blob: 5fa0ba59efacf8f45e7fb64136e50c3586ba10cf [file] [log] [blame]
ztenghui7b4516e2014-01-07 10:42:55 -08001/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "OpenGLRenderer"
18
19#define SHADOW_SHRINK_SCALE 0.1f
20
21#include <math.h>
ztenghuif5ca8b42014-01-27 15:53:28 -080022#include <stdlib.h>
ztenghui7b4516e2014-01-07 10:42:55 -080023#include <utils/Log.h>
24
ztenghui63d41ab2014-02-14 13:13:41 -080025#include "ShadowTessellator.h"
ztenghui7b4516e2014-01-07 10:42:55 -080026#include "SpotShadow.h"
27#include "Vertex.h"
28
29namespace android {
30namespace uirenderer {
31
Chris Craik726118b2014-03-07 18:27:49 -080032static const double EPSILON = 1e-7;
33
ztenghui7b4516e2014-01-07 10:42:55 -080034/**
Chris Craik726118b2014-03-07 18:27:49 -080035 * Calculate the angle between and x and a y coordinate.
36 * The atan2 range from -PI to PI.
ztenghui7b4516e2014-01-07 10:42:55 -080037 */
Chris Craikb79a3e32014-03-11 12:20:17 -070038static float angle(const Vector2& point, const Vector2& center) {
Chris Craik726118b2014-03-07 18:27:49 -080039 return atan2(point.y - center.y, point.x - center.x);
40}
41
42/**
43 * Calculate the intersection of a ray with the line segment defined by two points.
44 *
45 * Returns a negative value in error conditions.
46
47 * @param rayOrigin The start of the ray
48 * @param dx The x vector of the ray
49 * @param dy The y vector of the ray
50 * @param p1 The first point defining the line segment
51 * @param p2 The second point defining the line segment
52 * @return The distance along the ray if it intersects with the line segment, negative if otherwise
53 */
Chris Craikb79a3e32014-03-11 12:20:17 -070054static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
Chris Craik726118b2014-03-07 18:27:49 -080055 const Vector2& p1, const Vector2& p2) {
56 // The math below is derived from solving this formula, basically the
57 // intersection point should stay on both the ray and the edge of (p1, p2).
58 // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
59
60 double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
61 if (divisor == 0) return -1.0f; // error, invalid divisor
62
63#if DEBUG_SHADOW
64 double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
ztenghui99af9422014-03-14 14:35:54 -070065 if (interpVal < 0 || interpVal > 1) {
66 ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
67 }
Chris Craik726118b2014-03-07 18:27:49 -080068#endif
69
70 double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
71 rayOrigin.x * (p2.y - p1.y)) / divisor;
72
73 return distance; // may be negative in error cases
ztenghui7b4516e2014-01-07 10:42:55 -080074}
75
76/**
ztenghui7b4516e2014-01-07 10:42:55 -080077 * Sort points by their X coordinates
78 *
79 * @param points the points as a Vector2 array.
80 * @param pointsLength the number of vertices of the polygon.
81 */
82void SpotShadow::xsort(Vector2* points, int pointsLength) {
83 quicksortX(points, 0, pointsLength - 1);
84}
85
86/**
87 * compute the convex hull of a collection of Points
88 *
89 * @param points the points as a Vector2 array.
90 * @param pointsLength the number of vertices of the polygon.
91 * @param retPoly pre allocated array of floats to put the vertices
92 * @return the number of points in the polygon 0 if no intersection
93 */
94int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
95 xsort(points, pointsLength);
96 int n = pointsLength;
97 Vector2 lUpper[n];
98 lUpper[0] = points[0];
99 lUpper[1] = points[1];
100
101 int lUpperSize = 2;
102
103 for (int i = 2; i < n; i++) {
104 lUpper[lUpperSize] = points[i];
105 lUpperSize++;
106
ztenghuif5ca8b42014-01-27 15:53:28 -0800107 while (lUpperSize > 2 && !ccw(
108 lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
109 lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
110 lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800111 // Remove the middle point of the three last
112 lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
113 lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
114 lUpperSize--;
115 }
116 }
117
118 Vector2 lLower[n];
119 lLower[0] = points[n - 1];
120 lLower[1] = points[n - 2];
121
122 int lLowerSize = 2;
123
124 for (int i = n - 3; i >= 0; i--) {
125 lLower[lLowerSize] = points[i];
126 lLowerSize++;
127
ztenghuif5ca8b42014-01-27 15:53:28 -0800128 while (lLowerSize > 2 && !ccw(
129 lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
130 lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
131 lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800132 // Remove the middle point of the three last
133 lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
134 lLowerSize--;
135 }
136 }
ztenghui7b4516e2014-01-07 10:42:55 -0800137
Chris Craik726118b2014-03-07 18:27:49 -0800138 // output points in CW ordering
139 const int total = lUpperSize + lLowerSize - 2;
140 int outIndex = total - 1;
ztenghui7b4516e2014-01-07 10:42:55 -0800141 for (int i = 0; i < lUpperSize; i++) {
Chris Craik726118b2014-03-07 18:27:49 -0800142 retPoly[outIndex] = lUpper[i];
143 outIndex--;
ztenghui7b4516e2014-01-07 10:42:55 -0800144 }
145
146 for (int i = 1; i < lLowerSize - 1; i++) {
Chris Craik726118b2014-03-07 18:27:49 -0800147 retPoly[outIndex] = lLower[i];
148 outIndex--;
ztenghui7b4516e2014-01-07 10:42:55 -0800149 }
150 // TODO: Add test harness which verify that all the points are inside the hull.
