ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2014 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #define LOG_TAG "OpenGLRenderer" |
| 18 | |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 19 | // The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z) |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 20 | #define CASTER_Z_CAP_RATIO 0.95f |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 21 | |
| 22 | // When there is no umbra, then just fake the umbra using |
| 23 | // centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO |
| 24 | #define FAKE_UMBRA_SIZE_RATIO 0.05f |
| 25 | |
| 26 | // When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays. |
| 27 | // That is consider pretty fine tessllated polygon so far. |
| 28 | // This is just to prevent using too much some memory when edge slicing is not |
| 29 | // needed any more. |
| 30 | #define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270 |
| 31 | /** |
| 32 | * Extra vertices for the corner for smoother corner. |
| 33 | * Only for outer loop. |
| 34 | * Note that we use such extra memory to avoid an extra loop. |
| 35 | */ |
| 36 | // For half circle, we could add EXTRA_VERTEX_PER_PI vertices. |
| 37 | // Set to 1 if we don't want to have any. |
| 38 | #define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18 |
| 39 | |
| 40 | // For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI, |
| 41 | // therefore, the maximum number of extra vertices will be twice bigger. |
| 42 | #define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI) |
| 43 | |
| 44 | // For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals. |
| 45 | #define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI) |
| 46 | |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 47 | |
| 48 | #include <math.h> |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 49 | #include <stdlib.h> |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 50 | #include <utils/Log.h> |
| 51 | |
ztenghui | 63d41ab | 2014-02-14 13:13:41 -0800 | [diff] [blame] | 52 | #include "ShadowTessellator.h" |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 53 | #include "SpotShadow.h" |
| 54 | #include "Vertex.h" |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 55 | #include "utils/MathUtils.h" |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 56 | |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 57 | // TODO: After we settle down the new algorithm, we can remove the old one and |
| 58 | // its utility functions. |
| 59 | // Right now, we still need to keep it for comparison purpose and future expansion. |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 60 | namespace android { |
| 61 | namespace uirenderer { |
| 62 | |
Chris Craik | 726118b | 2014-03-07 18:27:49 -0800 | [diff] [blame] | 63 | static const double EPSILON = 1e-7; |
| 64 | |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 65 | /** |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 66 | * For each polygon's vertex, the light center will project it to the receiver |
| 67 | * as one of the outline vertex. |
| 68 | * For each outline vertex, we need to store the position and normal. |
| 69 | * Normal here is defined against the edge by the current vertex and the next vertex. |
| 70 | */ |
| 71 | struct OutlineData { |
| 72 | Vector2 position; |
| 73 | Vector2 normal; |
| 74 | float radius; |
| 75 | }; |
| 76 | |
| 77 | /** |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 78 | * For each vertex, we need to keep track of its angle, whether it is penumbra or |
| 79 | * umbra, and its corresponding vertex index. |
| 80 | */ |
| 81 | struct SpotShadow::VertexAngleData { |
| 82 | // The angle to the vertex from the centroid. |
| 83 | float mAngle; |
| 84 | // True is the vertex comes from penumbra, otherwise it comes from umbra. |
| 85 | bool mIsPenumbra; |
| 86 | // The index of the vertex described by this data. |
| 87 | int mVertexIndex; |
| 88 | void set(float angle, bool isPenumbra, int index) { |
| 89 | mAngle = angle; |
| 90 | mIsPenumbra = isPenumbra; |
| 91 | mVertexIndex = index; |
| 92 | } |
| 93 | }; |
| 94 | |
| 95 | /** |
Chris Craik | 726118b | 2014-03-07 18:27:49 -0800 | [diff] [blame] | 96 | * Calculate the angle between and x and a y coordinate. |
| 97 | * The atan2 range from -PI to PI. |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 98 | */ |
Chris Craik | b79a3e3 | 2014-03-11 12:20:17 -0700 | [diff] [blame] | 99 | static float angle(const Vector2& point, const Vector2& center) { |
Chris Craik | 726118b | 2014-03-07 18:27:49 -0800 | [diff] [blame] | 100 | return atan2(point.y - center.y, point.x - center.x); |
| 101 | } |
| 102 | |
| 103 | /** |
| 104 | * Calculate the intersection of a ray with the line segment defined by two points. |
| 105 | * |
| 106 | * Returns a negative value in error conditions. |
| 107 | |
| 108 | * @param rayOrigin The start of the ray |
| 109 | * @param dx The x vector of the ray |
| 110 | * @param dy The y vector of the ray |
| 111 | * @param p1 The first point defining the line segment |
| 112 | * @param p2 The second point defining the line segment |
| 113 | * @return The distance along the ray if it intersects with the line segment, negative if otherwise |
| 114 | */ |
Chris Craik | b79a3e3 | 2014-03-11 12:20:17 -0700 | [diff] [blame] | 115 | static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy, |
Chris Craik | 726118b | 2014-03-07 18:27:49 -0800 | [diff] [blame] | 116 | const Vector2& p1, const Vector2& p2) { |
| 117 | // The math below is derived from solving this formula, basically the |
| 118 | // intersection point should stay on both the ray and the edge of (p1, p2). |
| 119 | // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]); |
| 120 | |
| 121 | double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x); |
| 122 | if (divisor == 0) return -1.0f; // error, invalid divisor |
| 123 | |
| 124 | #if DEBUG_SHADOW |
| 125 | double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor; |
ztenghui | 99af942 | 2014-03-14 14:35:54 -0700 | [diff] [blame] | 126 | if (interpVal < 0 || interpVal > 1) { |
| 127 | ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal); |
| 128 | } |
Chris Craik | 726118b | 2014-03-07 18:27:49 -0800 | [diff] [blame] | 129 | #endif |
| 130 | |
| 131 | double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) + |
| 132 | rayOrigin.x * (p2.y - p1.y)) / divisor; |
| 133 | |
| 134 | return distance; // may be negative in error cases |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 135 | } |
| 136 | |
| 137 | /** |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 138 | * Sort points by their X coordinates |
| 139 | * |
| 140 | * @param points the points as a Vector2 array. |
| 141 | * @param pointsLength the number of vertices of the polygon. |
| 142 | */ |
| 143 | void SpotShadow::xsort(Vector2* points, int pointsLength) { |
| 144 | quicksortX(points, 0, pointsLength - 1); |
| 145 | } |
| 146 | |
| 147 | /** |
| 148 | * compute the convex hull of a collection of Points |
| 149 | * |
| 150 | * @param points the points as a Vector2 array. |
| 151 | * @param pointsLength the number of vertices of the polygon. |
| 152 | * @param retPoly pre allocated array of floats to put the vertices |
| 153 | * @return the number of points in the polygon 0 if no intersection |
| 154 | */ |
| 155 | int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) { |
| 156 | xsort(points, pointsLength); |
| 157 | int n = pointsLength; |
| 158 | Vector2 lUpper[n]; |
| 159 | lUpper[0] = points[0]; |
| 160 | lUpper[1] = points[1]; |
| 161 | |
| 162 | int lUpperSize = 2; |
| 163 | |
| 164 | for (int i = 2; i < n; i++) { |
| 165 | lUpper[lUpperSize] = points[i]; |
| 166 | lUpperSize++; |
| 167 | |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 168 | while (lUpperSize > 2 && !ccw( |
| 169 | lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y, |
| 170 | lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y, |
| 171 | lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) { |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 172 | // Remove the middle point of the three last |
| 173 | lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x; |
| 174 | lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y; |
| 175 | lUpperSize--; |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | Vector2 lLower[n]; |
| 180 | lLower[0] = points[n - 1]; |
| 181 | lLower[1] = points[n - 2]; |
| 182 | |
| 183 | int lLowerSize = 2; |
| 184 | |
| 185 | for (int i = n - 3; i >= 0; i--) { |
| 186 | lLower[lLowerSize] = points[i]; |
| 187 | lLowerSize++; |
| 188 | |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 189 | while (lLowerSize > 2 && !ccw( |
| 190 | lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y, |
| 191 | lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y, |
| 192 | lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) { |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 193 | // Remove the middle point of the three last |
| 194 | lLower[lLowerSize - 2] = lLower[lLowerSize - 1]; |
| 195 | lLowerSize--; |
| 196 | } |
| 197 | } |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 198 | |
Chris Craik | 726118b | 2014-03-07 18:27:49 -0800 | [diff] [blame] | 199 | // output points in CW ordering |
| 200 | const int total = lUpperSize + lLowerSize - 2; |
| 201 | int outIndex = total - 1; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 202 | for (int i = 0; i < lUpperSize; i++) { |
Chris Craik | 726118b | 2014-03-07 18:27:49 -0800 | [diff] [blame] | 203 | retPoly[outIndex] = lUpper[i]; |
| 204 | outIndex--; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 205 | } |
| 206 | |
| 207 | for (int i = 1; i < lLowerSize - 1; i++) { |
Chris Craik | 726118b | 2014-03-07 18:27:49 -0800 | [diff] [blame] | 208 | retPoly[outIndex] = lLower[i]; |
| 209 | outIndex--; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 210 | } |
