blob: c0b5402808b5fc93ee9f2dd7d621155abf2fa9cb [file] [log] [blame]
ztenghui55bfb4e2013-12-03 10:38:55 -08001/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "OpenGLRenderer"
18
19#include <math.h>
20#include <utils/Log.h>
Chris Craik564acf72014-01-02 16:46:18 -080021#include <utils/Vector.h>
ztenghui55bfb4e2013-12-03 10:38:55 -080022
23#include "AmbientShadow.h"
ztenghui63d41ab2014-02-14 13:13:41 -080024#include "ShadowTessellator.h"
ztenghui55bfb4e2013-12-03 10:38:55 -080025#include "Vertex.h"
26
27namespace android {
28namespace uirenderer {
29
30/**
31 * Calculate the shadows as a triangle strips while alpha value as the
32 * shadow values.
33 *
ztenghui50ecf842014-03-11 16:52:30 -070034 * @param isCasterOpaque Whether the caster is opaque.
ztenghui55bfb4e2013-12-03 10:38:55 -080035 * @param vertices The shadow caster's polygon, which is represented in a Vector3
36 * array.
37 * @param vertexCount The length of caster's polygon in terms of number of
38 * vertices.
ztenghui63d41ab2014-02-14 13:13:41 -080039 * @param centroid3d The centroid of the shadow caster.
ztenghui55bfb4e2013-12-03 10:38:55 -080040 * @param heightFactor The factor showing the higher the object, the lighter the
41 * shadow.
42 * @param geomFactor The factor scaling the geometry expansion along the normal.
43 *
44 * @param shadowVertexBuffer Return an floating point array of (x, y, a)
45 * triangle strips mode.
46 */
ztenghui50ecf842014-03-11 16:52:30 -070047VertexBufferMode AmbientShadow::createAmbientShadow(bool isCasterOpaque,
48 const Vector3* vertices, int vertexCount, const Vector3& centroid3d,
49 float heightFactor, float geomFactor, VertexBuffer& shadowVertexBuffer) {
ztenghui63d41ab2014-02-14 13:13:41 -080050 const int rays = SHADOW_RAY_COUNT;
ztenghui50ecf842014-03-11 16:52:30 -070051 VertexBufferMode mode = kVertexBufferMode_OnePolyRingShadow;
ztenghui55bfb4e2013-12-03 10:38:55 -080052 // Validate the inputs.
Chris Craik726118b2014-03-07 18:27:49 -080053 if (vertexCount < 3 || heightFactor <= 0 || rays <= 0
ztenghui55bfb4e2013-12-03 10:38:55 -080054 || geomFactor <= 0) {
55#if DEBUG_SHADOW
ztenghui50ecf842014-03-11 16:52:30 -070056 ALOGW("Invalid input for createAmbientShadow(), early return!");
ztenghui55bfb4e2013-12-03 10:38:55 -080057#endif
ztenghui50ecf842014-03-11 16:52:30 -070058 return mode; // vertex buffer is empty, so any mode doesn't matter.
ztenghui55bfb4e2013-12-03 10:38:55 -080059 }
ztenghui55bfb4e2013-12-03 10:38:55 -080060
Chris Craik564acf72014-01-02 16:46:18 -080061 Vector<Vector2> dir; // TODO: use C++11 unique_ptr
62 dir.setCapacity(rays);
ztenghui55bfb4e2013-12-03 10:38:55 -080063 float rayDist[rays];
64 float rayHeight[rays];
Chris Craik564acf72014-01-02 16:46:18 -080065 calculateRayDirections(rays, dir.editArray());
ztenghui55bfb4e2013-12-03 10:38:55 -080066
67 // Calculate the length and height of the points along the edge.
68 //
69 // The math here is:
70 // Intersect each ray (starting from the centroid) with the polygon.
