indexOfMaxAngle, int listLength, VertexAngleData* angleList,
744 const char* name) {
745 int currentIndex = indexOfMaxAngle;
746#if DEBUG_SHADOW
747 ALOGD("max index %d", currentIndex);
748#endif
749 for (int i = 0; i < listLength - 1; i++) {
750 // TODO: Cache the last angle.
751 float currentAngle = angleList[currentIndex].mAngle;
752 float nextAngle = angleList[(currentIndex + 1) % listLength].mAngle;
753 if (currentAngle < nextAngle) {
754#if DEBUG_SHADOW
755 ALOGE("%s, is not CW, at index %d", name, currentIndex);
756#endif
757 return false;
758 }
759 currentIndex = (currentIndex + 1) % listLength;
760 }
761 return true;
762}
763
764/**
765 * Check the polygon is clockwise.
766 *
767 * @return bool True is the polygon is clockwise.
768 */
769bool SpotShadow::checkPolyClockwise(int polyAngleLength, int maxPolyAngleIndex,
770 const float* polyAngleList) {
771 bool isPolyCW = true;
772 // Starting from maxPolyAngleIndex , check around to make sure angle decrease.
773 for (int i = 0; i < polyAngleLength - 1; i++) {
774 float currentAngle = polyAngleList[(i + maxPolyAngleIndex) % polyAngleLength];
775 float nextAngle = polyAngleList[(i + maxPolyAngleIndex + 1) % polyAngleLength];
776 if (currentAngle < nextAngle) {
777 isPolyCW = false;
778 }
779 }
780 return isPolyCW;
781}
782
783/**
784 * Given the sorted array of all the vertices angle data, calculate for each
785 * vertices, the offset value to array element which represent the start edge
786 * of the polygon we need to shoot the ray at.
787 *
788 * TODO: Calculate this for umbra and penumbra in one loop using one single array.
789 *
790 * @param distances The result of the array distance counter.
791 */
792void SpotShadow::calculateDistanceCounter(bool needsOffsetToUmbra, int angleLength,
793 const VertexAngleData* allVerticesAngleData, int* distances) {
794
795 bool firstVertexIsPenumbra = allVerticesAngleData[0].mIsPenumbra;
796 // If we want distance to inner, then we just set to 0 when we see inner.
797 bool needsSearch = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
798 int distanceCounter = 0;
799 if (needsSearch) {
800 int foundIndex = -1;
801 for (int i = (angleLength - 1); i >= 0; i--) {
802 bool currentIsOuter = allVerticesAngleData[i].mIsPenumbra;
803 // If we need distance to inner, then we need to find a inner vertex.
804 if (currentIsOuter != firstVertexIsPenumbra) {
805 foundIndex = i;
806 break;
807 }
808 }
809 LOG_ALWAYS_FATAL_IF(foundIndex == -1, "Wrong index found, means either"
810 " umbra or penumbra's length is 0");
811 distanceCounter = angleLength - foundIndex;
812 }
813#if DEBUG_SHADOW
814 ALOGD("distances[0] is %d", distanceCounter);
815#endif
816
817 distances[0] = distanceCounter; // means never see a target poly
818
819 for (int i = 1; i < angleLength; i++) {
820 bool firstVertexIsPenumbra = allVerticesAngleData[i].mIsPenumbra;
821 // When we needs for distance for each outer vertex to inner, then we
822 // increase the distance when seeing outer vertices. Otherwise, we clear
823 // to 0.
824 bool needsIncrement = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
825 // If counter is not -1, that means we have seen an other polygon's vertex.
826 if (needsIncrement && distanceCounter != -1) {
827 distanceCounter++;
828 } else {
829 distanceCounter = 0;
830 }
831 distances[i] = distanceCounter;
832 }
833}
834
835/**
836 * Given umbra and penumbra angle data list, merge them by sorting the angle
837 * from the biggest to smallest.
838 *
839 * @param allVerticesAngleData The result array of merged angle data.
840 */
841void SpotShadow::mergeAngleList(int maxUmbraAngleIndex, int maxPenumbraAngleIndex,
842 const VertexAngleData* umbraAngleList, int umbraLength,
843 const VertexAngleData* penumbraAngleList, int penumbraLength,
844 VertexAngleData* allVerticesAngleData) {
845
846 int totalRayNumber = umbraLength + penumbraLength;
847 int umbraIndex = maxUmbraAngleIndex;
848 int penumbraIndex = maxPenumbraAngleIndex;
849
850 float currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
851 float currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
852
853 // TODO: Clean this up using a while loop with 2 iterators.