Chris Craik726118b2014-03-07 18:27:49 -0800151 return total;
ztenghui7b4516e2014-01-07 10:42:55 -0800152}
153
154/**
ztenghuif5ca8b42014-01-27 15:53:28 -0800155 * Test whether the 3 points form a counter clockwise turn.
ztenghui7b4516e2014-01-07 10:42:55 -0800156 *
ztenghui7b4516e2014-01-07 10:42:55 -0800157 * @return true if a right hand turn
158 */
ztenghuif5ca8b42014-01-27 15:53:28 -0800159bool SpotShadow::ccw(double ax, double ay, double bx, double by,
ztenghui7b4516e2014-01-07 10:42:55 -0800160 double cx, double cy) {
161 return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
162}
163
164/**
165 * Calculates the intersection of poly1 with poly2 and put in poly2.
ztenghui50ecf842014-03-11 16:52:30 -0700166 * Note that both poly1 and poly2 must be in CW order already!
ztenghui7b4516e2014-01-07 10:42:55 -0800167 *
168 * @param poly1 The 1st polygon, as a Vector2 array.
169 * @param poly1Length The number of vertices of 1st polygon.
170 * @param poly2 The 2nd and output polygon, as a Vector2 array.
171 * @param poly2Length The number of vertices of 2nd polygon.
172 * @return number of vertices in output polygon as poly2.
173 */
ztenghui50ecf842014-03-11 16:52:30 -0700174int SpotShadow::intersection(const Vector2* poly1, int poly1Length,
ztenghui7b4516e2014-01-07 10:42:55 -0800175 Vector2* poly2, int poly2Length) {
ztenghui50ecf842014-03-11 16:52:30 -0700176#if DEBUG_SHADOW
177 if (!isClockwise(poly1, poly1Length)) {
178 ALOGW("Poly1 is not clockwise! Intersection is wrong!");
179 }
180 if (!isClockwise(poly2, poly2Length)) {
181 ALOGW("Poly2 is not clockwise! Intersection is wrong!");
182 }
183#endif
ztenghui7b4516e2014-01-07 10:42:55 -0800184 Vector2 poly[poly1Length * poly2Length + 2];
185 int count = 0;
186 int pcount = 0;
187
188 // If one vertex from one polygon sits inside another polygon, add it and
189 // count them.
190 for (int i = 0; i < poly1Length; i++) {
191 if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) {
192 poly[count] = poly1[i];
193 count++;
194 pcount++;
195
196 }
197 }
198
199 int insidePoly2 = pcount;
200 for (int i = 0; i < poly2Length; i++) {
201 if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) {
202 poly[count] = poly2[i];
203 count++;
204 }
205 }
206
207 int insidePoly1 = count - insidePoly2;
208 // If all vertices from poly1 are inside poly2, then just return poly1.
209 if (insidePoly2 == poly1Length) {
210 memcpy(poly2, poly1, poly1Length * sizeof(Vector2));
211 return poly1Length;
212 }
213
214 // If all vertices from poly2 are inside poly1, then just return poly2.
215 if (insidePoly1 == poly2Length) {
216 return poly2Length;
217 }
218
219 // Since neither polygon fully contain the other one, we need to add all the
220 // intersection points.
221 Vector2 intersection;
222 for (int i = 0; i < poly2Length; i++) {
223 for (int j = 0; j < poly1Length; j++) {
224 int poly2LineStart = i;
225 int poly2LineEnd = ((i + 1) % poly2Length);
226 int poly1LineStart = j;
227 int poly1LineEnd = ((j + 1) % poly1Length);
228 bool found = lineIntersection(
229 poly2[poly2LineStart].x, poly2[poly2LineStart].y,
230 poly2[poly2LineEnd].x, poly2[poly2LineEnd].y,
231 poly1[poly1LineStart].x, poly1[poly1LineStart].y,
232 poly1[poly1LineEnd].x, poly1[poly1LineEnd].y,
233 intersection);
234 if (found) {
235 poly[count].x = intersection.x;
236 poly[count].y = intersection.y;
237 count++;
238 } else {
239 Vector2 delta = poly2[i] - poly1[j];
ztenghuif5ca8b42014-01-27 15:53:28 -0800240 if (delta.lengthSquared() < EPSILON) {
ztenghui7b4516e2014-01-07 10:42:55 -0800241 poly[count] = poly2[i];
242 count++;
243 }
244 }
245 }
246 }
247
248 if (count == 0) {
249 return 0;
250 }
251
252 // Sort the result polygon around the center.