| 211 | // TODO: Add test harness which verify that all the points are inside the hull. |
Chris Craik | 726118b | 2014-03-07 18:27:49 -0800 | [diff] [blame] | 212 | return total; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 213 | } |
| 214 | |
| 215 | /** |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 216 | * Test whether the 3 points form a counter clockwise turn. |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 217 | * |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 218 | * @return true if a right hand turn |
| 219 | */ |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 220 | bool SpotShadow::ccw(double ax, double ay, double bx, double by, |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 221 | double cx, double cy) { |
| 222 | return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON; |
| 223 | } |
| 224 | |
| 225 | /** |
| 226 | * Calculates the intersection of poly1 with poly2 and put in poly2. |
ztenghui | 50ecf84 | 2014-03-11 16:52:30 -0700 | [diff] [blame] | 227 | * Note that both poly1 and poly2 must be in CW order already! |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 228 | * |
| 229 | * @param poly1 The 1st polygon, as a Vector2 array. |
| 230 | * @param poly1Length The number of vertices of 1st polygon. |
| 231 | * @param poly2 The 2nd and output polygon, as a Vector2 array. |
| 232 | * @param poly2Length The number of vertices of 2nd polygon. |
| 233 | * @return number of vertices in output polygon as poly2. |
| 234 | */ |
ztenghui | 50ecf84 | 2014-03-11 16:52:30 -0700 | [diff] [blame] | 235 | int SpotShadow::intersection(const Vector2* poly1, int poly1Length, |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 236 | Vector2* poly2, int poly2Length) { |
ztenghui | 50ecf84 | 2014-03-11 16:52:30 -0700 | [diff] [blame] | 237 | #if DEBUG_SHADOW |
ztenghui | 2e023f3 | 2014-04-28 16:43:13 -0700 | [diff] [blame] | 238 | if (!ShadowTessellator::isClockwise(poly1, poly1Length)) { |
ztenghui | 50ecf84 | 2014-03-11 16:52:30 -0700 | [diff] [blame] | 239 | ALOGW("Poly1 is not clockwise! Intersection is wrong!"); |
| 240 | } |
ztenghui | 2e023f3 | 2014-04-28 16:43:13 -0700 | [diff] [blame] | 241 | if (!ShadowTessellator::isClockwise(poly2, poly2Length)) { |
ztenghui | 50ecf84 | 2014-03-11 16:52:30 -0700 | [diff] [blame] | 242 | ALOGW("Poly2 is not clockwise! Intersection is wrong!"); |
| 243 | } |
| 244 | #endif |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 245 | Vector2 poly[poly1Length * poly2Length + 2]; |
| 246 | int count = 0; |
| 247 | int pcount = 0; |
| 248 | |
| 249 | // If one vertex from one polygon sits inside another polygon, add it and |
| 250 | // count them. |
| 251 | for (int i = 0; i < poly1Length; i++) { |
| 252 | if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) { |
| 253 | poly[count] = poly1[i]; |
| 254 | count++; |
| 255 | pcount++; |
| 256 | |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | int insidePoly2 = pcount; |
| 261 | for (int i = 0; i < poly2Length; i++) { |
| 262 | if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) { |
| 263 | poly[count] = poly2[i]; |
| 264 | count++; |
| 265 | } |
| 266 | } |
| 267 | |
| 268 | int insidePoly1 = count - insidePoly2; |
| 269 | // If all vertices from poly1 are inside poly2, then just return poly1. |
| 270 | if (insidePoly2 == poly1Length) { |
| 271 | memcpy(poly2, poly1, poly1Length * sizeof(Vector2)); |
| 272 | return poly1Length; |
| 273 | } |
| 274 | |
| 275 | // If all vertices from poly2 are inside poly1, then just return poly2. |
| 276 | if (insidePoly1 == poly2Length) { |
| 277 | return poly2Length; |
| 278 | } |
| 279 | |
| 280 | // Since neither polygon fully contain the other one, we need to add all the |
| 281 | // intersection points. |
John Reck | 1aa5d2d | 2014-07-24 13:38:28 -0700 | [diff] [blame] | 282 | Vector2 intersection = {0, 0}; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 283 | for (int i = 0; i < poly2Length; i++) { |
| 284 | for (int j = 0; j < poly1Length; j++) { |
| 285 | int poly2LineStart = i; |
| 286 | int poly2LineEnd = ((i + 1) % poly2Length); |
| 287 | int poly1LineStart = j; |
| 288 | int poly1LineEnd = ((j + 1) % poly1Length); |
| 289 | bool found = lineIntersection( |
| 290 | poly2[poly2LineStart].x, poly2[poly2LineStart].y, |
| 291 | poly2[poly2LineEnd].x, poly2[poly2LineEnd].y, |
| 292 | poly1[poly1LineStart].x, poly1[poly1LineStart].y, |
| 293 | poly1[poly1LineEnd].x, poly1[poly1LineEnd].y, |
| 294 | intersection); |
| 295 | if (found) { |
| 296 | poly[count].x = intersection.x; |
| 297 | poly[count].y = intersection.y; |
| 298 | count++; |
| 299 | } else { |
| 300 | Vector2 delta = poly2[i] - poly1[j]; |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 301 | if (delta.lengthSquared() < EPSILON) { |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 302 | poly[count] = poly2[i]; |
| 303 | count++; |
| 304 | } |
| 305 | } |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | if (count == 0) { |
| 310 | return 0; |
| 311 | } |
| 312 | |
| 313 | // Sort the result polygon around the center. |
John Reck | 1aa5d2d | 2014-07-24 13:38:28 -0700 | [diff] [blame] | 314 | Vector2 center = {0.0f, 0.0f}; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 315 | for (int i = 0; i < count; i++) { |
| 316 | center += poly[i]; |
| 317 | } |
| 318 | center /= count; |
| 319 | sort(poly, count, center); |
| 320 | |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 321 | #if DEBUG_SHADOW |
| 322 | // Since poly2 is overwritten as the result, we need to save a copy to do |
| 323 | // our verification. |
| 324 | Vector2 oldPoly2[poly2Length]; |
| 325 | int oldPoly2Length = poly2Length; |
| 326 | memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length); |
| 327 | #endif |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 328 | |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 329 | // Filter the result out from poly and put it into poly2. |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 330 | poly2[0] = poly[0]; |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 331 | int lastOutputIndex = 0; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 332 | for (int i = 1; i < count; i++) { |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 333 | Vector2 delta = poly[i] - poly2[lastOutputIndex]; |
| 334 | if (delta.lengthSquared() >= EPSILON) { |
| 335 | poly2[++lastOutputIndex] = poly[i]; |
| 336 | } else { |
| 337 | // If the vertices are too close, pick the inner one, because the |
| 338 | // inner one is more likely to be an intersection point. |
| 339 | Vector2 delta1 = poly[i] - center; |
| 340 | Vector2 delta2 = poly2[lastOutputIndex] - center; |
| 341 | if (delta1.lengthSquared() < delta2.lengthSquared()) { |
| 342 | poly2[lastOutputIndex] = poly[i]; |
| 343 | } |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 344 | } |
| 345 | } |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 346 | int resultLength = lastOutputIndex + 1; |
| 347 | |
| 348 | #if DEBUG_SHADOW |
| 349 | testConvex(poly2, resultLength, "intersection"); |
| 350 | testConvex(poly1, poly1Length, "input poly1"); |
| 351 | testConvex(oldPoly2, oldPoly2Length, "input poly2"); |
| 352 | |
| 353 | testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength); |
| 354 | #endif |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 355 | |
| 356 | return resultLength; |
| 357 | } |
| 358 | |
| 359 | /** |
| 360 | * Sort points about a center point |
| 361 | * |
| 362 | * @param poly The in and out polyogon as a Vector2 array. |
| 363 | * @param polyLength The number of vertices of the polygon. |
| 364 | * @param center the center ctr[0] = x , ctr[1] = y to sort around. |
| 365 | */ |
| 366 | void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) { |
| 367 | quicksortCirc(poly, 0, polyLength - 1, center); |
| 368 | } |
| 369 | |
| 370 | /** |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 371 | * Swap points pointed to by i and j |
| 372 | */ |
| 373 | void SpotShadow::swap(Vector2* points, int i, int j) { |
| 374 | Vector2 temp = points[i]; |
| 375 | points[i] = points[j]; |
| 376 | points[j] = temp; |
| 377 | } |
| 378 | |
| 379 | /** |
| 380 | * quick sort implementation about the center. |
| 381 | */ |
| 382 | void SpotShadow::quicksortCirc(Vector2* points, int low, int high, |
| 383 | const Vector2& center) { |
| 384 | int i = low, j = high; |
| 385 | int p = low + (high - low) / 2; |
| 386 | float pivot = angle(points[p], center); |
| 387 | while (i <= j) { |
Chris Craik | 726118b | 2014-03-07 18:27:49 -0800 | [diff] [blame] | 388 | while (angle(points[i], center) > pivot) { |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 389 | i++; |
| 390 | } |
Chris Craik | 726118b | 2014-03-07 18:27:49 -0800 | [diff] [blame] | 391 | while (angle(points[j], center) < pivot) { |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 392 | j--; |
| 393 | } |
| 394 | |
| 395 | if (i <= j) { |
| 396 | swap(points, i, j); |
| 397 | i++; |
| 398 | j--; |
| 399 | } |
| 400 | } |
| 401 | if (low < j) quicksortCirc(points, low, j, center); |
| 402 | if (i < high) quicksortCirc(points, i, high, center); |
| 403 | } |
| 404 | |
| 405 | /** |
| 406 | * Sort points by x axis |
| 407 | * |
| 408 | * @param points points to sort |
| 409 | * @param low start index |
| 410 | * @param high end index |
| 411 | */ |
| 412 | void SpotShadow::quicksortX(Vector2* points, int low, int high) { |
| 413 | int i = low, j = high; |
| 414 | int p = low + (high - low) / 2; |
| 415 | float pivot = points[p].x; |
| 416 | while (i <= j) { |
| 417 | while (points[i].x < pivot) { |
| 418 | i++; |
| 419 | } |
| 420 | while (points[j].x > pivot) { |
| 421 | j--; |
| 422 | } |
| 423 | |
| 424 | if (i <= j) { |
| 425 | swap(points, i, j); |
| 426 | i++; |
| 427 | j--; |
| 428 | } |
| 429 | } |
| 430 | if (low < j) quicksortX(points, low, j); |
| 431 | if (i < high) quicksortX(points, i, high); |
| 432 | } |
| 433 | |
| 434 | /** |
| 435 | * Test whether a point is inside the polygon. |
| 436 | * |