854 for (int i = 0; i < totalRayNumber; i++) {
855 if (currentUmbraAngle > currentPenumbraAngle) {
856 allVerticesAngleData[i] = umbraAngleList[umbraIndex];
857 umbraIndex = (umbraIndex + 1) % umbraLength;
858
859 // If umbraIndex round back, that means we are running out of
860 // umbra vertices to merge, so just copy all the penumbra leftover.
861 // Otherwise, we update the currentUmbraAngle.
862 if (umbraIndex != maxUmbraAngleIndex) {
863 currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
864 } else {
865 for (int j = i + 1; j < totalRayNumber; j++) {
866 allVerticesAngleData[j] = penumbraAngleList[penumbraIndex];
867 penumbraIndex = (penumbraIndex + 1) % penumbraLength;
868 }
869 break;
870 }
871 } else {
872 allVerticesAngleData[i] = penumbraAngleList[penumbraIndex];
873 penumbraIndex = (penumbraIndex + 1) % penumbraLength;
874 // If penumbraIndex round back, that means we are running out of
875 // penumbra vertices to merge, so just copy all the umbra leftover.
876 // Otherwise, we update the currentPenumbraAngle.
877 if (penumbraIndex != maxPenumbraAngleIndex) {
878 currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
879 } else {
880 for (int j = i + 1; j < totalRayNumber; j++) {
881 allVerticesAngleData[j] = umbraAngleList[umbraIndex];
882 umbraIndex = (umbraIndex + 1) % umbraLength;
883 }
884 break;
885 }
886 }
887 }
888}
889
890#if DEBUG_SHADOW
891/**
892 * DEBUG ONLY: Verify all the offset compuation is correctly done by examining
893 * each vertex and its neighbor.
894 */
895static void verifyDistanceCounter(const VertexAngleData* allVerticesAngleData,
896 const int* distances, int angleLength, const char* name) {
897 int currentDistance = distances[0];
898 for (int i = 1; i < angleLength; i++) {
899 if (distances[i] != INT_MIN) {
900 if (!((currentDistance + 1) == distances[i]
901 || distances[i] == 0)) {
902 ALOGE("Wrong distance found at i %d name %s", i, name);
903 }
904 currentDistance = distances[i];
905 if (currentDistance != 0) {
906 bool currentOuter = allVerticesAngleData[i].mIsPenumbra;
907 for (int j = 1; j <= (currentDistance - 1); j++) {
908 bool neigborOuter =
909 allVerticesAngleData[(i + angleLength - j) % angleLength].mIsPenumbra;
910 if (neigborOuter != currentOuter) {
911 ALOGE("Wrong distance found at i %d name %s", i, name);
912 }
913 }
914 bool oppositeOuter =
915 allVerticesAngleData[(i + angleLength - currentDistance) % angleLength].mIsPenumbra;
916 if (oppositeOuter == currentOuter) {
917 ALOGE("Wrong distance found at i %d name %s", i, name);
918 }
919 }
920 }
921 }
922}
923
924/**
925 * DEBUG ONLY: Verify all the angle data compuated are is correctly done
926 */
927static void verifyAngleData(int totalRayNumber, const VertexAngleData* allVerticesAngleData,
928 const int* distancesToInner, const int* distancesToOuter,
929 const VertexAngleData* umbraAngleList, int maxUmbraAngleIndex, int umbraLength,
930 const VertexAngleData* penumbraAngleList, int maxPenumbraAngleIndex,
931 int penumbraLength) {
932 for (int i = 0; i < totalRayNumber; i++) {
933 ALOGD("currentAngleList i %d, angle %f, isInner %d, index %d distancesToInner"
934 " %d distancesToOuter %d", i, allVerticesAngleData[i].mAngle,
935 !allVerticesAngleData[i].mIsPenumbra,
936 allVerticesAngleData[i].mVertexIndex, distancesToInner[i], distancesToOuter[i]);
937 }
938
939 verifyDistanceCounter(allVerticesAngleData, distancesToInner, totalRayNumber, "distancesToInner");