253 Vector2 center(0.0f, 0.0f);
254 for (int i = 0; i < count; i++) {
255 center += poly[i];
256 }
257 center /= count;
258 sort(poly, count, center);
259
ztenghuif5ca8b42014-01-27 15:53:28 -0800260#if DEBUG_SHADOW
261 // Since poly2 is overwritten as the result, we need to save a copy to do
262 // our verification.
263 Vector2 oldPoly2[poly2Length];
264 int oldPoly2Length = poly2Length;
265 memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length);
266#endif
ztenghui7b4516e2014-01-07 10:42:55 -0800267
ztenghuif5ca8b42014-01-27 15:53:28 -0800268 // Filter the result out from poly and put it into poly2.
ztenghui7b4516e2014-01-07 10:42:55 -0800269 poly2[0] = poly[0];
ztenghuif5ca8b42014-01-27 15:53:28 -0800270 int lastOutputIndex = 0;
ztenghui7b4516e2014-01-07 10:42:55 -0800271 for (int i = 1; i < count; i++) {
ztenghuif5ca8b42014-01-27 15:53:28 -0800272 Vector2 delta = poly[i] - poly2[lastOutputIndex];
273 if (delta.lengthSquared() >= EPSILON) {
274 poly2[++lastOutputIndex] = poly[i];
275 } else {
276 // If the vertices are too close, pick the inner one, because the
277 // inner one is more likely to be an intersection point.
278 Vector2 delta1 = poly[i] - center;
279 Vector2 delta2 = poly2[lastOutputIndex] - center;
280 if (delta1.lengthSquared() < delta2.lengthSquared()) {
281 poly2[lastOutputIndex] = poly[i];
282 }
ztenghui7b4516e2014-01-07 10:42:55 -0800283 }
284 }
ztenghuif5ca8b42014-01-27 15:53:28 -0800285 int resultLength = lastOutputIndex + 1;
286
287#if DEBUG_SHADOW
288 testConvex(poly2, resultLength, "intersection");
289 testConvex(poly1, poly1Length, "input poly1");
290 testConvex(oldPoly2, oldPoly2Length, "input poly2");
291
292 testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength);
293#endif
ztenghui7b4516e2014-01-07 10:42:55 -0800294
295 return resultLength;
296}
297
298/**
299 * Sort points about a center point
300 *
301 * @param poly The in and out polyogon as a Vector2 array.
302 * @param polyLength The number of vertices of the polygon.
303 * @param center the center ctr[0] = x , ctr[1] = y to sort around.
304 */
305void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
306 quicksortCirc(poly, 0, polyLength - 1, center);
307}
308
309/**
ztenghui7b4516e2014-01-07 10:42:55 -0800310 * Swap points pointed to by i and j
311 */
312void SpotShadow::swap(Vector2* points, int i, int j) {
313 Vector2 temp = points[i];
314 points[i] = points[j];
315 points[j] = temp;
316}
317
318/**
319 * quick sort implementation about the center.
320 */
321void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
322 const Vector2& center) {
323 int i = low, j = high;
324 int p = low + (high - low) / 2;
325 float pivot = angle(points[p], center);
326 while (i <= j) {
Chris Craik726118b2014-03-07 18:27:49 -0800327 while (angle(points[i], center) > pivot) {
ztenghui7b4516e2014-01-07 10:42:55 -0800328 i++;
329 }
Chris Craik726118b2014-03-07 18:27:49 -0800330 while (angle(points[j], center) < pivot) {
ztenghui7b4516e2014-01-07 10:42:55 -0800331 j--;
332 }
333
334 if (i <= j) {
335 swap(points, i, j);
336 i++;
337 j--;
338 }
339 }
340 if (low < j) quicksortCirc(points, low, j, center);
341 if (i < high) quicksortCirc(points, i, high, center);
342}
343
344/**
345 * Sort points by x axis
346 *
347 * @param points points to sort
348 * @param low start index
349 * @param high end index
350 */
351void SpotShadow::quicksortX(Vector2* points, int low, int high) {
352 int i = low, j = high;
353 int p = low + (high - low) / 2;
354 float pivot = points[p].x;
355 while (i <= j) {
356 while (points[i].x < pivot) {
357 i++;
358 }
359 while (points[j].x > pivot) {
360 j--;
361 }
362
363 if (i <= j) {
364 swap(points, i, j);
365 i++;
366 j--;
367 }
368 }
369 if (low < j) quicksortX(points, low, j);
370 if (i < high) quicksortX(points, i, high);
371}
372
373/**
374 * Test whether a point is inside the polygon.
375 *
376 * @param testPoint the point to test
377 * @param poly the polygon
378 * @return true if the testPoint is inside the poly.
379 */
380bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
381 const Vector2* poly, int len) {
382 bool c = false;
383 double testx = testPoint.x;
384 double testy = testPoint.y;
385 for (int i = 0, j = len - 1; i < len; j = i++) {
386 double startX = poly[j].x;
387 double startY = poly[j].y;
388 double endX = poly[i].x;
389 double endY = poly[i].y;
390
391 if (((endY > testy) != (startY > testy)) &&
392 (testx < (startX - endX) * (testy - endY)
393 / (startY - endY) + endX)) {
394 c = !c;
395 }
396 }
397 return c;
398}
399
400/**
401 * Make the polygon turn clockwise.