| 437 | * @param testPoint the point to test |
| 438 | * @param poly the polygon |
| 439 | * @return true if the testPoint is inside the poly. |
| 440 | */ |
| 441 | bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint, |
| 442 | const Vector2* poly, int len) { |
| 443 | bool c = false; |
| 444 | double testx = testPoint.x; |
| 445 | double testy = testPoint.y; |
| 446 | for (int i = 0, j = len - 1; i < len; j = i++) { |
| 447 | double startX = poly[j].x; |
| 448 | double startY = poly[j].y; |
| 449 | double endX = poly[i].x; |
| 450 | double endY = poly[i].y; |
| 451 | |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 452 | if (((endY > testy) != (startY > testy)) |
| 453 | && (testx < (startX - endX) * (testy - endY) |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 454 | / (startY - endY) + endX)) { |
| 455 | c = !c; |
| 456 | } |
| 457 | } |
| 458 | return c; |
| 459 | } |
| 460 | |
| 461 | /** |
| 462 | * Make the polygon turn clockwise. |
| 463 | * |
| 464 | * @param polygon the polygon as a Vector2 array. |
| 465 | * @param len the number of points of the polygon |
| 466 | */ |
| 467 | void SpotShadow::makeClockwise(Vector2* polygon, int len) { |
| 468 | if (polygon == 0 || len == 0) { |
| 469 | return; |
| 470 | } |
ztenghui | 2e023f3 | 2014-04-28 16:43:13 -0700 | [diff] [blame] | 471 | if (!ShadowTessellator::isClockwise(polygon, len)) { |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 472 | reverse(polygon, len); |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | /** |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 477 | * Reverse the polygon |
| 478 | * |
| 479 | * @param polygon the polygon as a Vector2 array |
| 480 | * @param len the number of points of the polygon |
| 481 | */ |
| 482 | void SpotShadow::reverse(Vector2* polygon, int len) { |
| 483 | int n = len / 2; |
| 484 | for (int i = 0; i < n; i++) { |
| 485 | Vector2 tmp = polygon[i]; |
| 486 | int k = len - 1 - i; |
| 487 | polygon[i] = polygon[k]; |
| 488 | polygon[k] = tmp; |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | /** |
| 493 | * Intersects two lines in parametric form. This function is called in a tight |
| 494 | * loop, and we need double precision to get things right. |
| 495 | * |
| 496 | * @param x1 the x coordinate point 1 of line 1 |
| 497 | * @param y1 the y coordinate point 1 of line 1 |
| 498 | * @param x2 the x coordinate point 2 of line 1 |
| 499 | * @param y2 the y coordinate point 2 of line 1 |
| 500 | * @param x3 the x coordinate point 1 of line 2 |
| 501 | * @param y3 the y coordinate point 1 of line 2 |
| 502 | * @param x4 the x coordinate point 2 of line 2 |
| 503 | * @param y4 the y coordinate point 2 of line 2 |
| 504 | * @param ret the x,y location of the intersection |
| 505 | * @return true if it found an intersection |
| 506 | */ |
| 507 | inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2, |
| 508 | double x3, double y3, double x4, double y4, Vector2& ret) { |
| 509 | double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4); |
| 510 | if (d == 0.0) return false; |
| 511 | |
| 512 | double dx = (x1 * y2 - y1 * x2); |
| 513 | double dy = (x3 * y4 - y3 * x4); |
| 514 | double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d; |
| 515 | double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d; |
| 516 | |
| 517 | // The intersection should be in the middle of the point 1 and point 2, |
| 518 | // likewise point 3 and point 4. |
| 519 | if (((x - x1) * (x - x2) > EPSILON) |
| 520 | || ((x - x3) * (x - x4) > EPSILON) |
| 521 | || ((y - y1) * (y - y2) > EPSILON) |
| 522 | || ((y - y3) * (y - y4) > EPSILON)) { |
| 523 | // Not interesected |
| 524 | return false; |
| 525 | } |
| 526 | ret.x = x; |
| 527 | ret.y = y; |
| 528 | return true; |
| 529 | |
| 530 | } |
| 531 | |
| 532 | /** |
| 533 | * Compute a horizontal circular polygon about point (x , y , height) of radius |
| 534 | * (size) |
| 535 | * |
| 536 | * @param points number of the points of the output polygon. |
| 537 | * @param lightCenter the center of the light. |
| 538 | * @param size the light size. |
| 539 | * @param ret result polygon. |
| 540 | */ |
| 541 | void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter, |
| 542 | float size, Vector3* ret) { |
| 543 | // TODO: Caching all the sin / cos values and store them in a look up table. |
| 544 | for (int i = 0; i < points; i++) { |
| 545 | double angle = 2 * i * M_PI / points; |
Chris Craik | 726118b | 2014-03-07 18:27:49 -0800 | [diff] [blame] | 546 | ret[i].x = cosf(angle) * size + lightCenter.x; |
| 547 | ret[i].y = sinf(angle) * size + lightCenter.y; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 548 | ret[i].z = lightCenter.z; |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | /** |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 553 | * From light center, project one vertex to the z=0 surface and get the outline. |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 554 | * |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 555 | * @param outline The result which is the outline position. |
| 556 | * @param lightCenter The center of light. |
| 557 | * @param polyVertex The input polygon's vertex. |
| 558 | * |
| 559 | * @return float The ratio of (polygon.z / light.z - polygon.z) |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 560 | */ |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 561 | float SpotShadow::projectCasterToOutline(Vector2& outline, |
| 562 | const Vector3& lightCenter, const Vector3& polyVertex) { |
| 563 | float lightToPolyZ = lightCenter.z - polyVertex.z; |
| 564 | float ratioZ = CASTER_Z_CAP_RATIO; |
| 565 | if (lightToPolyZ != 0) { |
| 566 | // If any caster's vertex is almost above the light, we just keep it as 95% |
| 567 | // of the height of the light. |
ztenghui | 3bd3fa1 | 2014-08-25 14:42:27 -0700 | [diff] [blame] | 568 | ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO); |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 569 | } |
| 570 | |
| 571 | outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x); |
| 572 | outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y); |
| 573 | return ratioZ; |
| 574 | } |
| 575 | |
| 576 | /** |
| 577 | * Generate the shadow spot light of shape lightPoly and a object poly |
| 578 | * |
| 579 | * @param isCasterOpaque whether the caster is opaque |
| 580 | * @param lightCenter the center of the light |
| 581 | * @param lightSize the radius of the light |
| 582 | * @param poly x,y,z vertexes of a convex polygon that occludes the light source |
| 583 | * @param polyLength number of vertexes of the occluding polygon |
| 584 | * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return |
| 585 | * empty strip if error. |
| 586 | */ |
| 587 | void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter, |
| 588 | float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid, |
| 589 | VertexBuffer& shadowTriangleStrip) { |
ztenghui | 3bd3fa1 | 2014-08-25 14:42:27 -0700 | [diff] [blame] | 590 | if (CC_UNLIKELY(lightCenter.z <= 0)) { |
| 591 | ALOGW("Relative Light Z is not positive. No spot shadow!"); |
| 592 | return; |
| 593 | } |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 594 | if (CC_UNLIKELY(polyLength < 3)) { |
| 595 | #if DEBUG_SHADOW |
| 596 | ALOGW("Invalid polygon length. No spot shadow!"); |
| 597 | #endif |
| 598 | return; |
| 599 | } |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 600 | OutlineData outlineData[polyLength]; |
| 601 | Vector2 outlineCentroid; |
| 602 | // Calculate the projected outline for each polygon's vertices from the light center. |
| 603 | // |
| 604 | // O Light |
| 605 | // / |
| 606 | // / |
| 607 | // . Polygon vertex |
| 608 | // / |
| 609 | // / |
| 610 | // O Outline vertices |
| 611 | // |
| 612 | // Ratio = (Poly - Outline) / (Light - Poly) |
| 613 | // Outline.x = Poly.x - Ratio * (Light.x - Poly.x) |
| 614 | // Outline's radius / Light's radius = Ratio |
| 615 | |
| 616 | // Compute the last outline vertex to make sure we can get the normal and outline |
| 617 | // in one single loop. |
| 618 | projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter, |
| 619 | poly[polyLength - 1]); |
| 620 | |
| 621 | // Take the outline's polygon, calculate the normal for each outline edge. |
| 622 | int currentNormalIndex = polyLength - 1; |
| 623 | int nextNormalIndex = 0; |
| 624 | |
| 625 | for (int i = 0; i < polyLength; i++) { |
| 626 | float ratioZ = projectCasterToOutline(outlineData[i].position, |
| 627 | lightCenter, poly[i]); |
| 628 | outlineData[i].radius = ratioZ * lightSize; |
| 629 | |
| 630 | outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal( |
| 631 | outlineData[currentNormalIndex].position, |
| 632 | outlineData[nextNormalIndex].position); |
| 633 | currentNormalIndex = (currentNormalIndex + 1) % polyLength; |
| 634 | nextNormalIndex++; |
| 635 | } |
| 636 | |
| 637 | projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid); |
| 638 | |
| 639 | int penumbraIndex = 0; |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 640 | // Then each polygon's vertex produce at minmal 2 penumbra vertices. |
| 641 | // Since the size can be dynamic here, we keep track of the size and update |
| 642 | // the real size at the end. |
| 643 | int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER; |
| 644 | Vector2 penumbra[allocatedPenumbraLength]; |
| 645 | int totalExtraCornerSliceNumber = 0; |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 646 | |
| 647 | Vector2 umbra[polyLength]; |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 648 | |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 649 | // When centroid is covered by all circles from outline, then we consider |
| 650 | // the umbra is invalid, and we will tune down the shadow strength. |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 651 | bool hasValidUmbra = true; |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 652 | // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly. |