940 verifyDistanceCounter(allVerticesAngleData, distancesToOuter, totalRayNumber, "distancesToOuter");
941
942 for (int i = 0; i < totalRayNumber; i++) {
943 if ((distancesToInner[i] * distancesToOuter[i]) != 0) {
944 ALOGE("distancesToInner wrong at index %d distancesToInner[i] %d,"
945 " distancesToOuter[i] %d", i, distancesToInner[i], distancesToOuter[i]);
946 }
947 }
948 int currentUmbraVertexIndex =
949 umbraAngleList[maxUmbraAngleIndex].mVertexIndex;
950 int currentPenumbraVertexIndex =
951 penumbraAngleList[maxPenumbraAngleIndex].mVertexIndex;
952 for (int i = 0; i < totalRayNumber; i++) {
953 if (allVerticesAngleData[i].mIsPenumbra == true) {
954 if (allVerticesAngleData[i].mVertexIndex != currentPenumbraVertexIndex) {
955 ALOGW("wrong penumbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
956 "currentpenumbraVertexIndex %d", i,
957 allVerticesAngleData[i].mVertexIndex, currentPenumbraVertexIndex);
958 }
959 currentPenumbraVertexIndex = (currentPenumbraVertexIndex + 1) % penumbraLength;
960 } else {
961 if (allVerticesAngleData[i].mVertexIndex != currentUmbraVertexIndex) {
962 ALOGW("wrong umbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
963 "currentUmbraVertexIndex %d", i,
964 allVerticesAngleData[i].mVertexIndex, currentUmbraVertexIndex);
965 }
966 currentUmbraVertexIndex = (currentUmbraVertexIndex + 1) % umbraLength;
967 }
968 }
969 for (int i = 0; i < totalRayNumber - 1; i++) {
970 float currentAngle = allVerticesAngleData[i].mAngle;
971 float nextAngle = allVerticesAngleData[(i + 1) % totalRayNumber].mAngle;
972 if (currentAngle < nextAngle) {
973 ALOGE("Unexpected angle values!, currentAngle nextAngle %f %f", currentAngle, nextAngle);
974 }
975 }
976}
977#endif
978
979/**
980 * In order to compute the occluded umbra, we need to setup the angle data list
981 * for the polygon data. Since we only store one poly vertex per polygon vertex,
982 * this array only needs to be a float array which are the angles for each vertex.
983 *
984 * @param polyAngleList The result list
985 *
986 * @return int The index for the maximum angle in this array.
987 */
988int SpotShadow::setupPolyAngleList(float* polyAngleList, int polyAngleLength,
989 const Vector2* poly2d, const Vector2& centroid) {
990 int maxPolyAngleIndex = -1;
991 float maxPolyAngle = -FLT_MAX;
992 for (int i = 0; i < polyAngleLength; i++) {
993 polyAngleList[i] = angle(poly2d[i], centroid);
994 if (polyAngleList[i] > maxPolyAngle) {
995 maxPolyAngle = polyAngleList[i];
996 maxPolyAngleIndex = i;
997 }
998 }
999 return maxPolyAngleIndex;
1000}
1001
1002/**
1003 * For umbra and penumbra, given the offset info and the current ray number,
1004 * find the right edge index (the (starting vertex) for the ray to shoot at.
1005 *
1006 * @return int The index of the starting vertex of the edge.
1007 */
1008inline int SpotShadow::getEdgeStartIndex(const int* offsets, int rayIndex, int totalRayNumber,
1009 const VertexAngleData* allVerticesAngleData) {
1010 int tempOffset = offsets[rayIndex];
1011 int targetRayIndex = (rayIndex - tempOffset + totalRayNumber) % totalRayNumber;
1012 return allVerticesAngleData[targetRayIndex].mVertexIndex;
1013}
1014
1015/**
1016 * For the occluded umbra, given the array of angles, find the index of the
1017 * starting vertex of the edge, for the ray to shoo at.
1018 *
1019 * TODO: Save the last result to shorten the search distance.
1020 *
1021 * @return int The index of the starting vertex of the edge.