402 *
403 * @param polygon the polygon as a Vector2 array.
404 * @param len the number of points of the polygon
405 */
406void SpotShadow::makeClockwise(Vector2* polygon, int len) {
407 if (polygon == 0 || len == 0) {
408 return;
409 }
410 if (!isClockwise(polygon, len)) {
411 reverse(polygon, len);
412 }
413}
414
415/**
416 * Test whether the polygon is order in clockwise.
417 *
418 * @param polygon the polygon as a Vector2 array
419 * @param len the number of points of the polygon
420 */
ztenghui50ecf842014-03-11 16:52:30 -0700421bool SpotShadow::isClockwise(const Vector2* polygon, int len) {
ztenghui7b4516e2014-01-07 10:42:55 -0800422 double sum = 0;
423 double p1x = polygon[len - 1].x;
424 double p1y = polygon[len - 1].y;
425 for (int i = 0; i < len; i++) {
426
427 double p2x = polygon[i].x;
428 double p2y = polygon[i].y;
429 sum += p1x * p2y - p2x * p1y;
430 p1x = p2x;
431 p1y = p2y;
432 }
433 return sum < 0;
434}
435
436/**
437 * Reverse the polygon
438 *
439 * @param polygon the polygon as a Vector2 array
440 * @param len the number of points of the polygon
441 */
442void SpotShadow::reverse(Vector2* polygon, int len) {
443 int n = len / 2;
444 for (int i = 0; i < n; i++) {
445 Vector2 tmp = polygon[i];
446 int k = len - 1 - i;
447 polygon[i] = polygon[k];
448 polygon[k] = tmp;
449 }
450}
451
452/**
453 * Intersects two lines in parametric form. This function is called in a tight
454 * loop, and we need double precision to get things right.
455 *
456 * @param x1 the x coordinate point 1 of line 1
457 * @param y1 the y coordinate point 1 of line 1
458 * @param x2 the x coordinate point 2 of line 1
459 * @param y2 the y coordinate point 2 of line 1
460 * @param x3 the x coordinate point 1 of line 2
461 * @param y3 the y coordinate point 1 of line 2
462 * @param x4 the x coordinate point 2 of line 2
463 * @param y4 the y coordinate point 2 of line 2
464 * @param ret the x,y location of the intersection
465 * @return true if it found an intersection
466 */
467inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2,
468 double x3, double y3, double x4, double y4, Vector2& ret) {
469 double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
470 if (d == 0.0) return false;
471
472 double dx = (x1 * y2 - y1 * x2);
473 double dy = (x3 * y4 - y3 * x4);
474 double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d;
475 double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d;
476
477 // The intersection should be in the middle of the point 1 and point 2,
478 // likewise point 3 and point 4.
479 if (((x - x1) * (x - x2) > EPSILON)
480 || ((x - x3) * (x - x4) > EPSILON)
481 || ((y - y1) * (y - y2) > EPSILON)
482 || ((y - y3) * (y - y4) > EPSILON)) {
483 // Not interesected
484 return false;
485 }
486 ret.x = x;
487 ret.y = y;
488 return true;
489
490}
491
492/**
493 * Compute a horizontal circular polygon about point (x , y , height) of radius
494 * (size)
495 *
496 * @param points number of the points of the output polygon.
497 * @param lightCenter the center of the light.
498 * @param size the light size.
499 * @param ret result polygon.
500 */
501void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
502 float size, Vector3* ret) {
503 // TODO: Caching all the sin / cos values and store them in a look up table.
504 for (int i = 0; i < points; i++) {
505 double angle = 2 * i * M_PI / points;
Chris Craik726118b2014-03-07 18:27:49 -0800506 ret[i].x = cosf(angle) * size + lightCenter.x;
507 ret[i].y = sinf(angle) * size + lightCenter.y;
ztenghui7b4516e2014-01-07 10:42:55 -0800508 ret[i].z = lightCenter.z;
509 }
510}
511
512/**
513* Generate the shadow from a spot light.
514*
515* @param poly x,y,z vertexes of a convex polygon that occludes the light source
516* @param polyLength number of vertexes of the occluding polygon
517* @param lightCenter the center of the light
518* @param lightSize the radius of the light source
519* @param lightVertexCount the vertex counter for the light polygon
ztenghui7b4516e2014-01-07 10:42:55 -0800520* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
521* empty strip if error.