| 653 | float minRaitoVI = FLT_MAX; |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 654 | |
| 655 | for (int i = 0; i < polyLength; i++) { |
| 656 | // Generate all the penumbra's vertices only using the (outline vertex + normal * radius) |
| 657 | // There is no guarantee that the penumbra is still convex, but for |
| 658 | // each outline vertex, it will connect to all its corresponding penumbra vertices as |
| 659 | // triangle fans. And for neighber penumbra vertex, it will be a trapezoid. |
| 660 | // |
| 661 | // Penumbra Vertices marked as Pi |
| 662 | // Outline Vertices marked as Vi |
| 663 | // (P3) |
| 664 | // (P2) | ' (P4) |
| 665 | // (P1)' | | ' |
| 666 | // ' | | ' |
| 667 | // (P0) ------------------------------------------------(P5) |
| 668 | // | (V0) |(V1) |
| 669 | // | | |
| 670 | // | | |
| 671 | // | | |
| 672 | // | | |
| 673 | // | | |
| 674 | // | | |
| 675 | // | | |
| 676 | // | | |
| 677 | // (V3)-----------------------------------(V2) |
| 678 | int preNormalIndex = (i + polyLength - 1) % polyLength; |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 679 | |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 680 | const Vector2& previousNormal = outlineData[preNormalIndex].normal; |
| 681 | const Vector2& currentNormal = outlineData[i].normal; |
| 682 | |
| 683 | // Depending on how roundness we want for each corner, we can subdivide |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 684 | // further here and/or introduce some heuristic to decide how much the |
| 685 | // subdivision should be. |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 686 | int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber( |
| 687 | previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR); |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 688 | |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 689 | int currentCornerSliceNumber = 1 + currentExtraSliceNumber; |
| 690 | totalExtraCornerSliceNumber += currentExtraSliceNumber; |
| 691 | #if DEBUG_SHADOW |
| 692 | ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber); |
| 693 | ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber); |
| 694 | ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber); |
| 695 | #endif |
| 696 | if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) { |
| 697 | currentCornerSliceNumber = 1; |
| 698 | } |
| 699 | for (int k = 0; k <= currentCornerSliceNumber; k++) { |
| 700 | Vector2 avgNormal = |
| 701 | (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) / |
| 702 | currentCornerSliceNumber; |
| 703 | avgNormal.normalize(); |
| 704 | penumbra[penumbraIndex++] = outlineData[i].position + |
| 705 | avgNormal * outlineData[i].radius; |
| 706 | } |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 707 | |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 708 | |
| 709 | // Compute the umbra by the intersection from the outline's centroid! |
| 710 | // |
| 711 | // (V) ------------------------------------ |
| 712 | // | ' | |
| 713 | // | ' | |
| 714 | // | ' (I) | |
| 715 | // | ' | |
| 716 | // | ' (C) | |
| 717 | // | | |
| 718 | // | | |
| 719 | // | | |
| 720 | // | | |
| 721 | // ------------------------------------ |
| 722 | // |
| 723 | // Connect a line b/t the outline vertex (V) and the centroid (C), it will |
| 724 | // intersect with the outline vertex's circle at point (I). |
| 725 | // Now, ratioVI = VI / VC, ratioIC = IC / VC |
| 726 | // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI; |
| 727 | // |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 728 | // When all of the outline circles cover the the outline centroid, (like I is |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 729 | // on the other side of C), there is no real umbra any more, so we just fake |
| 730 | // a small area around the centroid as the umbra, and tune down the spot |
| 731 | // shadow's umbra strength to simulate the effect the whole shadow will |
| 732 | // become lighter in this case. |
| 733 | // The ratio can be simulated by using the inverse of maximum of ratioVI for |
| 734 | // all (V). |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 735 | float distOutline = (outlineData[i].position - outlineCentroid).length(); |
ztenghui | 3bd3fa1 | 2014-08-25 14:42:27 -0700 | [diff] [blame] | 736 | if (CC_UNLIKELY(distOutline == 0)) { |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 737 | // If the outline has 0 area, then there is no spot shadow anyway. |
| 738 | ALOGW("Outline has 0 area, no spot shadow!"); |
| 739 | return; |
| 740 | } |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 741 | |
| 742 | float ratioVI = outlineData[i].radius / distOutline; |
| 743 | minRaitoVI = MathUtils::min(minRaitoVI, ratioVI); |
| 744 | if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) { |
| 745 | ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO); |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 746 | } |
| 747 | // When we know we don't have valid umbra, don't bother to compute the |
| 748 | // values below. But we can't skip the loop yet since we want to know the |
| 749 | // maximum ratio. |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 750 | float ratioIC = 1 - ratioVI; |
| 751 | umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI; |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 752 | } |
| 753 | |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 754 | hasValidUmbra = (minRaitoVI <= 1.0); |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 755 | float shadowStrengthScale = 1.0; |
| 756 | if (!hasValidUmbra) { |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 757 | #if DEBUG_SHADOW |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 758 | ALOGW("The object is too close to the light or too small, no real umbra!"); |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 759 | #endif |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 760 | for (int i = 0; i < polyLength; i++) { |
| 761 | umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO + |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 762 | outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO); |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 763 | } |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 764 | shadowStrengthScale = 1.0 / minRaitoVI; |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 765 | } |
| 766 | |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 767 | int penumbraLength = penumbraIndex; |
| 768 | int umbraLength = polyLength; |
| 769 | |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 770 | #if DEBUG_SHADOW |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 771 | ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength); |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 772 | dumpPolygon(poly, polyLength, "input poly"); |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 773 | dumpPolygon(penumbra, penumbraLength, "penumbra"); |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 774 | dumpPolygon(umbra, umbraLength, "umbra"); |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 775 | ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale); |
| 776 | #endif |
| 777 | |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 778 | // The penumbra and umbra needs to be in convex shape to keep consistency |
| 779 | // and quality. |
| 780 | // Since we are still shooting rays to penumbra, it needs to be convex. |
| 781 | // Umbra can be represented as a fan from the centroid, but visually umbra |
| 782 | // looks nicer when it is convex. |
| 783 | Vector2 finalUmbra[umbraLength]; |
| 784 | Vector2 finalPenumbra[penumbraLength]; |
| 785 | int finalUmbraLength = hull(umbra, umbraLength, finalUmbra); |
| 786 | int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra); |
| 787 | |
| 788 | generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra, |
| 789 | finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength, |
| 790 | shadowTriangleStrip, outlineCentroid); |
| 791 | |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 792 | } |
| 793 | |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 794 | /** |
Chris Craik | 726118b | 2014-03-07 18:27:49 -0800 | [diff] [blame] | 795 | * Converts a polygon specified with CW vertices into an array of distance-from-centroid values. |
| 796 | * |
| 797 | * Returns false in error conditions |
| 798 | * |
| 799 | * @param poly Array of vertices. Note that these *must* be CW. |
| 800 | * @param polyLength The number of vertices in the polygon. |
| 801 | * @param polyCentroid The centroid of the polygon, from which rays will be cast |
| 802 | * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size |
| 803 | */ |
| 804 | bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid, |
| 805 | float* rayDist) { |
| 806 | const int rays = SHADOW_RAY_COUNT; |
| 807 | const float step = M_PI * 2 / rays; |
| 808 | |
| 809 | const Vector2* lastVertex = &(poly[polyLength - 1]); |
| 810 | float startAngle = angle(*lastVertex, polyCentroid); |
| 811 | |
| 812 | // Start with the ray that's closest to and less than startAngle |
| 813 | int rayIndex = floor((startAngle - EPSILON) / step); |
| 814 | rayIndex = (rayIndex + rays) % rays; // ensure positive |
| 815 | |
| 816 | for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) { |
| 817 | /* |
| 818 | * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that |
| 819 | * intersect these will be those that are between the two angles from the centroid that the |
| 820 | * vertices define. |
| 821 | * |
| 822 | * Because the polygon vertices are stored clockwise, the closest ray with an angle |
| 823 | * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does |
| 824 | * not intersect with poly[i-1], poly[i]. |
| 825 | */ |
| 826 | float currentAngle = angle(poly[polyIndex], polyCentroid); |
| 827 | |
| 828 | // find first ray that will not intersect the line segment poly[i-1] & poly[i] |