1022 */
1023inline int SpotShadow::getPolyEdgeStartIndex(int maxPolyAngleIndex, int polyLength,
1024 const float* polyAngleList, float rayAngle) {
1025 int minPolyAngleIndex = (maxPolyAngleIndex + polyLength - 1) % polyLength;
1026 int resultIndex = -1;
1027 if (rayAngle > polyAngleList[maxPolyAngleIndex]
1028 || rayAngle <= polyAngleList[minPolyAngleIndex]) {
1029 resultIndex = minPolyAngleIndex;
1030 } else {
1031 for (int i = 0; i < polyLength - 1; i++) {
1032 int currentIndex = (maxPolyAngleIndex + i) % polyLength;
1033 int nextIndex = (maxPolyAngleIndex + i + 1) % polyLength;
1034 if (rayAngle <= polyAngleList[currentIndex]
1035 && rayAngle > polyAngleList[nextIndex]) {
1036 resultIndex = currentIndex;
1037 }
1038 }
1039 }
1040 if (CC_UNLIKELY(resultIndex == -1)) {
1041 // TODO: Add more error handling here.
1042 ALOGE("Wrong index found, means no edge can't be found for rayAngle %f", rayAngle);
1043 }
1044 return resultIndex;
1045}
1046
1047/**
1048 * Convert the incoming polygons into arrays of vertices, for each ray.
1049 * Ray only shoots when there is one vertex either on penumbra on umbra.
1050 *
1051 * Finally, it will generate vertices per ray for umbra, penumbra and optionally
1052 * occludedUmbra.
1053 *
1054 * Return true (success) when all vertices are generated
1055 */
1056int SpotShadow::convertPolysToVerticesPerRay(
1057 bool hasOccludedUmbraArea, const Vector2* poly2d, int polyLength,
1058 const Vector2* umbra, int umbraLength, const Vector2* penumbra,
1059 int penumbraLength, const Vector2& centroid,
1060 Vector2* umbraVerticesPerRay, Vector2* penumbraVerticesPerRay,
1061 Vector2* occludedUmbraVerticesPerRay) {
1062 int totalRayNumber = umbraLength + penumbraLength;
1063
1064 // For incoming umbra / penumbra polygons, we will build an intermediate data
1065 // structure to help us sort all the vertices according to the vertices.
1066 // Using this data structure, we can tell where (the angle) to shoot the ray,
1067 // whether we shoot at penumbra edge or umbra edge, and which edge to shoot at.
1068 //
1069 // We first parse each vertices and generate a table of VertexAngleData.
1070 // Based on that, we create 2 arrays telling us which edge to shoot at.
1071 VertexAngleData allVerticesAngleData[totalRayNumber];
1072 VertexAngleData umbraAngleList[umbraLength];
1073 VertexAngleData penumbraAngleList[penumbraLength];
1074
1075 int polyAngleLength = hasOccludedUmbraArea ? polyLength : 0;
1076 float polyAngleList[polyAngleLength];
1077
1078 const int maxUmbraAngleIndex =
1079 setupAngleList(umbraAngleList, umbraLength, umbra, centroid, false, "umbra");
1080 const int maxPenumbraAngleIndex =
1081 setupAngleList(penumbraAngleList, penumbraLength, penumbra, centroid, true, "penumbra");
1082 const int maxPolyAngleIndex = setupPolyAngleList(polyAngleList, polyAngleLength, poly2d, centroid);
1083
1084 // Check all the polygons here are CW.
1085 bool isPolyCW = checkPolyClockwise(polyAngleLength, maxPolyAngleIndex, polyAngleList);
1086 bool isUmbraCW = checkClockwise(maxUmbraAngleIndex, umbraLength,
1087 umbraAngleList, "umbra");
1088 bool isPenumbraCW = checkClockwise(maxPenumbraAngleIndex, penumbraLength,
1089 penumbraAngleList, "penumbra");
1090
1091 if (!isUmbraCW || !isPenumbraCW || !isPolyCW) {
1092#if DEBUG_SHADOW
1093 ALOGE("One polygon is not CW isUmbraCW %d isPenumbraCW %d isPolyCW %d",
1094 isUmbraCW, isPenumbraCW, isPolyCW);
1095#endif
1096 return false;
1097 }
1098
1099 mergeAngleList(maxUmbraAngleIndex, maxPenumbraAngleIndex,
1100 umbraAngleList, umbraLength, penumbraAngleList, penumbraLength,
1101 allVerticesAngleData);
1102
1103 // Calculate the offset to the left most Inner vertex for each outerVertex.