522*
523*/
ztenghui50ecf842014-03-11 16:52:30 -0700524VertexBufferMode SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3* poly,
525 int polyLength, const Vector3& lightCenter, float lightSize,
526 int lightVertexCount, VertexBuffer& retStrips) {
ztenghui7b4516e2014-01-07 10:42:55 -0800527 Vector3 light[lightVertexCount * 3];
528 computeLightPolygon(lightVertexCount, lightCenter, lightSize, light);
ztenghui50ecf842014-03-11 16:52:30 -0700529 computeSpotShadow(isCasterOpaque, light, lightVertexCount, lightCenter, poly,
530 polyLength, retStrips);
531 return kVertexBufferMode_TwoPolyRingShadow;
ztenghui7b4516e2014-01-07 10:42:55 -0800532}
533
534/**
535 * Generate the shadow spot light of shape lightPoly and a object poly
536 *
537 * @param lightPoly x,y,z vertex of a convex polygon that is the light source
538 * @param lightPolyLength number of vertexes of the light source polygon
539 * @param poly x,y,z vertexes of a convex polygon that occludes the light source
540 * @param polyLength number of vertexes of the occluding polygon
ztenghui7b4516e2014-01-07 10:42:55 -0800541 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
542 * empty strip if error.
543 */
ztenghui50ecf842014-03-11 16:52:30 -0700544void SpotShadow::computeSpotShadow(bool isCasterOpaque, const Vector3* lightPoly,
545 int lightPolyLength, const Vector3& lightCenter, const Vector3* poly,
546 int polyLength, VertexBuffer& shadowTriangleStrip) {
ztenghui7b4516e2014-01-07 10:42:55 -0800547 // Point clouds for all the shadowed vertices
548 Vector2 shadowRegion[lightPolyLength * polyLength];
549 // Shadow polygon from one point light.
550 Vector2 outline[polyLength];
551 Vector2 umbraMem[polyLength * lightPolyLength];
552 Vector2* umbra = umbraMem;
553
554 int umbraLength = 0;
555
556 // Validate input, receiver is always at z = 0 plane.
557 bool inputPolyPositionValid = true;
558 for (int i = 0; i < polyLength; i++) {
ztenghui7b4516e2014-01-07 10:42:55 -0800559 if (poly[i].z >= lightPoly[0].z) {
560 inputPolyPositionValid = false;
Chris Craikb79a3e32014-03-11 12:20:17 -0700561 ALOGW("polygon above the light");
ztenghui7b4516e2014-01-07 10:42:55 -0800562 break;
563 }
564 }
565
566 // If the caster's position is invalid, don't draw anything.
567 if (!inputPolyPositionValid) {
568 return;
569 }
570
571 // Calculate the umbra polygon based on intersections of all outlines
572 int k = 0;
573 for (int j = 0; j < lightPolyLength; j++) {
574 int m = 0;
575 for (int i = 0; i < polyLength; i++) {
ztenghui28c3ea02014-03-18 15:58:57 -0700576 // After validating the input, deltaZ is guaranteed to be positive.
ztenghui50ecf842014-03-11 16:52:30 -0700577 float deltaZ = lightPoly[j].z - poly[i].z;
ztenghui50ecf842014-03-11 16:52:30 -0700578 float ratioZ = lightPoly[j].z / deltaZ;
579 float x = lightPoly[j].x - ratioZ * (lightPoly[j].x - poly[i].x);
580 float y = lightPoly[j].y - ratioZ * (lightPoly[j].y - poly[i].y);
ztenghui7b4516e2014-01-07 10:42:55 -0800581
582 Vector2 newPoint = Vector2(x, y);
583 shadowRegion[k] = newPoint;
584 outline[m] = newPoint;
585
586 k++;
587 m++;
588 }
589
590 // For the first light polygon's vertex, use the outline as the umbra.
591 // Later on, use the intersection of the outline and existing umbra.
592 if (umbraLength == 0) {
593 for (int i = 0; i < polyLength; i++) {
594 umbra[i] = outline[i];
595 }
596 umbraLength = polyLength;
597 } else {
598 int col = ((j * 255) / lightPolyLength);
599 umbraLength = intersection(outline, polyLength, umbra, umbraLength);
600 if (umbraLength == 0) {
601 break;
602 }
603 }
604 }
605
606 // Generate the penumbra area using the hull of all shadow regions.
607 int shadowRegionLength = k;
608 Vector2 penumbra[k];
609 int penumbraLength = hull(shadowRegion, shadowRegionLength, penumbra);
610
ztenghui5176c972014-01-31 17:17:55 -0800611 Vector2 fakeUmbra[polyLength];
ztenghui7b4516e2014-01-07 10:42:55 -0800612 if (umbraLength < 3) {
ztenghui5176c972014-01-31 17:17:55 -0800613 // If there is no real umbra, make a fake one.
ztenghui7b4516e2014-01-07 10:42:55 -0800614 for (int i = 0; i < polyLength; i++) {
ztenghui50ecf842014-03-11 16:52:30 -0700615 float deltaZ = lightCenter.z - poly[i].z;
ztenghui50ecf842014-03-11 16:52:30 -0700616 float ratioZ = lightCenter.z / deltaZ;
617 float x = lightCenter.x - ratioZ * (lightCenter.x - poly[i].x);
618 float y = lightCenter.y - ratioZ * (lightCenter.y - poly[i].y);
ztenghui7b4516e2014-01-07 10:42:55 -0800619
ztenghui5176c972014-01-31 17:17:55 -0800620 fakeUmbra[i].x = x;
621 fakeUmbra[i].y = y;
ztenghui7b4516e2014-01-07 10:42:55 -0800622 }
623
624 // Shrink the centroid's shadow by 10%.