71 for (int i = 0; i < rays; i++) {
72 int edgeIndex;
73 float edgeFraction;
74 float rayDistance;
ztenghui63d41ab2014-02-14 13:13:41 -080075 calculateIntersection(vertices, vertexCount, centroid3d, dir[i], edgeIndex,
ztenghui55bfb4e2013-12-03 10:38:55 -080076 edgeFraction, rayDistance);
77 rayDist[i] = rayDistance;
78 if (edgeIndex < 0 || edgeIndex >= vertexCount) {
79#if DEBUG_SHADOW
ztenghui50ecf842014-03-11 16:52:30 -070080 ALOGW("Invalid edgeIndex!");
ztenghui55bfb4e2013-12-03 10:38:55 -080081#endif
82 edgeIndex = 0;
83 }
84 float h1 = vertices[edgeIndex].z;
85 float h2 = vertices[((edgeIndex + 1) % vertexCount)].z;
86 rayHeight[i] = h1 + edgeFraction * (h2 - h1);
87 }
88
89 // The output buffer length basically is roughly rays * layers, but since we
90 // need triangle strips, so we need to duplicate vertices to accomplish that.
ztenghui50ecf842014-03-11 16:52:30 -070091 AlphaVertex* shadowVertices =
92 shadowVertexBuffer.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT);
ztenghui55bfb4e2013-12-03 10:38:55 -080093
94 // Calculate the vertex of the shadows.
95 //
96 // The math here is:
97 // Along the edges of the polygon, for each intersection point P (generated above),
98 // calculate the normal N, which should be perpendicular to the edge of the
99 // polygon (represented by the neighbor intersection points) .
100 // Shadow's vertices will be generated as : P + N * scale.
ztenghui50ecf842014-03-11 16:52:30 -0700101 const Vector2 centroid2d = Vector2(centroid3d.x, centroid3d.y);
Chris Craik726118b2014-03-07 18:27:49 -0800102 for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
103 Vector2 normal(1.0f, 0.0f);
104 calculateNormal(rays, rayIndex, dir.array(), rayDist, normal);
ztenghui55bfb4e2013-12-03 10:38:55 -0800105
Chris Craik726118b2014-03-07 18:27:49 -0800106 // The vertex should be start from rayDist[i] then scale the
107 // normalizeNormal!
108 Vector2 intersection = dir[rayIndex] * rayDist[rayIndex] +
ztenghui50ecf842014-03-11 16:52:30 -0700109 centroid2d;
ztenghui55bfb4e2013-12-03 10:38:55 -0800110
Chris Craik726118b2014-03-07 18:27:49 -0800111 // outer ring of points, expanded based upon height of each ray intersection
112 float expansionDist = rayHeight[rayIndex] * heightFactor *
113 geomFactor;
114 AlphaVertex::set(&shadowVertices[rayIndex],
115 intersection.x + normal.x * expansionDist,
116 intersection.y + normal.y * expansionDist,
117 0.0f);
ztenghui55bfb4e2013-12-03 10:38:55 -0800118
Chris Craik726118b2014-03-07 18:27:49 -0800119 // inner ring of points
120 float opacity = 1.0 / (1 + rayHeight[rayIndex] * heightFactor);
ztenghui50ecf842014-03-11 16:52:30 -0700121 AlphaVertex::set(&shadowVertices[rays + rayIndex],
Chris Craik726118b2014-03-07 18:27:49 -0800122 intersection.x,
123 intersection.y,
124 opacity);
ztenghui55bfb4e2013-12-03 10:38:55 -0800125 }
ztenghui50ecf842014-03-11 16:52:30 -0700126
127 // If caster isn't opaque, we need to to fill the umbra by storing the umbra's
128 // centroid in the innermost ring of vertices.
129 if (!isCasterOpaque) {
130 mode = kVertexBufferMode_TwoPolyRingShadow;
131 float centroidAlpha = 1.0 / (1 + centroid3d.z * heightFactor);
132 AlphaVertex centroidXYA;
133 AlphaVertex::set(&centroidXYA, centroid2d.x, centroid2d.y, centroidAlpha);
134 for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
135 shadowVertices[2 * rays + rayIndex] = centroidXYA;
136 }
137 }
ztenghui55bfb4e2013-12-03 10:38:55 -0800138
ztenghui55bfb4e2013-12-03 10:38:55 -0800139#if DEBUG_SHADOW
ztenghui63d41ab2014-02-14 13:13:41 -0800140 for (int i = 0; i < SHADOW_VERTEX_COUNT; i++) {
141 ALOGD("ambient shadow value: i %d, (x:%f, y:%f, a:%f)", i, shadowVertices[i].x,
142 shadowVertices[i].y, shadowVertices[i].alpha);
143 }
144#endif
ztenghui50ecf842014-03-11 16:52:30 -0700145 return mode;
ztenghui55bfb4e2013-12-03 10:38:55 -0800146}
147
148/**
149 * Generate an array of rays' direction vectors.