1104 // Then the offset to the left most Outer vertex for each innerVertex.
1105 int offsetToInner[totalRayNumber];
1106 int offsetToOuter[totalRayNumber];
1107 calculateDistanceCounter(true, totalRayNumber, allVerticesAngleData, offsetToInner);
1108 calculateDistanceCounter(false, totalRayNumber, allVerticesAngleData, offsetToOuter);
1109
1110 // Generate both umbraVerticesPerRay and penumbraVerticesPerRay
1111 for (int i = 0; i < totalRayNumber; i++) {
1112 float rayAngle = allVerticesAngleData[i].mAngle;
1113 bool isUmbraVertex = !allVerticesAngleData[i].mIsPenumbra;
1114
1115 float dx = cosf(rayAngle);
1116 float dy = sinf(rayAngle);
1117 float distanceToIntersectUmbra = -1;
1118
1119 if (isUmbraVertex) {
1120 // We can just copy umbra easily, and calculate the distance for the
1121 // occluded umbra computation.
1122 int startUmbraIndex = allVerticesAngleData[i].mVertexIndex;
1123 umbraVerticesPerRay[i] = umbra[startUmbraIndex];
1124 if (hasOccludedUmbraArea) {
1125 distanceToIntersectUmbra = (umbraVerticesPerRay[i] - centroid).length();
1126 }
1127
1128 //shoot ray to penumbra only
1129 int startPenumbraIndex = getEdgeStartIndex(offsetToOuter, i, totalRayNumber,
1130 allVerticesAngleData);
1131 float distanceToIntersectPenumbra = rayIntersectPoints(centroid, dx, dy,
1132 penumbra[startPenumbraIndex],
1133 penumbra[(startPenumbraIndex + 1) % penumbraLength]);
1134 if (distanceToIntersectPenumbra < 0) {
1135#if DEBUG_SHADOW
1136 ALOGW("convertPolyToRayDist for penumbra failed rayAngle %f dx %f dy %f",
1137 rayAngle, dx, dy);
1138#endif
1139 distanceToIntersectPenumbra = 0;
1140 }
1141 penumbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPenumbra;
1142 penumbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPenumbra;
1143 } else {
1144 // We can just copy the penumbra
1145 int startPenumbraIndex = allVerticesAngleData[i].mVertexIndex;
1146 penumbraVerticesPerRay[i] = penumbra[startPenumbraIndex];
1147
1148 // And shoot ray to umbra only
1149 int startUmbraIndex = getEdgeStartIndex(offsetToInner, i, totalRayNumber,
1150 allVerticesAngleData);
1151
1152 distanceToIntersectUmbra = rayIntersectPoints(centroid, dx, dy,
1153 umbra[startUmbraIndex], umbra[(startUmbraIndex + 1) % umbraLength]);
1154 if (distanceToIntersectUmbra < 0) {
1155#if DEBUG_SHADOW
1156 ALOGW("convertPolyToRayDist for umbra failed rayAngle %f dx %f dy %f",
1157 rayAngle, dx, dy);
1158#endif
1159 distanceToIntersectUmbra = 0;
1160 }
1161 umbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectUmbra;
1162 umbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectUmbra;
1163 }
1164
1165 if (hasOccludedUmbraArea) {
1166 // Shoot the same ray to the poly2d, and get the distance.
1167 int startPolyIndex = getPolyEdgeStartIndex(maxPolyAngleIndex, polyLength,
1168 polyAngleList, rayAngle);
1169
1170 float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
1171 poly2d[startPolyIndex], poly2d[(startPolyIndex + 1) % polyLength]);
1172 if (distanceToIntersectPoly < 0) {
1173 distanceToIntersectPoly = 0;
1174 }
1175 distanceToIntersectPoly = MathUtils::min(distanceToIntersectUmbra, distanceToIntersectPoly);
1176 occludedUmbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPoly;
1177 occludedUmbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPoly;
1178 }
1179 }
1180
1181#if DEBUG_SHADOW
1182 verifyAngleData(totalRayNumber, allVerticesAngleData, offsetToInner,
1183 offsetToOuter, umbraAngleList, maxUmbraAngleIndex, umbraLength,
1184 penumbraAngleList, maxPenumbraAngleIndex, penumbraLength);
1185#endif
1186 return true; // success
1187
1188}
1189
1190/**
1191 * Generate a triangle strip given two convex polygon
1192**/
1193void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
1194 Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
1195 const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
1196 const Vector2& centroid) {
1197
1198 bool hasOccludedUmbraArea = false;
1199 Vector2 poly2d[polyLength];
1200
1201 if (isCasterOpaque) {
1202 for (int i = 0; i < polyLength; i++) {
1203 poly2d[i].x = poly[i].x;
1204 poly2d[i].y = poly[i].y;
1205 }
1206 // Make sure the centroid is inside the umbra, otherwise, fall back to the
1207 // approach as if there is no occluded umbra area.