625 // TODO: Study the magic number of 10%.
ztenghui63d41ab2014-02-14 13:13:41 -0800626 Vector2 shadowCentroid =
627 ShadowTessellator::centroid2d(fakeUmbra, polyLength);
ztenghui7b4516e2014-01-07 10:42:55 -0800628 for (int i = 0; i < polyLength; i++) {
ztenghui5176c972014-01-31 17:17:55 -0800629 fakeUmbra[i] = shadowCentroid * (1.0f - SHADOW_SHRINK_SCALE) +
630 fakeUmbra[i] * SHADOW_SHRINK_SCALE;
ztenghui7b4516e2014-01-07 10:42:55 -0800631 }
632#if DEBUG_SHADOW
633 ALOGD("No real umbra make a fake one, centroid2d = %f , %f",
634 shadowCentroid.x, shadowCentroid.y);
635#endif
636 // Set the fake umbra, whose size is the same as the original polygon.
ztenghui5176c972014-01-31 17:17:55 -0800637 umbra = fakeUmbra;
ztenghui7b4516e2014-01-07 10:42:55 -0800638 umbraLength = polyLength;
639 }
640
ztenghui50ecf842014-03-11 16:52:30 -0700641 generateTriangleStrip(isCasterOpaque, penumbra, penumbraLength, umbra,
642 umbraLength, poly, polyLength, shadowTriangleStrip);
ztenghui7b4516e2014-01-07 10:42:55 -0800643}
644
645/**
Chris Craik726118b2014-03-07 18:27:49 -0800646 * Converts a polygon specified with CW vertices into an array of distance-from-centroid values.
647 *
648 * Returns false in error conditions
649 *
650 * @param poly Array of vertices. Note that these *must* be CW.
651 * @param polyLength The number of vertices in the polygon.
652 * @param polyCentroid The centroid of the polygon, from which rays will be cast
653 * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size
654 */
655bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid,
656 float* rayDist) {
657 const int rays = SHADOW_RAY_COUNT;
658 const float step = M_PI * 2 / rays;
659
660 const Vector2* lastVertex = &(poly[polyLength - 1]);
661 float startAngle = angle(*lastVertex, polyCentroid);
662
663 // Start with the ray that's closest to and less than startAngle
664 int rayIndex = floor((startAngle - EPSILON) / step);
665 rayIndex = (rayIndex + rays) % rays; // ensure positive
666
667 for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) {
668 /*
669 * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that
670 * intersect these will be those that are between the two angles from the centroid that the
671 * vertices define.
672 *
673 * Because the polygon vertices are stored clockwise, the closest ray with an angle
674 * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does
675 * not intersect with poly[i-1], poly[i].
676 */
677 float currentAngle = angle(poly[polyIndex], polyCentroid);
678
679 // find first ray that will not intersect the line segment poly[i-1] & poly[i]
680 int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step);
681 firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive
682
683 // Iterate through all rays that intersect with poly[i-1], poly[i] line segment.
684 // This may be 0 rays.
685 while (rayIndex != firstRayIndexOnNextSegment) {
686 float distanceToIntersect = rayIntersectPoints(polyCentroid,
687 cos(rayIndex * step),
688 sin(rayIndex * step),
689 *lastVertex, poly[polyIndex]);
ztenghui50ecf842014-03-11 16:52:30 -0700690 if (distanceToIntersect < 0) {
691#if DEBUG_SHADOW
692 ALOGW("ERROR: convertPolyToRayDist failed");
693#endif
694 return false; // error case, abort
695 }
Chris Craik726118b2014-03-07 18:27:49 -0800696
697 rayDist[rayIndex] = distanceToIntersect;
698
699 rayIndex = (rayIndex - 1 + rays) % rays;
700 }
701 lastVertex = &poly[polyIndex];
702 }
703
704 return true;
705}
706
ztenghui50ecf842014-03-11 16:52:30 -0700707int SpotShadow::calculateOccludedUmbra(const Vector2* umbra, int umbraLength,
708 const Vector3* poly, int polyLength, Vector2* occludedUmbra) {
709 // Occluded umbra area is computed as the intersection of the projected 2D
710 // poly and umbra.
711 for (int i = 0; i < polyLength; i++) {
712 occludedUmbra[i].x = poly[i].x;
713 occludedUmbra[i].y = poly[i].y;
714 }
715
716 // Both umbra and incoming polygon are guaranteed to be CW, so we can call
717 // intersection() directly.
718 return intersection(umbra, umbraLength,
719 occludedUmbra, polyLength);
720}
721
722#define OCLLUDED_UMBRA_SHRINK_FACTOR 0.95f
Chris Craik726118b2014-03-07 18:27:49 -0800723/**
ztenghui7b4516e2014-01-07 10:42:55 -0800724 * Generate a triangle strip given two convex polygons
725 *
726 * @param penumbra The outer polygon x,y vertexes
727 * @param penumbraLength The number of vertexes in the outer polygon
728 * @param umbra The inner outer polygon x,y vertexes
729 * @param umbraLength The number of vertexes in the inner polygon
ztenghui7b4516e2014-01-07 10:42:55 -0800730 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
731 * empty strip if error.