| 829 | int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step); |
| 830 | firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive |
| 831 | |
| 832 | // Iterate through all rays that intersect with poly[i-1], poly[i] line segment. |
| 833 | // This may be 0 rays. |
| 834 | while (rayIndex != firstRayIndexOnNextSegment) { |
| 835 | float distanceToIntersect = rayIntersectPoints(polyCentroid, |
| 836 | cos(rayIndex * step), |
| 837 | sin(rayIndex * step), |
| 838 | *lastVertex, poly[polyIndex]); |
ztenghui | 50ecf84 | 2014-03-11 16:52:30 -0700 | [diff] [blame] | 839 | if (distanceToIntersect < 0) { |
| 840 | #if DEBUG_SHADOW |
| 841 | ALOGW("ERROR: convertPolyToRayDist failed"); |
| 842 | #endif |
| 843 | return false; // error case, abort |
| 844 | } |
Chris Craik | 726118b | 2014-03-07 18:27:49 -0800 | [diff] [blame] | 845 | |
| 846 | rayDist[rayIndex] = distanceToIntersect; |
| 847 | |
| 848 | rayIndex = (rayIndex - 1 + rays) % rays; |
| 849 | } |
| 850 | lastVertex = &poly[polyIndex]; |
| 851 | } |
| 852 | |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 853 | return true; |
Chris Craik | 726118b | 2014-03-07 18:27:49 -0800 | [diff] [blame] | 854 | } |
| 855 | |
ztenghui | 50ecf84 | 2014-03-11 16:52:30 -0700 | [diff] [blame] | 856 | int SpotShadow::calculateOccludedUmbra(const Vector2* umbra, int umbraLength, |
| 857 | const Vector3* poly, int polyLength, Vector2* occludedUmbra) { |
| 858 | // Occluded umbra area is computed as the intersection of the projected 2D |
| 859 | // poly and umbra. |
| 860 | for (int i = 0; i < polyLength; i++) { |
| 861 | occludedUmbra[i].x = poly[i].x; |
| 862 | occludedUmbra[i].y = poly[i].y; |
| 863 | } |
| 864 | |
| 865 | // Both umbra and incoming polygon are guaranteed to be CW, so we can call |
| 866 | // intersection() directly. |
| 867 | return intersection(umbra, umbraLength, |
| 868 | occludedUmbra, polyLength); |
| 869 | } |
| 870 | |
Chris Craik | 726118b | 2014-03-07 18:27:49 -0800 | [diff] [blame] | 871 | /** |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 872 | * This is only for experimental purpose. |
| 873 | * After intersections are calculated, we could smooth the polygon if needed. |
| 874 | * So far, we don't think it is more appealing yet. |
| 875 | * |
| 876 | * @param level The level of smoothness. |
| 877 | * @param rays The total number of rays. |
| 878 | * @param rayDist (In and Out) The distance for each ray. |
| 879 | * |
| 880 | */ |
| 881 | void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) { |
| 882 | for (int k = 0; k < level; k++) { |
| 883 | for (int i = 0; i < rays; i++) { |
| 884 | float p1 = rayDist[(rays - 1 + i) % rays]; |
| 885 | float p2 = rayDist[i]; |
| 886 | float p3 = rayDist[(i + 1) % rays]; |
| 887 | rayDist[i] = (p1 + p2 * 2 + p3) / 4; |
| 888 | } |
| 889 | } |
| 890 | } |
| 891 | |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 892 | /** |
| 893 | * Generate a array of the angleData for either umbra or penumbra vertices. |
| 894 | * |
| 895 | * This array will be merged and used to guide where to shoot the rays, in clockwise order. |
| 896 | * |
| 897 | * @param angleDataList The result array of angle data. |
| 898 | * |
| 899 | * @return int The maximum angle's index in the array. |
| 900 | */ |
| 901 | int SpotShadow::setupAngleList(VertexAngleData* angleDataList, |
| 902 | int polyLength, const Vector2* polygon, const Vector2& centroid, |
| 903 | bool isPenumbra, const char* name) { |
| 904 | float maxAngle = FLT_MIN; |
| 905 | int maxAngleIndex = 0; |
| 906 | for (int i = 0; i < polyLength; i++) { |
| 907 | float currentAngle = angle(polygon[i], centroid); |
| 908 | if (currentAngle > maxAngle) { |
| 909 | maxAngle = currentAngle; |
| 910 | maxAngleIndex = i; |
| 911 | } |
| 912 | angleDataList[i].set(currentAngle, isPenumbra, i); |
| 913 | #if DEBUG_SHADOW |
| 914 | ALOGD("%s AngleList i %d %f", name, i, currentAngle); |
Andreas Gampe | 42ddc18 | 2014-11-21 09:49:08 -0800 | [diff] [blame^] | 915 | #else |
| 916 | (void)name; |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 917 | #endif |
| 918 | } |
| 919 | return maxAngleIndex; |
| 920 | } |
| 921 | |
| 922 | /** |
| 923 | * Make sure the polygons are indeed in clockwise order. |
| 924 | * |
| 925 | * Possible reasons to return false: 1. The input polygon is not setup properly. 2. The hull |
| 926 | * algorithm is not able to generate it properly. |
| 927 | * |
| 928 | * Anyway, since the algorithm depends on the clockwise, when these kind of unexpected error |
| 929 | * situation is found, we need to detect it and early return without corrupting the memory. |
| 930 | * |
| 931 | * @return bool True if the angle list is actually from big to small. |
| 932 | */ |
| 933 | bool SpotShadow::checkClockwise(int indexOfMaxAngle, int listLength, VertexAngleData* angleList, |
| 934 | const char* name) { |
| 935 | int currentIndex = indexOfMaxAngle; |
| 936 | #if DEBUG_SHADOW |
| 937 | ALOGD("max index %d", currentIndex); |
| 938 | #endif |
| 939 | for (int i = 0; i < listLength - 1; i++) { |
| 940 | // TODO: Cache the last angle. |
| 941 | float currentAngle = angleList[currentIndex].mAngle; |
| 942 | float nextAngle = angleList[(currentIndex + 1) % listLength].mAngle; |
| 943 | if (currentAngle < nextAngle) { |
| 944 | #if DEBUG_SHADOW |
| 945 | ALOGE("%s, is not CW, at index %d", name, currentIndex); |
Andreas Gampe | 42ddc18 | 2014-11-21 09:49:08 -0800 | [diff] [blame^] | 946 | #else |
| 947 | (void)name; |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 948 | #endif |
| 949 | return false; |
| 950 | } |
| 951 | currentIndex = (currentIndex + 1) % listLength; |
| 952 | } |
| 953 | return true; |
| 954 | } |
| 955 | |
| 956 | /** |
| 957 | * Check the polygon is clockwise. |
| 958 | * |
| 959 | * @return bool True is the polygon is clockwise. |
| 960 | */ |
| 961 | bool SpotShadow::checkPolyClockwise(int polyAngleLength, int maxPolyAngleIndex, |
| 962 | const float* polyAngleList) { |
| 963 | bool isPolyCW = true; |
| 964 | // Starting from maxPolyAngleIndex , check around to make sure angle decrease. |
| 965 | for (int i = 0; i < polyAngleLength - 1; i++) { |
| 966 | float currentAngle = polyAngleList[(i + maxPolyAngleIndex) % polyAngleLength]; |
| 967 | float nextAngle = polyAngleList[(i + maxPolyAngleIndex + 1) % polyAngleLength]; |
| 968 | if (currentAngle < nextAngle) { |
| 969 | isPolyCW = false; |
| 970 | } |
| 971 | } |
| 972 | return isPolyCW; |
| 973 | } |
| 974 | |
| 975 | /** |
| 976 | * Given the sorted array of all the vertices angle data, calculate for each |
| 977 | * vertices, the offset value to array element which represent the start edge |
| 978 | * of the polygon we need to shoot the ray at. |
| 979 | * |
| 980 | * TODO: Calculate this for umbra and penumbra in one loop using one single array. |
| 981 | * |
| 982 | * @param distances The result of the array distance counter. |
| 983 | */ |
| 984 | void SpotShadow::calculateDistanceCounter(bool needsOffsetToUmbra, int angleLength, |
| 985 | const VertexAngleData* allVerticesAngleData, int* distances) { |
| 986 | |
| 987 | bool firstVertexIsPenumbra = allVerticesAngleData[0].mIsPenumbra; |
| 988 | // If we want distance to inner, then we just set to 0 when we see inner. |
| 989 | bool needsSearch = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra; |
| 990 | int distanceCounter = 0; |
| 991 | if (needsSearch) { |
| 992 | int foundIndex = -1; |
| 993 | for (int i = (angleLength - 1); i >= 0; i--) { |
| 994 | bool currentIsOuter = allVerticesAngleData[i].mIsPenumbra; |
| 995 | // If we need distance to inner, then we need to find a inner vertex. |
| 996 | if (currentIsOuter != firstVertexIsPenumbra) { |
| 997 | foundIndex = i; |
| 998 | break; |
| 999 | } |
| 1000 | } |
| 1001 | LOG_ALWAYS_FATAL_IF(foundIndex == -1, "Wrong index found, means either" |
| 1002 | " umbra or penumbra's length is 0"); |
| 1003 | distanceCounter = angleLength - foundIndex; |
| 1004 | } |
| 1005 | #if DEBUG_SHADOW |
| 1006 | ALOGD("distances[0] is %d", distanceCounter); |
| 1007 | #endif |
| 1008 | |
| 1009 | distances[0] = distanceCounter; // means never see a target poly |
| 1010 | |
| 1011 | for (int i = 1; i < angleLength; i++) { |
| 1012 | bool firstVertexIsPenumbra = allVerticesAngleData[i].mIsPenumbra; |
| 1013 | // When we needs for distance for each outer vertex to inner, then we |
| 1014 | // increase the distance when seeing outer vertices. Otherwise, we clear |
| 1015 | // to 0. |
| 1016 | bool needsIncrement = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra; |
| 1017 | // If counter is not -1, that means we have seen an other polygon's vertex. |
| 1018 | if (needsIncrement && distanceCounter != -1) { |
| 1019 | distanceCounter++; |
| 1020 | } else { |
| 1021 | distanceCounter = 0; |
| 1022 | } |
| 1023 | distances[i] = distanceCounter; |
| 1024 | } |
| 1025 | } |
| 1026 | |
| 1027 | /** |
| 1028 | * Given umbra and penumbra angle data list, merge them by sorting the angle |
| 1029 | * from the biggest to smallest. |
| 1030 | * |
| 1031 | * @param allVerticesAngleData The result array of merged angle data. |
| 1032 | */ |
| 1033 | void SpotShadow::mergeAngleList(int maxUmbraAngleIndex, int maxPenumbraAngleIndex, |
| 1034 | const VertexAngleData* umbraAngleList, int umbraLength, |
| 1035 | const VertexAngleData* penumbraAngleList, int penumbraLength, |
| 1036 | VertexAngleData* allVerticesAngleData) { |
| 1037 | |
| 1038 | int totalRayNumber = umbraLength + penumbraLength; |
| 1039 | int umbraIndex = maxUmbraAngleIndex; |
| 1040 | int penumbraIndex = maxPenumbraAngleIndex; |
| 1041 | |
| 1042 | float currentUmbraAngle = umbraAngleList[umbraIndex].mAngle; |
| 1043 | float currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle; |
| 1044 | |
| 1045 | // TODO: Clean this up using a while loop with 2 iterators. |
| 1046 | for (int i = 0; i < totalRayNumber; i++) { |
| 1047 | if (currentUmbraAngle > currentPenumbraAngle) { |
| 1048 | allVerticesAngleData[i] = umbraAngleList[umbraIndex]; |
