Mathias Agopian | 73e0bc8 | 2011-05-17 22:54:42 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2011 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include <stdio.h> |
| 18 | |
| 19 | #include <utils/Log.h> |
| 20 | |
| 21 | #include "Fusion.h" |
| 22 | |
| 23 | namespace android { |
| 24 | |
| 25 | // ----------------------------------------------------------------------- |
| 26 | |
| 27 | template <typename TYPE> |
| 28 | static inline TYPE sqr(TYPE x) { |
| 29 | return x*x; |
| 30 | } |
| 31 | |
| 32 | template <typename T> |
| 33 | static inline T clamp(T v) { |
| 34 | return v < 0 ? 0 : v; |
| 35 | } |
| 36 | |
| 37 | template <typename TYPE, size_t C, size_t R> |
| 38 | static mat<TYPE, R, R> scaleCovariance( |
| 39 | const mat<TYPE, C, R>& A, |
| 40 | const mat<TYPE, C, C>& P) { |
| 41 | // A*P*transpose(A); |
| 42 | mat<TYPE, R, R> APAt; |
| 43 | for (size_t r=0 ; r<R ; r++) { |
| 44 | for (size_t j=r ; j<R ; j++) { |
| 45 | double apat(0); |
| 46 | for (size_t c=0 ; c<C ; c++) { |
| 47 | double v(A[c][r]*P[c][c]*0.5); |
| 48 | for (size_t k=c+1 ; k<C ; k++) |
| 49 | v += A[k][r] * P[c][k]; |
| 50 | apat += 2 * v * A[c][j]; |
| 51 | } |
| 52 | APAt[j][r] = apat; |
| 53 | APAt[r][j] = apat; |
| 54 | } |
| 55 | } |
| 56 | return APAt; |
| 57 | } |
| 58 | |
| 59 | template <typename TYPE, typename OTHER_TYPE> |
| 60 | static mat<TYPE, 3, 3> crossMatrix(const vec<TYPE, 3>& p, OTHER_TYPE diag) { |
| 61 | mat<TYPE, 3, 3> r; |
| 62 | r[0][0] = diag; |
| 63 | r[1][1] = diag; |
| 64 | r[2][2] = diag; |
| 65 | r[0][1] = p.z; |
| 66 | r[1][0] =-p.z; |
| 67 | r[0][2] =-p.y; |
| 68 | r[2][0] = p.y; |
| 69 | r[1][2] = p.x; |
| 70 | r[2][1] =-p.x; |
| 71 | return r; |
| 72 | } |
| 73 | |
| 74 | template <typename TYPE> |
| 75 | static mat<TYPE, 3, 3> MRPsToMatrix(const vec<TYPE, 3>& p) { |
| 76 | mat<TYPE, 3, 3> res(1); |
| 77 | const mat<TYPE, 3, 3> px(crossMatrix(p, 0)); |
| 78 | const TYPE ptp(dot_product(p,p)); |
| 79 | const TYPE t = 4/sqr(1+ptp); |
| 80 | res -= t * (1-ptp) * px; |
| 81 | res += t * 2 * sqr(px); |
| 82 | return res; |
| 83 | } |
| 84 | |
| 85 | template <typename TYPE> |
| 86 | vec<TYPE, 3> matrixToMRPs(const mat<TYPE, 3, 3>& R) { |
| 87 | // matrix to MRPs |
| 88 | vec<TYPE, 3> q; |
| 89 | const float Hx = R[0].x; |
| 90 | const float My = R[1].y; |
| 91 | const float Az = R[2].z; |
| 92 | const float w = 1 / (1 + sqrtf( clamp( Hx + My + Az + 1) * 0.25f )); |
| 93 | q.x = sqrtf( clamp( Hx - My - Az + 1) * 0.25f ) * w; |
| 94 | q.y = sqrtf( clamp(-Hx + My - Az + 1) * 0.25f ) * w; |
| 95 | q.z = sqrtf( clamp(-Hx - My + Az + 1) * 0.25f ) * w; |
| 96 | q.x = copysignf(q.x, R[2].y - R[1].z); |
| 97 | q.y = copysignf(q.y, R[0].z - R[2].x); |
| 98 | q.z = copysignf(q.z, R[1].x - R[0].y); |
| 99 | return q; |
| 100 | } |
| 101 | |
| 102 | template<typename TYPE, size_t SIZE> |
| 103 | class Covariance { |
| 104 | mat<TYPE, SIZE, SIZE> mSumXX; |
| 105 | vec<TYPE, SIZE> mSumX; |
| 106 | size_t mN; |
| 107 | public: |
| 108 | Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { } |
| 109 | void update(const vec<TYPE, SIZE>& x) { |
| 110 | mSumXX += x*transpose(x); |
| 111 | mSumX += x; |
| 112 | mN++; |
| 113 | } |
| 114 | mat<TYPE, SIZE, SIZE> operator()() const { |