732**/
ztenghui50ecf842014-03-11 16:52:30 -0700733void SpotShadow::generateTriangleStrip(bool isCasterOpaque, const Vector2* penumbra,
734 int penumbraLength, const Vector2* umbra, int umbraLength,
735 const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip) {
ztenghui63d41ab2014-02-14 13:13:41 -0800736 const int rays = SHADOW_RAY_COUNT;
Chris Craik726118b2014-03-07 18:27:49 -0800737 const int size = 2 * rays;
738 const float step = M_PI * 2 / rays;
ztenghui7b4516e2014-01-07 10:42:55 -0800739 // Centroid of the umbra.
ztenghui63d41ab2014-02-14 13:13:41 -0800740 Vector2 centroid = ShadowTessellator::centroid2d(umbra, umbraLength);
ztenghui7b4516e2014-01-07 10:42:55 -0800741#if DEBUG_SHADOW
742 ALOGD("centroid2d = %f , %f", centroid.x, centroid.y);
743#endif
744 // Intersection to the penumbra.
745 float penumbraDistPerRay[rays];
746 // Intersection to the umbra.
747 float umbraDistPerRay[rays];
ztenghui50ecf842014-03-11 16:52:30 -0700748 // Intersection to the occluded umbra area.
749 float occludedUmbraDistPerRay[rays];
ztenghui7b4516e2014-01-07 10:42:55 -0800750
Chris Craik726118b2014-03-07 18:27:49 -0800751 // convert CW polygons to ray distance encoding, aborting on conversion failure
752 if (!convertPolyToRayDist(umbra, umbraLength, centroid, umbraDistPerRay)) return;
753 if (!convertPolyToRayDist(penumbra, penumbraLength, centroid, penumbraDistPerRay)) return;
ztenghui7b4516e2014-01-07 10:42:55 -0800754
ztenghui50ecf842014-03-11 16:52:30 -0700755 bool hasOccludedUmbraArea = false;
756 if (isCasterOpaque) {
757 Vector2 occludedUmbra[polyLength + umbraLength];
758 int occludedUmbraLength = calculateOccludedUmbra(umbra, umbraLength, poly, polyLength,
759 occludedUmbra);
760 // Make sure the centroid is inside the umbra, otherwise, fall back to the
761 // approach as if there is no occluded umbra area.
762 if (testPointInsidePolygon(centroid, occludedUmbra, occludedUmbraLength)) {
763 hasOccludedUmbraArea = true;
764 // Shrink the occluded umbra area to avoid pixel level artifacts.
765 for (int i = 0; i < occludedUmbraLength; i ++) {
766 occludedUmbra[i] = centroid + (occludedUmbra[i] - centroid) *
767 OCLLUDED_UMBRA_SHRINK_FACTOR;
768 }
769 if (!convertPolyToRayDist(occludedUmbra, occludedUmbraLength, centroid,
770 occludedUmbraDistPerRay)) {
771 return;
772 }
773 }
774 }
775
776 AlphaVertex* shadowVertices =
777 shadowTriangleStrip.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT);
ztenghui7b4516e2014-01-07 10:42:55 -0800778
ztenghui63d41ab2014-02-14 13:13:41 -0800779 // Calculate the vertices (x, y, alpha) in the shadow area.
ztenghui50ecf842014-03-11 16:52:30 -0700780 AlphaVertex centroidXYA;
781 AlphaVertex::set(&centroidXYA, centroid.x, centroid.y, 1.0f);
Chris Craik726118b2014-03-07 18:27:49 -0800782 for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
783 float dx = cosf(step * rayIndex);
784 float dy = sinf(step * rayIndex);
785
ztenghui50ecf842014-03-11 16:52:30 -0700786 // penumbra ring
787 float penumbraDistance = penumbraDistPerRay[rayIndex];
Chris Craik726118b2014-03-07 18:27:49 -0800788 AlphaVertex::set(&shadowVertices[rayIndex],
ztenghui50ecf842014-03-11 16:52:30 -0700789 dx * penumbraDistance + centroid.x,
790 dy * penumbraDistance + centroid.y, 0.0f);
Chris Craik726118b2014-03-07 18:27:49 -0800791
ztenghui50ecf842014-03-11 16:52:30 -0700792 // umbra ring
793 float umbraDistance = umbraDistPerRay[rayIndex];
Chris Craik726118b2014-03-07 18:27:49 -0800794 AlphaVertex::set(&shadowVertices[rays + rayIndex],
ztenghui50ecf842014-03-11 16:52:30 -0700795 dx * umbraDistance + centroid.x, dy * umbraDistance + centroid.y, 1.0f);
796
797 // occluded umbra ring
798 if (hasOccludedUmbraArea) {
799 float occludedUmbraDistance = occludedUmbraDistPerRay[rayIndex];
800 AlphaVertex::set(&shadowVertices[2 * rays + rayIndex],
801 dx * occludedUmbraDistance + centroid.x,
802 dy * occludedUmbraDistance + centroid.y, 1.0f);
803 } else {
804 // Put all vertices of the occluded umbra ring at the centroid.