1208 if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
1209 hasOccludedUmbraArea = true;
1210 }
1211 }
1212
1213 int totalRayNum = umbraLength + penumbraLength;
1214 Vector2 umbraVertices[totalRayNum];
1215 Vector2 penumbraVertices[totalRayNum];
1216 Vector2 occludedUmbraVertices[totalRayNum];
1217 bool convertSuccess = convertPolysToVerticesPerRay(hasOccludedUmbraArea, poly2d,
1218 polyLength, umbra, umbraLength, penumbra, penumbraLength,
1219 centroid, umbraVertices, penumbraVertices, occludedUmbraVertices);
1220 if (!convertSuccess) {
1221 return;
1222 }
1223
1224 // Minimal value is 1, for each vertex show up once.
1225 // The bigger this value is , the smoother the look is, but more memory
1226 // is consumed.
1227 // When the ray number is high, that means the polygon has been fine
1228 // tessellated, we don't need this extra slice, just keep it as 1.
1229 int sliceNumberPerEdge = (totalRayNum > FINE_TESSELLATED_POLYGON_RAY_NUMBER) ? 1 : 2;
1230
1231 // For each polygon, we at most add (totalRayNum * sliceNumberPerEdge) vertices.
1232 int slicedVertexCountPerPolygon = totalRayNum * sliceNumberPerEdge;
1233 int totalVertexCount = slicedVertexCountPerPolygon * 2 + totalRayNum;
1234 int totalIndexCount = 2 * (slicedVertexCountPerPolygon * 2 + 2);
1235 AlphaVertex* shadowVertices =
1236 shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
1237 uint16_t* indexBuffer =
1238 shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
1239
1240 int indexBufferIndex = 0;
1241 int vertexBufferIndex = 0;
1242
1243 uint16_t slicedUmbraVertexIndex[totalRayNum * sliceNumberPerEdge];
1244 // Should be something like 0 0 0 1 1 1 2 3 3 3...
1245 int rayNumberPerSlicedUmbra[totalRayNum * sliceNumberPerEdge];
1246 int realUmbraVertexCount = 0;
1247 for (int i = 0; i < totalRayNum; i++) {
1248 Vector2 currentPenumbra = penumbraVertices[i];
1249 Vector2 currentUmbra = umbraVertices[i];
1250
1251 Vector2 nextPenumbra = penumbraVertices[(i + 1) % totalRayNum];
1252 Vector2 nextUmbra = umbraVertices[(i + 1) % totalRayNum];
1253 // NextUmbra/Penumbra will be done in the next loop!!
1254 for (int weight = 0; weight < sliceNumberPerEdge; weight++) {
1255 const Vector2& slicedPenumbra = (currentPenumbra * (sliceNumberPerEdge - weight)
1256 + nextPenumbra * weight) / sliceNumberPerEdge;
1257
1258 const Vector2& slicedUmbra = (currentUmbra * (sliceNumberPerEdge - weight)
1259 + nextUmbra * weight) / sliceNumberPerEdge;
1260
1261 // In the vertex buffer, we fill the Penumbra first, then umbra.
1262 indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1263 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedPenumbra.x,
1264 slicedPenumbra.y, 0.0f);
1265
1266 // When we add umbra vertex, we need to remember its current ray number.
1267 // And its own vertexBufferIndex. This is for occluded umbra usage.