| 1049 | umbraIndex = (umbraIndex + 1) % umbraLength; |
| 1050 | |
| 1051 | // If umbraIndex round back, that means we are running out of |
| 1052 | // umbra vertices to merge, so just copy all the penumbra leftover. |
| 1053 | // Otherwise, we update the currentUmbraAngle. |
| 1054 | if (umbraIndex != maxUmbraAngleIndex) { |
| 1055 | currentUmbraAngle = umbraAngleList[umbraIndex].mAngle; |
| 1056 | } else { |
| 1057 | for (int j = i + 1; j < totalRayNumber; j++) { |
| 1058 | allVerticesAngleData[j] = penumbraAngleList[penumbraIndex]; |
| 1059 | penumbraIndex = (penumbraIndex + 1) % penumbraLength; |
| 1060 | } |
| 1061 | break; |
| 1062 | } |
| 1063 | } else { |
| 1064 | allVerticesAngleData[i] = penumbraAngleList[penumbraIndex]; |
| 1065 | penumbraIndex = (penumbraIndex + 1) % penumbraLength; |
| 1066 | // If penumbraIndex round back, that means we are running out of |
| 1067 | // penumbra vertices to merge, so just copy all the umbra leftover. |
| 1068 | // Otherwise, we update the currentPenumbraAngle. |
| 1069 | if (penumbraIndex != maxPenumbraAngleIndex) { |
| 1070 | currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle; |
| 1071 | } else { |
| 1072 | for (int j = i + 1; j < totalRayNumber; j++) { |
| 1073 | allVerticesAngleData[j] = umbraAngleList[umbraIndex]; |
| 1074 | umbraIndex = (umbraIndex + 1) % umbraLength; |
| 1075 | } |
| 1076 | break; |
| 1077 | } |
| 1078 | } |
| 1079 | } |
| 1080 | } |
| 1081 | |
| 1082 | #if DEBUG_SHADOW |
| 1083 | /** |
| 1084 | * DEBUG ONLY: Verify all the offset compuation is correctly done by examining |
| 1085 | * each vertex and its neighbor. |
| 1086 | */ |
| 1087 | static void verifyDistanceCounter(const VertexAngleData* allVerticesAngleData, |
| 1088 | const int* distances, int angleLength, const char* name) { |
| 1089 | int currentDistance = distances[0]; |
| 1090 | for (int i = 1; i < angleLength; i++) { |
| 1091 | if (distances[i] != INT_MIN) { |
| 1092 | if (!((currentDistance + 1) == distances[i] |
| 1093 | || distances[i] == 0)) { |
| 1094 | ALOGE("Wrong distance found at i %d name %s", i, name); |
| 1095 | } |
| 1096 | currentDistance = distances[i]; |
| 1097 | if (currentDistance != 0) { |
| 1098 | bool currentOuter = allVerticesAngleData[i].mIsPenumbra; |
| 1099 | for (int j = 1; j <= (currentDistance - 1); j++) { |
| 1100 | bool neigborOuter = |
| 1101 | allVerticesAngleData[(i + angleLength - j) % angleLength].mIsPenumbra; |
| 1102 | if (neigborOuter != currentOuter) { |
| 1103 | ALOGE("Wrong distance found at i %d name %s", i, name); |
| 1104 | } |
| 1105 | } |
| 1106 | bool oppositeOuter = |
| 1107 | allVerticesAngleData[(i + angleLength - currentDistance) % angleLength].mIsPenumbra; |
| 1108 | if (oppositeOuter == currentOuter) { |
| 1109 | ALOGE("Wrong distance found at i %d name %s", i, name); |
| 1110 | } |
| 1111 | } |
| 1112 | } |
| 1113 | } |
| 1114 | } |
| 1115 | |
| 1116 | /** |
| 1117 | * DEBUG ONLY: Verify all the angle data compuated are is correctly done |
| 1118 | */ |
| 1119 | static void verifyAngleData(int totalRayNumber, const VertexAngleData* allVerticesAngleData, |
| 1120 | const int* distancesToInner, const int* distancesToOuter, |
| 1121 | const VertexAngleData* umbraAngleList, int maxUmbraAngleIndex, int umbraLength, |
| 1122 | const VertexAngleData* penumbraAngleList, int maxPenumbraAngleIndex, |
| 1123 | int penumbraLength) { |
| 1124 | for (int i = 0; i < totalRayNumber; i++) { |
| 1125 | ALOGD("currentAngleList i %d, angle %f, isInner %d, index %d distancesToInner" |
| 1126 | " %d distancesToOuter %d", i, allVerticesAngleData[i].mAngle, |
| 1127 | !allVerticesAngleData[i].mIsPenumbra, |
| 1128 | allVerticesAngleData[i].mVertexIndex, distancesToInner[i], distancesToOuter[i]); |
| 1129 | } |
| 1130 | |
| 1131 | verifyDistanceCounter(allVerticesAngleData, distancesToInner, totalRayNumber, "distancesToInner"); |
| 1132 | verifyDistanceCounter(allVerticesAngleData, distancesToOuter, totalRayNumber, "distancesToOuter"); |
| 1133 | |
| 1134 | for (int i = 0; i < totalRayNumber; i++) { |
| 1135 | if ((distancesToInner[i] * distancesToOuter[i]) != 0) { |
| 1136 | ALOGE("distancesToInner wrong at index %d distancesToInner[i] %d," |
| 1137 | " distancesToOuter[i] %d", i, distancesToInner[i], distancesToOuter[i]); |
| 1138 | } |
| 1139 | } |
| 1140 | int currentUmbraVertexIndex = |
| 1141 | umbraAngleList[maxUmbraAngleIndex].mVertexIndex; |
| 1142 | int currentPenumbraVertexIndex = |
| 1143 | penumbraAngleList[maxPenumbraAngleIndex].mVertexIndex; |
| 1144 | for (int i = 0; i < totalRayNumber; i++) { |
| 1145 | if (allVerticesAngleData[i].mIsPenumbra == true) { |
| 1146 | if (allVerticesAngleData[i].mVertexIndex != currentPenumbraVertexIndex) { |
| 1147 | ALOGW("wrong penumbra indexing i %d allVerticesAngleData[i].mVertexIndex %d " |
| 1148 | "currentpenumbraVertexIndex %d", i, |
| 1149 | allVerticesAngleData[i].mVertexIndex, currentPenumbraVertexIndex); |
| 1150 | } |
| 1151 | currentPenumbraVertexIndex = (currentPenumbraVertexIndex + 1) % penumbraLength; |
| 1152 | } else { |
| 1153 | if (allVerticesAngleData[i].mVertexIndex != currentUmbraVertexIndex) { |
| 1154 | ALOGW("wrong umbra indexing i %d allVerticesAngleData[i].mVertexIndex %d " |
| 1155 | "currentUmbraVertexIndex %d", i, |
| 1156 | allVerticesAngleData[i].mVertexIndex, currentUmbraVertexIndex); |
| 1157 | } |
| 1158 | currentUmbraVertexIndex = (currentUmbraVertexIndex + 1) % umbraLength; |
| 1159 | } |
| 1160 | } |
| 1161 | for (int i = 0; i < totalRayNumber - 1; i++) { |
| 1162 | float currentAngle = allVerticesAngleData[i].mAngle; |
| 1163 | float nextAngle = allVerticesAngleData[(i + 1) % totalRayNumber].mAngle; |
| 1164 | if (currentAngle < nextAngle) { |
| 1165 | ALOGE("Unexpected angle values!, currentAngle nextAngle %f %f", currentAngle, nextAngle); |
| 1166 | } |
| 1167 | } |
| 1168 | } |
| 1169 | #endif |
| 1170 | |
| 1171 | /** |
| 1172 | * In order to compute the occluded umbra, we need to setup the angle data list |
| 1173 | * for the polygon data. Since we only store one poly vertex per polygon vertex, |
| 1174 | * this array only needs to be a float array which are the angles for each vertex. |
| 1175 | * |
| 1176 | * @param polyAngleList The result list |
| 1177 | * |
| 1178 | * @return int The index for the maximum angle in this array. |
| 1179 | */ |
| 1180 | int SpotShadow::setupPolyAngleList(float* polyAngleList, int polyAngleLength, |
| 1181 | const Vector2* poly2d, const Vector2& centroid) { |
| 1182 | int maxPolyAngleIndex = -1; |
| 1183 | float maxPolyAngle = -FLT_MAX; |
| 1184 | for (int i = 0; i < polyAngleLength; i++) { |
| 1185 | polyAngleList[i] = angle(poly2d[i], centroid); |
| 1186 | if (polyAngleList[i] > maxPolyAngle) { |
| 1187 | maxPolyAngle = polyAngleList[i]; |
| 1188 | maxPolyAngleIndex = i; |
| 1189 | } |
| 1190 | } |
| 1191 | return maxPolyAngleIndex; |
| 1192 | } |
| 1193 | |
| 1194 | /** |
| 1195 | * For umbra and penumbra, given the offset info and the current ray number, |
| 1196 | * find the right edge index (the (starting vertex) for the ray to shoot at. |
| 1197 | * |
| 1198 | * @return int The index of the starting vertex of the edge. |
| 1199 | */ |
| 1200 | inline int SpotShadow::getEdgeStartIndex(const int* offsets, int rayIndex, int totalRayNumber, |
| 1201 | const VertexAngleData* allVerticesAngleData) { |
| 1202 | int tempOffset = offsets[rayIndex]; |
| 1203 | int targetRayIndex = (rayIndex - tempOffset + totalRayNumber) % totalRayNumber; |
| 1204 | return allVerticesAngleData[targetRayIndex].mVertexIndex; |
| 1205 | } |
| 1206 | |
| 1207 | /** |
| 1208 | * For the occluded umbra, given the array of angles, find the index of the |
| 1209 | * starting vertex of the edge, for the ray to shoo at. |
| 1210 | * |
| 1211 | * TODO: Save the last result to shorten the search distance. |
| 1212 | * |
| 1213 | * @return int The index of the starting vertex of the edge. |
| 1214 | */ |
| 1215 | inline int SpotShadow::getPolyEdgeStartIndex(int maxPolyAngleIndex, int polyLength, |
| 1216 | const float* polyAngleList, float rayAngle) { |
| 1217 | int minPolyAngleIndex = (maxPolyAngleIndex + polyLength - 1) % polyLength; |
| 1218 | int resultIndex = -1; |
| 1219 | if (rayAngle > polyAngleList[maxPolyAngleIndex] |
| 1220 | || rayAngle <= polyAngleList[minPolyAngleIndex]) { |
| 1221 | resultIndex = minPolyAngleIndex; |
| 1222 | } else { |
| 1223 | for (int i = 0; i < polyLength - 1; i++) { |
| 1224 | int currentIndex = (maxPolyAngleIndex + i) % polyLength; |
| 1225 | int nextIndex = (maxPolyAngleIndex + i + 1) % polyLength; |
| 1226 | if (rayAngle <= polyAngleList[currentIndex] |
| 1227 | && rayAngle > polyAngleList[nextIndex]) { |
| 1228 | resultIndex = currentIndex; |
| 1229 | } |
| 1230 | } |
| 1231 | } |
| 1232 | if (CC_UNLIKELY(resultIndex == -1)) { |
| 1233 | // TODO: Add more error handling here. |
| 1234 | ALOGE("Wrong index found, means no edge can't be found for rayAngle %f", rayAngle); |
| 1235 | } |
| 1236 | return resultIndex; |
| 1237 | } |
| 1238 | |
| 1239 | /** |
| 1240 | * Convert the incoming polygons into arrays of vertices, for each ray. |
| 1241 | * Ray only shoots when there is one vertex either on penumbra on umbra. |
| 1242 | * |
| 1243 | * Finally, it will generate vertices per ray for umbra, penumbra and optionally |
| 1244 | * occludedUmbra. |
| 1245 | * |
| 1246 | * Return true (success) when all vertices are generated |
| 1247 | */ |
| 1248 | int SpotShadow::convertPolysToVerticesPerRay( |
| 1249 | bool hasOccludedUmbraArea, const Vector2* poly2d, int polyLength, |
| 1250 | const Vector2* umbra, int umbraLength, const Vector2* penumbra, |
| 1251 | int penumbraLength, const Vector2& centroid, |
| 1252 | Vector2* umbraVerticesPerRay, Vector2* penumbraVerticesPerRay, |
| 1253 | Vector2* occludedUmbraVerticesPerRay) { |
| 1254 | int totalRayNumber = umbraLength + penumbraLength; |
| 1255 | |
| 1256 | // For incoming umbra / penumbra polygons, we will build an intermediate data |