805 shadowVertices[2 * rays + rayIndex] = centroidXYA;
806 }
ztenghui7b4516e2014-01-07 10:42:55 -0800807 }
ztenghui7b4516e2014-01-07 10:42:55 -0800808}
809
810/**
811 * This is only for experimental purpose.
812 * After intersections are calculated, we could smooth the polygon if needed.
813 * So far, we don't think it is more appealing yet.
814 *
815 * @param level The level of smoothness.
816 * @param rays The total number of rays.
817 * @param rayDist (In and Out) The distance for each ray.
818 *
819 */
820void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
821 for (int k = 0; k < level; k++) {
822 for (int i = 0; i < rays; i++) {
823 float p1 = rayDist[(rays - 1 + i) % rays];
824 float p2 = rayDist[i];
825 float p3 = rayDist[(i + 1) % rays];
826 rayDist[i] = (p1 + p2 * 2 + p3) / 4;
827 }
828 }
829}
830
ztenghuif5ca8b42014-01-27 15:53:28 -0800831#if DEBUG_SHADOW
832
833#define TEST_POINT_NUMBER 128
834
835/**
836 * Calculate the bounds for generating random test points.
837 */
838void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
839 Vector2& upperBound ) {
840 if (inVector.x < lowerBound.x) {
841 lowerBound.x = inVector.x;
842 }
843
844 if (inVector.y < lowerBound.y) {
845 lowerBound.y = inVector.y;
846 }
847
848 if (inVector.x > upperBound.x) {
849 upperBound.x = inVector.x;
850 }
851
852 if (inVector.y > upperBound.y) {
853 upperBound.y = inVector.y;
854 }
855}
856
857/**
858 * For debug purpose, when things go wrong, dump the whole polygon data.
859 */
860static void dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
861 for (int i = 0; i < polyLength; i++) {
862 ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
863 }
864}
865
866/**
867 * Test whether the polygon is convex.
868 */
869bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
870 const char* name) {
871 bool isConvex = true;
872 for (int i = 0; i < polygonLength; i++) {
873 Vector2 start = polygon[i];
874 Vector2 middle = polygon[(i + 1) % polygonLength];
875 Vector2 end = polygon[(i + 2) % polygonLength];
876
877 double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) -
878 (double(middle.y) - start.y) * (double(end.x) - start.x);
879 bool isCCWOrCoLinear = (delta >= EPSILON);
880
881 if (isCCWOrCoLinear) {
ztenghui50ecf842014-03-11 16:52:30 -0700882 ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
ztenghuif5ca8b42014-01-27 15:53:28 -0800883 "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
884 name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
885 isConvex = false;
886 break;
887 }
888 }
889 return isConvex;
890}
891
892/**
893 * Test whether or not the polygon (intersection) is within the 2 input polygons.
894 * Using Marte Carlo method, we generate a random point, and if it is inside the
895 * intersection, then it must be inside both source polygons.
896 */
897void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
898 const Vector2* poly2, int poly2Length,
899 const Vector2* intersection, int intersectionLength) {
900 // Find the min and max of x and y.
901 Vector2 lowerBound(FLT_MAX, FLT_MAX);
902 Vector2 upperBound(-FLT_MAX, -FLT_MAX);
903 for (int i = 0; i < poly1Length; i++) {
904 updateBound(poly1[i], lowerBound, upperBound);
905 }
906 for (int i = 0; i < poly2Length; i++) {
907 updateBound(poly2[i], lowerBound, upperBound);
908 }
909
910 bool dumpPoly = false;
911 for (int k = 0; k < TEST_POINT_NUMBER; k++) {
912 // Generate a random point between minX, minY and maxX, maxY.
913 double randomX = rand() / double(RAND_MAX);
914 double randomY = rand() / double(RAND_MAX);
915
916 Vector2 testPoint;
917 testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
918 testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
919
920 // If the random point is in both poly 1 and 2, then it must be intersection.
921 if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
922 if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
923 dumpPoly = true;
ztenghui50ecf842014-03-11 16:52:30 -0700924 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
ztenghuif5ca8b42014-01-27 15:53:28 -0800925 " not in the poly1",
926 testPoint.x, testPoint.y);
927 }
928
929 if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
930 dumpPoly = true;
ztenghui50ecf842014-03-11 16:52:30 -0700931 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
ztenghuif5ca8b42014-01-27 15:53:28 -0800932 " not in the poly2",
933 testPoint.x, testPoint.y);
934 }
935 }
936 }
937
938 if (dumpPoly) {
939 dumpPolygon(intersection, intersectionLength, "intersection");
940 for (int i = 1; i < intersectionLength; i++) {
941 Vector2 delta = intersection[i] - intersection[i - 1];
942 ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
943 }
944
945 dumpPolygon(poly1, poly1Length, "poly 1");
946 dumpPolygon(poly2, poly2Length, "poly 2");
947 }
948}
949#endif
950
ztenghui7b4516e2014-01-07 10:42:55 -0800951}; // namespace uirenderer
952}; // namespace android