| 115 | const float N = 1.0f / mN; |
| 116 | return mSumXX*N - (mSumX*transpose(mSumX))*(N*N); |
| 117 | } |
| 118 | void reset() { |
| 119 | mN = 0; |
| 120 | mSumXX = 0; |
| 121 | mSumX = 0; |
| 122 | } |
| 123 | size_t getCount() const { |
| 124 | return mN; |
| 125 | } |
| 126 | }; |
| 127 | |
| 128 | // ----------------------------------------------------------------------- |
| 129 | |
| 130 | Fusion::Fusion() { |
| 131 | // process noise covariance matrix |
| 132 | const float w1 = gyroSTDEV; |
| 133 | const float w2 = biasSTDEV; |
| 134 | Q[0] = w1*w1; |
| 135 | Q[1] = w2*w2; |
| 136 | |
| 137 | Ba.x = 0; |
| 138 | Ba.y = 0; |
| 139 | Ba.z = 1; |
| 140 | |
| 141 | Bm.x = 0; |
| 142 | Bm.y = 1; |
| 143 | Bm.z = 0; |
| 144 | |
| 145 | init(); |
| 146 | } |
| 147 | |
| 148 | void Fusion::init() { |
| 149 | // initial estimate: E{ x(t0) } |
| 150 | x = 0; |
| 151 | |
| 152 | // initial covariance: Var{ x(t0) } |
| 153 | P = 0; |
| 154 | |
| 155 | mInitState = 0; |
| 156 | mCount[0] = 0; |
| 157 | mCount[1] = 0; |
| 158 | mCount[2] = 0; |
| 159 | mData = 0; |
| 160 | } |
| 161 | |
| 162 | bool Fusion::hasEstimate() const { |
| 163 | return (mInitState == (MAG|ACC|GYRO)); |
| 164 | } |
| 165 | |
| 166 | bool Fusion::checkInitComplete(int what, const vec3_t& d) { |
| 167 | if (mInitState == (MAG|ACC|GYRO)) |
| 168 | return true; |
| 169 | |
| 170 | if (what == ACC) { |
| 171 | mData[0] += d * (1/length(d)); |
| 172 | mCount[0]++; |
| 173 | mInitState |= ACC; |
| 174 | } else if (what == MAG) { |
| 175 | mData[1] += d * (1/length(d)); |
| 176 | mCount[1]++; |
| 177 | mInitState |= MAG; |
| 178 | } else if (what == GYRO) { |
| 179 | mData[2] += d; |
| 180 | mCount[2]++; |
| 181 | if (mCount[2] == 64) { |
| 182 | // 64 samples is good enough to estimate the gyro drift and |
| 183 | // doesn't take too much time. |
| 184 | mInitState |= GYRO; |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | if (mInitState == (MAG|ACC|GYRO)) { |
| 189 | // Average all the values we collected so far |
| 190 | mData[0] *= 1.0f/mCount[0]; |
| 191 | mData[1] *= 1.0f/mCount[1]; |
| 192 | mData[2] *= 1.0f/mCount[2]; |
| 193 | |
| 194 | // calculate the MRPs from the data collection, this gives us |
| 195 | // a rough estimate of our initial state |
| 196 | mat33_t R; |
| 197 | vec3_t up(mData[0]); |
| 198 | vec3_t east(cross_product(mData[1], up)); |
| 199 | east *= 1/length(east); |
| 200 | vec3_t north(cross_product(up, east)); |
| 201 | R << east << north << up; |
| 202 | x[0] = matrixToMRPs(R); |
| 203 | |
| 204 | // NOTE: we could try to use the average of the gyro data |
| 205 | // to estimate the initial bias, but this only works if |
| 206 | // the device is not moving. For now, we don't use that value |
| 207 | // and start with a bias of 0. |
| 208 | x[1] = 0; |
| 209 | |
| 210 | // initial covariance |
| 211 | P = 0; |
| 212 | } |
| 213 | |
| 214 | return false; |
| 215 | } |
| 216 | |
| 217 | void Fusion::handleGyro(const vec3_t& w, float dT) { |
| 218 | const vec3_t wdT(w * dT); // rad/s * s -> rad |
| 219 | if (!checkInitComplete(GYRO, wdT)) |
| 220 | return; |
| 221 | |
| 222 | predict(wdT); |
| 223 | } |
| 224 | |
| 225 | status_t Fusion::handleAcc(const vec3_t& a) { |
| 226 | if (length(a) < 0.981f) |
| 227 | return BAD_VALUE; |