150 *
151 * @param rays The number of rays shooting out from the centroid.
152 * @param dir Return the array of ray vectors.
153 */
154void AmbientShadow::calculateRayDirections(int rays, Vector2* dir) {
155 float deltaAngle = 2 * M_PI / rays;
156
157 for (int i = 0; i < rays; i++) {
158 dir[i].x = sinf(deltaAngle * i);
159 dir[i].y = cosf(deltaAngle * i);
160 }
161}
162
163/**
164 * Calculate the intersection of a ray hitting the polygon.
165 *
166 * @param vertices The shadow caster's polygon, which is represented in a
167 * Vector3 array.
168 * @param vertexCount The length of caster's polygon in terms of number of vertices.
169 * @param start The starting point of the ray.
170 * @param dir The direction vector of the ray.
171 *
172 * @param outEdgeIndex Return the index of the segment (or index of the starting
173 * vertex) that ray intersect with.
174 * @param outEdgeFraction Return the fraction offset from the segment starting
175 * index.
176 * @param outRayDist Return the ray distance from centroid to the intersection.
177 */
178void AmbientShadow::calculateIntersection(const Vector3* vertices, int vertexCount,
ztenghui63d41ab2014-02-14 13:13:41 -0800179 const Vector3& start, const Vector2& dir, int& outEdgeIndex,
ztenghui55bfb4e2013-12-03 10:38:55 -0800180 float& outEdgeFraction, float& outRayDist) {
181 float startX = start.x;
182 float startY = start.y;
183 float dirX = dir.x;
184 float dirY = dir.y;
185 // Start the search from the last edge from poly[len-1] to poly[0].
186 int p1 = vertexCount - 1;
187
188 for (int p2 = 0; p2 < vertexCount; p2++) {
189 float p1x = vertices[p1].x;
190 float p1y = vertices[p1].y;
191 float p2x = vertices[p2].x;
192 float p2y = vertices[p2].y;
193
194 // The math here is derived from:
195 // f(t, v) = p1x * (1 - t) + p2x * t - (startX + dirX * v) = 0;
196 // g(t, v) = p1y * (1 - t) + p2y * t - (startY + dirY * v) = 0;
197 float div = (dirX * (p1y - p2y) + dirY * p2x - dirY * p1x);
198 if (div != 0) {
199 float t = (dirX * (p1y - startY) + dirY * startX - dirY * p1x) / (div);
200 if (t > 0 && t <= 1) {
201 float t2 = (p1x * (startY - p2y)
202 + p2x * (p1y - startY)
203 + startX * (p2y - p1y)) / div;
204 if (t2 > 0) {
205 outEdgeIndex = p1;
206 outRayDist = t2;
207 outEdgeFraction = t;
208 return;
209 }
210 }
211 }
212 p1 = p2;
213 }
214 return;
215};
216
217/**
218 * Calculate the normal at the intersection point between a ray and the polygon.
219 *
220 * @param rays The total number of rays.
221 * @param currentRayIndex The index of the ray which the normal is based on.
222 * @param dir The array of the all the rays directions.
223 * @param rayDist The pre-computed ray distances array.
224 *
225 * @param normal Return the normal.
226 */
227void AmbientShadow::calculateNormal(int rays, int currentRayIndex,
228 const Vector2* dir, const float* rayDist, Vector2& normal) {
229 int preIndex = (currentRayIndex - 1 + rays) % rays;
230 int postIndex = (currentRayIndex + 1) % rays;
231 Vector2 p1 = dir[preIndex] * rayDist[preIndex];
232 Vector2 p2 = dir[postIndex] * rayDist[postIndex];
233
234 // Now the V (deltaX, deltaY) is the vector going CW around the poly.
235 Vector2 delta = p2 - p1;
236 if (delta.length() != 0) {
237 delta.normalize();
238 // Calculate the normal , which is CCW 90 rotate to the V.
239 // 90 degrees CCW about z-axis: (x, y, z) -> (-y, x, z)
240 normal.x = -delta.y;
241 normal.y = delta.x;
242 }
243}
244
245}; // namespace uirenderer
246}; // namespace android