1268 indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1269 rayNumberPerSlicedUmbra[realUmbraVertexCount] = i;
1270 slicedUmbraVertexIndex[realUmbraVertexCount] = vertexBufferIndex;
1271 realUmbraVertexCount++;
1272 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedUmbra.x,
1273 slicedUmbra.y, M_PI);
1274 }
1275 }
1276
1277 indexBuffer[indexBufferIndex++] = 0;
1278 //RealUmbraVertexIndex[0] must be 1, so we connect back well at the
1279 //beginning of occluded area.
1280 indexBuffer[indexBufferIndex++] = 1;
1281
1282 float occludedUmbraAlpha = M_PI;
1283 if (hasOccludedUmbraArea) {
1284 // Now the occludedUmbra area;
1285 int currentRayNumber = -1;
1286 int firstOccludedUmbraIndex = -1;
1287 for (int i = 0; i < realUmbraVertexCount; i++) {
1288 indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
1289
1290 // If the occludedUmbra vertex has not been added yet, then add it.
1291 // Otherwise, just use the previously added occludedUmbra vertices.
1292 if (rayNumberPerSlicedUmbra[i] != currentRayNumber) {
1293 currentRayNumber++;
1294 indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1295 // We need to remember the begining of the occludedUmbra vertices
1296 // to close this loop.
1297 if (currentRayNumber == 0) {
1298 firstOccludedUmbraIndex = vertexBufferIndex;
1299 }
1300 AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
1301 occludedUmbraVertices[currentRayNumber].x,
1302 occludedUmbraVertices[currentRayNumber].y,
1303 occludedUmbraAlpha);
1304 } else {
1305 indexBuffer[indexBufferIndex++] = (vertexBufferIndex - 1);
1306 }
1307 }
1308 // Close the loop here!
1309 indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
1310 indexBuffer[indexBufferIndex++] = firstOccludedUmbraIndex;
1311 } else {
1312 int lastCentroidIndex = vertexBufferIndex;
1313 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
1314 centroid.y, occludedUmbraAlpha);
1315 for (int i = 0; i < realUmbraVertexCount; i++) {
1316 indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
1317 indexBuffer[indexBufferIndex++] = lastCentroidIndex;
1318 }
1319 // Close the loop here!
1320 indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
1321 indexBuffer[indexBufferIndex++] = lastCentroidIndex;
1322 }
1323
1324#if DEBUG_SHADOW
1325 ALOGD("allocated IB %d allocated VB is %d", totalIndexCount, totalVertexCount);
1326 ALOGD("IB index %d VB index is %d", indexBufferIndex, vertexBufferIndex);
1327 for (int i = 0; i < vertexBufferIndex; i++) {
1328 ALOGD("vertexBuffer i %d, (%f, %f %f)", i, shadowVertices[i].x, shadowVertices[i].y,
1329 shadowVertices[i].alpha);
1330 }
1331 for (int i = 0; i < indexBufferIndex; i++) {
1332 ALOGD("indexBuffer i %d, indexBuffer[i] %d", i, indexBuffer[i]);
1333 }
1334#endif
1335
1336 // At the end, update the real index and vertex buffer size.
1337 shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
1338 shadowTriangleStrip.updateIndexCount(indexBufferIndex);
1339 ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
1340 ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
1341
1342 shadowTriangleStrip.setMode(VertexBuffer::kIndices);
1343 shadowTriangleStrip.computeBounds<AlphaVertex>();
1344}
1345
ztenghuif5ca8b42014-01-27 15:53:28 -08001346#if DEBUG_SHADOW
1347
1348#define TEST_POINT_NUMBER 128
ztenghuif5ca8b42014-01-27 15:53:28 -08001349/**
1350 * Calculate the bounds for generating random test points.
1351 */
1352void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
ztenghui512e6432014-09-10 13:08:20 -07001353 Vector2& upperBound) {
ztenghuif5ca8b42014-01-27 15:53:28 -08001354 if (inVector.x < lowerBound.x) {
1355 lowerBound.x = inVector.x;
1356 }
1357
1358 if (inVector.y < lowerBound.y) {
1359 lowerBound.y = inVector.y;
1360 }
1361
1362 if (inVector.x > upperBound.x) {
1363 upperBound.x = inVector.x;
1364 }
1365
1366 if (inVector.y > upperBound.y) {
1367 upperBound.y = inVector.y;
1368 }
1369}
1370
1371/**
1372 * For debug purpose, when things go wrong, dump the whole polygon data.