| 228 | |
| 229 | if (!checkInitComplete(ACC, a)) |
| 230 | return BAD_VALUE; |
| 231 | |
| 232 | // ignore acceleration data if we're close to free-fall |
| 233 | const float l = 1/length(a); |
| 234 | update(a*l, Ba, accSTDEV*l); |
| 235 | return NO_ERROR; |
| 236 | } |
| 237 | |
| 238 | status_t Fusion::handleMag(const vec3_t& m) { |
| 239 | // the geomagnetic-field should be between 30uT and 60uT |
| 240 | // reject obviously wrong magnetic-fields |
| 241 | if (length(m) > 100) |
| 242 | return BAD_VALUE; |
| 243 | |
| 244 | if (!checkInitComplete(MAG, m)) |
| 245 | return BAD_VALUE; |
| 246 | |
| 247 | const vec3_t up( getRotationMatrix() * Ba ); |
| 248 | const vec3_t east( cross_product(m, up) ); |
| 249 | vec3_t north( cross_product(up, east) ); |
| 250 | |
| 251 | const float l = 1 / length(north); |
| 252 | north *= l; |
| 253 | |
| 254 | #if 0 |
| 255 | // in practice the magnetic-field sensor is so wrong |
| 256 | // that there is no point trying to use it to constantly |
| 257 | // correct the gyro. instead, we use the mag-sensor only when |
| 258 | // the device points north (just to give us a reference). |
| 259 | // We're hoping that it'll actually point north, if it doesn't |
| 260 | // we'll be offset, but at least the instantaneous posture |
| 261 | // of the device will be correct. |
| 262 | |
| 263 | const float cos_30 = 0.8660254f; |
| 264 | if (dot_product(north, Bm) < cos_30) |
| 265 | return BAD_VALUE; |
| 266 | #endif |
| 267 | |
| 268 | update(north, Bm, magSTDEV*l); |
| 269 | return NO_ERROR; |
| 270 | } |
| 271 | |
| 272 | bool Fusion::checkState(const vec3_t& v) { |
| 273 | if (isnanf(length(v))) { |
| 274 | LOGW("9-axis fusion diverged. reseting state."); |
| 275 | P = 0; |
| 276 | x[1] = 0; |
| 277 | mInitState = 0; |
| 278 | mCount[0] = 0; |
| 279 | mCount[1] = 0; |
| 280 | mCount[2] = 0; |
| 281 | mData = 0; |
| 282 | return false; |
| 283 | } |
| 284 | return true; |
| 285 | } |
| 286 | |
| 287 | vec3_t Fusion::getAttitude() const { |
| 288 | return x[0]; |
| 289 | } |
| 290 | |
| 291 | vec3_t Fusion::getBias() const { |
| 292 | return x[1]; |
| 293 | } |
| 294 | |
| 295 | mat33_t Fusion::getRotationMatrix() const { |
| 296 | return MRPsToMatrix(x[0]); |
| 297 | } |
| 298 | |
| 299 | mat33_t Fusion::getF(const vec3_t& p) { |
| 300 | const float p0 = p.x; |
| 301 | const float p1 = p.y; |
| 302 | const float p2 = p.z; |
| 303 | |
| 304 | // f(p, w) |
| 305 | const float p0p1 = p0*p1; |
| 306 | const float p0p2 = p0*p2; |
| 307 | const float p1p2 = p1*p2; |
| 308 | const float p0p0 = p0*p0; |
| 309 | const float p1p1 = p1*p1; |
| 310 | const float p2p2 = p2*p2; |
| 311 | const float pp = 0.5f * (1 - (p0p0 + p1p1 + p2p2)); |
| 312 | |
| 313 | mat33_t F; |
| 314 | F[0][0] = 0.5f*(p0p0 + pp); |
| 315 | F[0][1] = 0.5f*(p0p1 + p2); |
| 316 | F[0][2] = 0.5f*(p0p2 - p1); |
| 317 | F[1][0] = 0.5f*(p0p1 - p2); |
| 318 | F[1][1] = 0.5f*(p1p1 + pp); |
| 319 | F[1][2] = 0.5f*(p1p2 + p0); |
| 320 | F[2][0] = 0.5f*(p0p2 + p1); |
| 321 | F[2][1] = 0.5f*(p1p2 - p0); |
| 322 | F[2][2] = 0.5f*(p2p2 + pp); |
| 323 | return F; |
| 324 | } |
| 325 | |
| 326 | mat33_t Fusion::getdFdp(const vec3_t& p, const vec3_t& we) { |
| 327 | |
| 328 | // dF = | A = df/dp -F | |
| 329 | // | 0 0 | |