| 1257 | // structure to help us sort all the vertices according to the vertices. |
| 1258 | // Using this data structure, we can tell where (the angle) to shoot the ray, |
| 1259 | // whether we shoot at penumbra edge or umbra edge, and which edge to shoot at. |
| 1260 | // |
| 1261 | // We first parse each vertices and generate a table of VertexAngleData. |
| 1262 | // Based on that, we create 2 arrays telling us which edge to shoot at. |
| 1263 | VertexAngleData allVerticesAngleData[totalRayNumber]; |
| 1264 | VertexAngleData umbraAngleList[umbraLength]; |
| 1265 | VertexAngleData penumbraAngleList[penumbraLength]; |
| 1266 | |
| 1267 | int polyAngleLength = hasOccludedUmbraArea ? polyLength : 0; |
| 1268 | float polyAngleList[polyAngleLength]; |
| 1269 | |
| 1270 | const int maxUmbraAngleIndex = |
| 1271 | setupAngleList(umbraAngleList, umbraLength, umbra, centroid, false, "umbra"); |
| 1272 | const int maxPenumbraAngleIndex = |
| 1273 | setupAngleList(penumbraAngleList, penumbraLength, penumbra, centroid, true, "penumbra"); |
| 1274 | const int maxPolyAngleIndex = setupPolyAngleList(polyAngleList, polyAngleLength, poly2d, centroid); |
| 1275 | |
| 1276 | // Check all the polygons here are CW. |
| 1277 | bool isPolyCW = checkPolyClockwise(polyAngleLength, maxPolyAngleIndex, polyAngleList); |
| 1278 | bool isUmbraCW = checkClockwise(maxUmbraAngleIndex, umbraLength, |
| 1279 | umbraAngleList, "umbra"); |
| 1280 | bool isPenumbraCW = checkClockwise(maxPenumbraAngleIndex, penumbraLength, |
| 1281 | penumbraAngleList, "penumbra"); |
| 1282 | |
| 1283 | if (!isUmbraCW || !isPenumbraCW || !isPolyCW) { |
| 1284 | #if DEBUG_SHADOW |
| 1285 | ALOGE("One polygon is not CW isUmbraCW %d isPenumbraCW %d isPolyCW %d", |
| 1286 | isUmbraCW, isPenumbraCW, isPolyCW); |
| 1287 | #endif |
| 1288 | return false; |
| 1289 | } |
| 1290 | |
| 1291 | mergeAngleList(maxUmbraAngleIndex, maxPenumbraAngleIndex, |
| 1292 | umbraAngleList, umbraLength, penumbraAngleList, penumbraLength, |
| 1293 | allVerticesAngleData); |
| 1294 | |
| 1295 | // Calculate the offset to the left most Inner vertex for each outerVertex. |
| 1296 | // Then the offset to the left most Outer vertex for each innerVertex. |
| 1297 | int offsetToInner[totalRayNumber]; |
| 1298 | int offsetToOuter[totalRayNumber]; |
| 1299 | calculateDistanceCounter(true, totalRayNumber, allVerticesAngleData, offsetToInner); |
| 1300 | calculateDistanceCounter(false, totalRayNumber, allVerticesAngleData, offsetToOuter); |
| 1301 | |
| 1302 | // Generate both umbraVerticesPerRay and penumbraVerticesPerRay |
| 1303 | for (int i = 0; i < totalRayNumber; i++) { |
| 1304 | float rayAngle = allVerticesAngleData[i].mAngle; |
| 1305 | bool isUmbraVertex = !allVerticesAngleData[i].mIsPenumbra; |
| 1306 | |
| 1307 | float dx = cosf(rayAngle); |
| 1308 | float dy = sinf(rayAngle); |
| 1309 | float distanceToIntersectUmbra = -1; |
| 1310 | |
| 1311 | if (isUmbraVertex) { |
| 1312 | // We can just copy umbra easily, and calculate the distance for the |
| 1313 | // occluded umbra computation. |
| 1314 | int startUmbraIndex = allVerticesAngleData[i].mVertexIndex; |
| 1315 | umbraVerticesPerRay[i] = umbra[startUmbraIndex]; |
| 1316 | if (hasOccludedUmbraArea) { |
| 1317 | distanceToIntersectUmbra = (umbraVerticesPerRay[i] - centroid).length(); |
| 1318 | } |
| 1319 | |
| 1320 | //shoot ray to penumbra only |
| 1321 | int startPenumbraIndex = getEdgeStartIndex(offsetToOuter, i, totalRayNumber, |
| 1322 | allVerticesAngleData); |
| 1323 | float distanceToIntersectPenumbra = rayIntersectPoints(centroid, dx, dy, |
| 1324 | penumbra[startPenumbraIndex], |
| 1325 | penumbra[(startPenumbraIndex + 1) % penumbraLength]); |
| 1326 | if (distanceToIntersectPenumbra < 0) { |
| 1327 | #if DEBUG_SHADOW |
| 1328 | ALOGW("convertPolyToRayDist for penumbra failed rayAngle %f dx %f dy %f", |
| 1329 | rayAngle, dx, dy); |
| 1330 | #endif |
| 1331 | distanceToIntersectPenumbra = 0; |
| 1332 | } |
| 1333 | penumbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPenumbra; |
| 1334 | penumbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPenumbra; |
| 1335 | } else { |
| 1336 | // We can just copy the penumbra |
| 1337 | int startPenumbraIndex = allVerticesAngleData[i].mVertexIndex; |
| 1338 | penumbraVerticesPerRay[i] = penumbra[startPenumbraIndex]; |
| 1339 | |
| 1340 | // And shoot ray to umbra only |
| 1341 | int startUmbraIndex = getEdgeStartIndex(offsetToInner, i, totalRayNumber, |
| 1342 | allVerticesAngleData); |
| 1343 | |
| 1344 | distanceToIntersectUmbra = rayIntersectPoints(centroid, dx, dy, |
| 1345 | umbra[startUmbraIndex], umbra[(startUmbraIndex + 1) % umbraLength]); |
| 1346 | if (distanceToIntersectUmbra < 0) { |
| 1347 | #if DEBUG_SHADOW |
| 1348 | ALOGW("convertPolyToRayDist for umbra failed rayAngle %f dx %f dy %f", |
| 1349 | rayAngle, dx, dy); |
| 1350 | #endif |
| 1351 | distanceToIntersectUmbra = 0; |
| 1352 | } |
| 1353 | umbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectUmbra; |
| 1354 | umbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectUmbra; |
| 1355 | } |
| 1356 | |
| 1357 | if (hasOccludedUmbraArea) { |
| 1358 | // Shoot the same ray to the poly2d, and get the distance. |
| 1359 | int startPolyIndex = getPolyEdgeStartIndex(maxPolyAngleIndex, polyLength, |
| 1360 | polyAngleList, rayAngle); |
| 1361 | |
| 1362 | float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy, |
| 1363 | poly2d[startPolyIndex], poly2d[(startPolyIndex + 1) % polyLength]); |
| 1364 | if (distanceToIntersectPoly < 0) { |
| 1365 | distanceToIntersectPoly = 0; |
| 1366 | } |
| 1367 | distanceToIntersectPoly = MathUtils::min(distanceToIntersectUmbra, distanceToIntersectPoly); |
| 1368 | occludedUmbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPoly; |
| 1369 | occludedUmbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPoly; |
| 1370 | } |
| 1371 | } |
| 1372 | |
| 1373 | #if DEBUG_SHADOW |
| 1374 | verifyAngleData(totalRayNumber, allVerticesAngleData, offsetToInner, |
| 1375 | offsetToOuter, umbraAngleList, maxUmbraAngleIndex, umbraLength, |
| 1376 | penumbraAngleList, maxPenumbraAngleIndex, penumbraLength); |
| 1377 | #endif |
| 1378 | return true; // success |
| 1379 | |
| 1380 | } |
| 1381 | |
| 1382 | /** |
| 1383 | * Generate a triangle strip given two convex polygon |
| 1384 | **/ |
Andreas Gampe | 42ddc18 | 2014-11-21 09:49:08 -0800 | [diff] [blame^] | 1385 | void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float /* shadowStrengthScale */, |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 1386 | Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength, |
| 1387 | const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip, |
| 1388 | const Vector2& centroid) { |
| 1389 | |
| 1390 | bool hasOccludedUmbraArea = false; |
| 1391 | Vector2 poly2d[polyLength]; |
| 1392 | |
| 1393 | if (isCasterOpaque) { |
| 1394 | for (int i = 0; i < polyLength; i++) { |
| 1395 | poly2d[i].x = poly[i].x; |
| 1396 | poly2d[i].y = poly[i].y; |
| 1397 | } |
| 1398 | // Make sure the centroid is inside the umbra, otherwise, fall back to the |
| 1399 | // approach as if there is no occluded umbra area. |
| 1400 | if (testPointInsidePolygon(centroid, poly2d, polyLength)) { |
| 1401 | hasOccludedUmbraArea = true; |
| 1402 | } |
| 1403 | } |
| 1404 | |
| 1405 | int totalRayNum = umbraLength + penumbraLength; |
| 1406 | Vector2 umbraVertices[totalRayNum]; |
| 1407 | Vector2 penumbraVertices[totalRayNum]; |
| 1408 | Vector2 occludedUmbraVertices[totalRayNum]; |
| 1409 | bool convertSuccess = convertPolysToVerticesPerRay(hasOccludedUmbraArea, poly2d, |
| 1410 | polyLength, umbra, umbraLength, penumbra, penumbraLength, |
| 1411 | centroid, umbraVertices, penumbraVertices, occludedUmbraVertices); |
| 1412 | if (!convertSuccess) { |
| 1413 | return; |
| 1414 | } |
| 1415 | |
| 1416 | // Minimal value is 1, for each vertex show up once. |
| 1417 | // The bigger this value is , the smoother the look is, but more memory |
| 1418 | // is consumed. |
| 1419 | // When the ray number is high, that means the polygon has been fine |
| 1420 | // tessellated, we don't need this extra slice, just keep it as 1. |
| 1421 | int sliceNumberPerEdge = (totalRayNum > FINE_TESSELLATED_POLYGON_RAY_NUMBER) ? 1 : 2; |
| 1422 | |
| 1423 | // For each polygon, we at most add (totalRayNum * sliceNumberPerEdge) vertices. |
| 1424 | int slicedVertexCountPerPolygon = totalRayNum * sliceNumberPerEdge; |
| 1425 | int totalVertexCount = slicedVertexCountPerPolygon * 2 + totalRayNum; |
| 1426 | int totalIndexCount = 2 * (slicedVertexCountPerPolygon * 2 + 2); |
| 1427 | AlphaVertex* shadowVertices = |
| 1428 | shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount); |
| 1429 | uint16_t* indexBuffer = |
| 1430 | shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount); |
| 1431 | |
| 1432 | int indexBufferIndex = 0; |
| 1433 | int vertexBufferIndex = 0; |
| 1434 | |
| 1435 | uint16_t slicedUmbraVertexIndex[totalRayNum * sliceNumberPerEdge]; |
| 1436 | // Should be something like 0 0 0 1 1 1 2 3 3 3... |
| 1437 | int rayNumberPerSlicedUmbra[totalRayNum * sliceNumberPerEdge]; |
| 1438 | int realUmbraVertexCount = 0; |
| 1439 | for (int i = 0; i < totalRayNum; i++) { |
| 1440 | Vector2 currentPenumbra = penumbraVertices[i]; |
| 1441 | Vector2 currentUmbra = umbraVertices[i]; |
| 1442 | |
| 1443 | Vector2 nextPenumbra = penumbraVertices[(i + 1) % totalRayNum]; |
| 1444 | Vector2 nextUmbra = umbraVertices[(i + 1) % totalRayNum]; |
| 1445 | // NextUmbra/Penumbra will be done in the next loop!! |
| 1446 | for (int weight = 0; weight < sliceNumberPerEdge; weight++) { |
| 1447 | const Vector2& slicedPenumbra = (currentPenumbra * (sliceNumberPerEdge - weight) |
| 1448 | + nextPenumbra * weight) / sliceNumberPerEdge; |
| 1449 | |
| 1450 | const Vector2& slicedUmbra = (currentUmbra * (sliceNumberPerEdge - weight) |
| 1451 | + nextUmbra * weight) / sliceNumberPerEdge; |
| 1452 | |
| 1453 | // In the vertex buffer, we fill the Penumbra first, then umbra. |