1373 */
ztenghuic50a03d2014-08-21 13:47:54 -07001374void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
1375 for (int i = 0; i < polyLength; i++) {
1376 ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1377 }
1378}
1379
1380/**
1381 * For debug purpose, when things go wrong, dump the whole polygon data.
1382 */
1383void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
ztenghuif5ca8b42014-01-27 15:53:28 -08001384 for (int i = 0; i < polyLength; i++) {
1385 ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1386 }
1387}
1388
1389/**
1390 * Test whether the polygon is convex.
1391 */
1392bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
1393 const char* name) {
1394 bool isConvex = true;
1395 for (int i = 0; i < polygonLength; i++) {
1396 Vector2 start = polygon[i];
1397 Vector2 middle = polygon[(i + 1) % polygonLength];
1398 Vector2 end = polygon[(i + 2) % polygonLength];
1399
ztenghui9122b1b2014-10-03 11:21:11 -07001400 float delta = (float(middle.x) - start.x) * (float(end.y) - start.y) -
1401 (float(middle.y) - start.y) * (float(end.x) - start.x);
ztenghuif5ca8b42014-01-27 15:53:28 -08001402 bool isCCWOrCoLinear = (delta >= EPSILON);
1403
1404 if (isCCWOrCoLinear) {
ztenghui50ecf842014-03-11 16:52:30 -07001405 ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
ztenghuif5ca8b42014-01-27 15:53:28 -08001406 "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
1407 name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
1408 isConvex = false;
1409 break;
1410 }
1411 }
1412 return isConvex;
1413}
1414
1415/**
1416 * Test whether or not the polygon (intersection) is within the 2 input polygons.
1417 * Using Marte Carlo method, we generate a random point, and if it is inside the
1418 * intersection, then it must be inside both source polygons.
1419 */
1420void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
1421 const Vector2* poly2, int poly2Length,
1422 const Vector2* intersection, int intersectionLength) {
1423 // Find the min and max of x and y.
ztenghuic50a03d2014-08-21 13:47:54 -07001424 Vector2 lowerBound = {FLT_MAX, FLT_MAX};
1425 Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
ztenghuif5ca8b42014-01-27 15:53:28 -08001426 for (int i = 0; i < poly1Length; i++) {
1427 updateBound(poly1[i], lowerBound, upperBound);
1428 }
1429 for (int i = 0; i < poly2Length; i++) {
1430 updateBound(poly2[i], lowerBound, upperBound);
1431 }
1432
1433 bool dumpPoly = false;
1434 for (int k = 0; k < TEST_POINT_NUMBER; k++) {
1435 // Generate a random point between minX, minY and maxX, maxY.
ztenghui9122b1b2014-10-03 11:21:11 -07001436 float randomX = rand() / float(RAND_MAX);
1437 float randomY = rand() / float(RAND_MAX);
ztenghuif5ca8b42014-01-27 15:53:28 -08001438
1439 Vector2 testPoint;
1440 testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
1441 testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
1442
1443 // If the random point is in both poly 1 and 2, then it must be intersection.
1444 if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
1445 if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
1446 dumpPoly = true;
ztenghui50ecf842014-03-11 16:52:30 -07001447 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
ztenghui512e6432014-09-10 13:08:20 -07001448 " not in the poly1",
ztenghuif5ca8b42014-01-27 15:53:28 -08001449 testPoint.x, testPoint.y);
1450 }
1451
1452 if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
1453 dumpPoly = true;
ztenghui50ecf842014-03-11 16:52:30 -07001454 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
ztenghui512e6432014-09-10 13:08:20 -07001455 " not in the poly2",
ztenghuif5ca8b42014-01-27 15:53:28 -08001456 testPoint.x, testPoint.y);
1457 }
1458 }
1459 }
1460
1461 if (dumpPoly) {
1462 dumpPolygon(intersection, intersectionLength, "intersection");
1463 for (int i = 1; i < intersectionLength; i++) {
1464 Vector2 delta = intersection[i] - intersection[i - 1];
1465 ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
1466 }
1467
1468 dumpPolygon(poly1, poly1Length, "poly 1");
1469 dumpPolygon(poly2, poly2Length, "poly 2");
1470 }
1471}
1472#endif
1473
ztenghui7b4516e2014-01-07 10:42:55 -08001474}; // namespace uirenderer
1475}; // namespace android