| 330 | |
| 331 | mat33_t A; |
| 332 | A[0][0] = A[1][1] = A[2][2] = 0.5f * (p.x*we.x + p.y*we.y + p.z*we.z); |
| 333 | A[0][1] = 0.5f * (p.y*we.x - p.x*we.y - we.z); |
| 334 | A[0][2] = 0.5f * (p.z*we.x - p.x*we.z + we.y); |
| 335 | A[1][2] = 0.5f * (p.z*we.y - p.y*we.z - we.x); |
| 336 | A[1][0] = -A[0][1]; |
| 337 | A[2][0] = -A[0][2]; |
| 338 | A[2][1] = -A[1][2]; |
| 339 | return A; |
| 340 | } |
| 341 | |
| 342 | void Fusion::predict(const vec3_t& w) { |
| 343 | // f(p, w) |
| 344 | vec3_t& p(x[0]); |
| 345 | |
| 346 | // There is a discontinuity at 2.pi, to avoid it we need to switch to |
| 347 | // the shadow of p when pT.p gets too big. |
| 348 | const float ptp(dot_product(p,p)); |
| 349 | if (ptp >= 2.0f) { |
| 350 | p = -p * (1/ptp); |
| 351 | } |
| 352 | |
| 353 | const mat33_t F(getF(p)); |
| 354 | |
| 355 | // compute w with the bias correction: |
| 356 | // w_estimated = w - b_estimated |
| 357 | const vec3_t& b(x[1]); |
| 358 | const vec3_t we(w - b); |
| 359 | |
| 360 | // prediction |
| 361 | const vec3_t dX(F*we); |
| 362 | |
| 363 | if (!checkState(dX)) |
| 364 | return; |
| 365 | |
| 366 | p += dX; |
| 367 | |
| 368 | const mat33_t A(getdFdp(p, we)); |
| 369 | |
| 370 | // G = | G0 0 | = | -F 0 | |
| 371 | // | 0 1 | | 0 1 | |
| 372 | |
| 373 | // P += A*P + P*At + F*Q*Ft |
| 374 | const mat33_t AP(A*transpose(P[0][0])); |
| 375 | const mat33_t PAt(P[0][0]*transpose(A)); |
| 376 | const mat33_t FPSt(F*transpose(P[1][0])); |
| 377 | const mat33_t PSFt(P[1][0]*transpose(F)); |
| 378 | const mat33_t FQFt(scaleCovariance(F, Q[0])); |
| 379 | P[0][0] += AP + PAt - FPSt - PSFt + FQFt; |
| 380 | P[1][0] += A*P[1][0] - F*P[1][1]; |
| 381 | P[1][1] += Q[1]; |
| 382 | } |
| 383 | |
| 384 | void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) { |
| 385 | const vec3_t p(x[0]); |
| 386 | // measured vector in body space: h(p) = A(p)*Bi |
| 387 | const mat33_t A(MRPsToMatrix(p)); |
| 388 | const vec3_t Bb(A*Bi); |
| 389 | |
| 390 | // Sensitivity matrix H = dh(p)/dp |
| 391 | // H = [ L 0 ] |
| 392 | const float ptp(dot_product(p,p)); |
| 393 | const mat33_t px(crossMatrix(p, 0.5f*(ptp-1))); |
| 394 | const mat33_t ppt(p*transpose(p)); |
| 395 | const mat33_t L((8 / sqr(1+ptp))*crossMatrix(Bb, 0)*(ppt-px)); |
| 396 | |
| 397 | // update... |
| 398 | const mat33_t R(sigma*sigma); |
| 399 | const mat33_t S(scaleCovariance(L, P[0][0]) + R); |
| 400 | const mat33_t Si(invert(S)); |
| 401 | const mat33_t LtSi(transpose(L)*Si); |
| 402 | |
| 403 | vec<mat33_t, 2> K; |
| 404 | K[0] = P[0][0] * LtSi; |
| 405 | K[1] = transpose(P[1][0])*LtSi; |
| 406 | |
| 407 | const vec3_t e(z - Bb); |
| 408 | const vec3_t K0e(K[0]*e); |
| 409 | const vec3_t K1e(K[1]*e); |
| 410 | |
| 411 | if (!checkState(K0e)) |
| 412 | return; |
| 413 | |
| 414 | if (!checkState(K1e)) |
| 415 | return; |
| 416 | |
| 417 | x[0] += K0e; |
| 418 | x[1] += K1e; |
| 419 | |
| 420 | // P -= K*H*P; |
| 421 | const mat33_t K0L(K[0] * L); |
| 422 | const mat33_t K1L(K[1] * L); |
| 423 | P[0][0] -= K0L*P[0][0]; |
| 424 | P[1][1] -= K1L*P[1][0]; |
| 425 | P[1][0] -= K0L*P[1][0]; |
| 426 | } |
| 427 | |
| 428 | // ----------------------------------------------------------------------- |
| 429 | |
| 430 | }; // namespace android |
| 431 | |