| 1454 | indexBuffer[indexBufferIndex++] = vertexBufferIndex; |
| 1455 | AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedPenumbra.x, |
| 1456 | slicedPenumbra.y, 0.0f); |
| 1457 | |
| 1458 | // When we add umbra vertex, we need to remember its current ray number. |
| 1459 | // And its own vertexBufferIndex. This is for occluded umbra usage. |
| 1460 | indexBuffer[indexBufferIndex++] = vertexBufferIndex; |
| 1461 | rayNumberPerSlicedUmbra[realUmbraVertexCount] = i; |
| 1462 | slicedUmbraVertexIndex[realUmbraVertexCount] = vertexBufferIndex; |
| 1463 | realUmbraVertexCount++; |
| 1464 | AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedUmbra.x, |
| 1465 | slicedUmbra.y, M_PI); |
| 1466 | } |
| 1467 | } |
| 1468 | |
| 1469 | indexBuffer[indexBufferIndex++] = 0; |
| 1470 | //RealUmbraVertexIndex[0] must be 1, so we connect back well at the |
| 1471 | //beginning of occluded area. |
| 1472 | indexBuffer[indexBufferIndex++] = 1; |
| 1473 | |
| 1474 | float occludedUmbraAlpha = M_PI; |
| 1475 | if (hasOccludedUmbraArea) { |
| 1476 | // Now the occludedUmbra area; |
| 1477 | int currentRayNumber = -1; |
| 1478 | int firstOccludedUmbraIndex = -1; |
| 1479 | for (int i = 0; i < realUmbraVertexCount; i++) { |
| 1480 | indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i]; |
| 1481 | |
| 1482 | // If the occludedUmbra vertex has not been added yet, then add it. |
| 1483 | // Otherwise, just use the previously added occludedUmbra vertices. |
| 1484 | if (rayNumberPerSlicedUmbra[i] != currentRayNumber) { |
| 1485 | currentRayNumber++; |
| 1486 | indexBuffer[indexBufferIndex++] = vertexBufferIndex; |
| 1487 | // We need to remember the begining of the occludedUmbra vertices |
| 1488 | // to close this loop. |
| 1489 | if (currentRayNumber == 0) { |
| 1490 | firstOccludedUmbraIndex = vertexBufferIndex; |
| 1491 | } |
| 1492 | AlphaVertex::set(&shadowVertices[vertexBufferIndex++], |
| 1493 | occludedUmbraVertices[currentRayNumber].x, |
| 1494 | occludedUmbraVertices[currentRayNumber].y, |
| 1495 | occludedUmbraAlpha); |
| 1496 | } else { |
| 1497 | indexBuffer[indexBufferIndex++] = (vertexBufferIndex - 1); |
| 1498 | } |
| 1499 | } |
| 1500 | // Close the loop here! |
| 1501 | indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0]; |
| 1502 | indexBuffer[indexBufferIndex++] = firstOccludedUmbraIndex; |
| 1503 | } else { |
| 1504 | int lastCentroidIndex = vertexBufferIndex; |
| 1505 | AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x, |
| 1506 | centroid.y, occludedUmbraAlpha); |
| 1507 | for (int i = 0; i < realUmbraVertexCount; i++) { |
| 1508 | indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i]; |
| 1509 | indexBuffer[indexBufferIndex++] = lastCentroidIndex; |
| 1510 | } |
| 1511 | // Close the loop here! |
| 1512 | indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0]; |
| 1513 | indexBuffer[indexBufferIndex++] = lastCentroidIndex; |
| 1514 | } |
| 1515 | |
| 1516 | #if DEBUG_SHADOW |
| 1517 | ALOGD("allocated IB %d allocated VB is %d", totalIndexCount, totalVertexCount); |
| 1518 | ALOGD("IB index %d VB index is %d", indexBufferIndex, vertexBufferIndex); |
| 1519 | for (int i = 0; i < vertexBufferIndex; i++) { |
| 1520 | ALOGD("vertexBuffer i %d, (%f, %f %f)", i, shadowVertices[i].x, shadowVertices[i].y, |
| 1521 | shadowVertices[i].alpha); |
| 1522 | } |
| 1523 | for (int i = 0; i < indexBufferIndex; i++) { |
| 1524 | ALOGD("indexBuffer i %d, indexBuffer[i] %d", i, indexBuffer[i]); |
| 1525 | } |
| 1526 | #endif |
| 1527 | |
| 1528 | // At the end, update the real index and vertex buffer size. |
| 1529 | shadowTriangleStrip.updateVertexCount(vertexBufferIndex); |
| 1530 | shadowTriangleStrip.updateIndexCount(indexBufferIndex); |
| 1531 | ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer"); |
| 1532 | ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer"); |
| 1533 | |
| 1534 | shadowTriangleStrip.setMode(VertexBuffer::kIndices); |
| 1535 | shadowTriangleStrip.computeBounds<AlphaVertex>(); |
| 1536 | } |
| 1537 | |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 1538 | #if DEBUG_SHADOW |
| 1539 | |
| 1540 | #define TEST_POINT_NUMBER 128 |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 1541 | /** |
| 1542 | * Calculate the bounds for generating random test points. |
| 1543 | */ |
| 1544 | void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound, |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 1545 | Vector2& upperBound) { |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 1546 | if (inVector.x < lowerBound.x) { |
| 1547 | lowerBound.x = inVector.x; |
| 1548 | } |
| 1549 | |
| 1550 | if (inVector.y < lowerBound.y) { |
| 1551 | lowerBound.y = inVector.y; |
| 1552 | } |
| 1553 | |
| 1554 | if (inVector.x > upperBound.x) { |
| 1555 | upperBound.x = inVector.x; |
| 1556 | } |
| 1557 | |
| 1558 | if (inVector.y > upperBound.y) { |
| 1559 | upperBound.y = inVector.y; |
| 1560 | } |
| 1561 | } |
| 1562 | |
| 1563 | /** |
| 1564 | * For debug purpose, when things go wrong, dump the whole polygon data. |
| 1565 | */ |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 1566 | void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) { |
| 1567 | for (int i = 0; i < polyLength; i++) { |
| 1568 | ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y); |
| 1569 | } |
| 1570 | } |
| 1571 | |
| 1572 | /** |
| 1573 | * For debug purpose, when things go wrong, dump the whole polygon data. |
| 1574 | */ |
| 1575 | void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) { |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 1576 | for (int i = 0; i < polyLength; i++) { |
| 1577 | ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y); |
| 1578 | } |
| 1579 | } |
| 1580 | |
| 1581 | /** |
| 1582 | * Test whether the polygon is convex. |
| 1583 | */ |
| 1584 | bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength, |
| 1585 | const char* name) { |
| 1586 | bool isConvex = true; |
| 1587 | for (int i = 0; i < polygonLength; i++) { |
| 1588 | Vector2 start = polygon[i]; |
| 1589 | Vector2 middle = polygon[(i + 1) % polygonLength]; |
| 1590 | Vector2 end = polygon[(i + 2) % polygonLength]; |
| 1591 | |
| 1592 | double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) - |
| 1593 | (double(middle.y) - start.y) * (double(end.x) - start.x); |
| 1594 | bool isCCWOrCoLinear = (delta >= EPSILON); |
| 1595 | |
| 1596 | if (isCCWOrCoLinear) { |
ztenghui | 50ecf84 | 2014-03-11 16:52:30 -0700 | [diff] [blame] | 1597 | ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f)," |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 1598 | "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!", |
| 1599 | name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta); |
| 1600 | isConvex = false; |
| 1601 | break; |
| 1602 | } |
| 1603 | } |
| 1604 | return isConvex; |
| 1605 | } |
| 1606 | |
| 1607 | /** |
| 1608 | * Test whether or not the polygon (intersection) is within the 2 input polygons. |
| 1609 | * Using Marte Carlo method, we generate a random point, and if it is inside the |
| 1610 | * intersection, then it must be inside both source polygons. |
| 1611 | */ |
| 1612 | void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length, |
| 1613 | const Vector2* poly2, int poly2Length, |
| 1614 | const Vector2* intersection, int intersectionLength) { |
| 1615 | // Find the min and max of x and y. |
ztenghui | c50a03d | 2014-08-21 13:47:54 -0700 | [diff] [blame] | 1616 | Vector2 lowerBound = {FLT_MAX, FLT_MAX}; |
| 1617 | Vector2 upperBound = {-FLT_MAX, -FLT_MAX}; |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 1618 | for (int i = 0; i < poly1Length; i++) { |
| 1619 | updateBound(poly1[i], lowerBound, upperBound); |
| 1620 | } |
| 1621 | for (int i = 0; i < poly2Length; i++) { |
| 1622 | updateBound(poly2[i], lowerBound, upperBound); |
| 1623 | } |
| 1624 | |
| 1625 | bool dumpPoly = false; |
| 1626 | for (int k = 0; k < TEST_POINT_NUMBER; k++) { |
| 1627 | // Generate a random point between minX, minY and maxX, maxY. |
| 1628 | double randomX = rand() / double(RAND_MAX); |
| 1629 | double randomY = rand() / double(RAND_MAX); |
| 1630 | |
| 1631 | Vector2 testPoint; |
| 1632 | testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x); |
| 1633 | testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y); |
| 1634 | |
| 1635 | // If the random point is in both poly 1 and 2, then it must be intersection. |
| 1636 | if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) { |
| 1637 | if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) { |
| 1638 | dumpPoly = true; |
ztenghui | 50ecf84 | 2014-03-11 16:52:30 -0700 | [diff] [blame] | 1639 | ALOGW("(Error Type 1): one point (%f, %f) in the intersection is" |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 1640 | " not in the poly1", |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 1641 | testPoint.x, testPoint.y); |
| 1642 | } |
| 1643 | |
| 1644 | if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) { |
| 1645 | dumpPoly = true; |
ztenghui | 50ecf84 | 2014-03-11 16:52:30 -0700 | [diff] [blame] | 1646 | ALOGW("(Error Type 1): one point (%f, %f) in the intersection is" |
ztenghui | 512e643 | 2014-09-10 13:08:20 -0700 | [diff] [blame] | 1647 | " not in the poly2", |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 1648 | testPoint.x, testPoint.y); |
| 1649 | } |
| 1650 | } |
| 1651 | } |
| 1652 | |
| 1653 | if (dumpPoly) { |
| 1654 | dumpPolygon(intersection, intersectionLength, "intersection"); |
| 1655 | for (int i = 1; i < intersectionLength; i++) { |
| 1656 | Vector2 delta = intersection[i] - intersection[i - 1]; |
| 1657 | ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared()); |
| 1658 | } |
| 1659 | |
| 1660 | dumpPolygon(poly1, poly1Length, "poly 1"); |
| 1661 | dumpPolygon(poly2, poly2Length, "poly 2"); |
| 1662 | } |
| 1663 | } |
| 1664 | #endif |
| 1665 | |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 1666 | }; // namespace uirenderer |
| 1667 | }; // namespace android |