blob: f07dfa79bfdc3eae39d1c5c15885c50a282f2c36 [file] [log] [blame]
/*
* Copyright 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <hardware/hwvulkan.h>
#include <array>
#include <algorithm>
#include <inttypes.h>
#include <string.h>
// #define LOG_NDEBUG 0
#include <log/log.h>
#include <utils/Errors.h>
#include "null_driver.h"
using namespace null_driver;
struct VkPhysicalDevice_T {
hwvulkan_dispatch_t dispatch;
};
struct VkInstance_T {
hwvulkan_dispatch_t dispatch;
const VkAllocCallbacks* alloc;
VkPhysicalDevice_T physical_device;
};
struct VkQueue_T {
hwvulkan_dispatch_t dispatch;
};
struct VkCmdBuffer_T {
hwvulkan_dispatch_t dispatch;
};
namespace {
// Handles for non-dispatchable objects are either pointers, or arbitrary
// 64-bit non-zero values. We only use pointers when we need to keep state for
// the object even in a null driver. For the rest, we form a handle as:
// [63:63] = 1 to distinguish from pointer handles*
// [62:56] = non-zero handle type enum value
// [55: 0] = per-handle-type incrementing counter
// * This works because virtual addresses with the high bit set are reserved
// for kernel data in all ABIs we run on.
//
// We never reclaim handles on vkDestroy*. It's not even necessary for us to
// have distinct handles for live objects, and practically speaking we won't
// ever create 2^56 objects of the same type from a single VkDevice in a null
// driver.
//
// Using a namespace here instead of 'enum class' since we want scoped
// constants but also want implicit conversions to integral types.
namespace HandleType {
enum Enum {
kBufferView,
kCmdPool,
kDescriptorPool,
kDescriptorSet,
kDescriptorSetLayout,
kEvent,
kFence,
kFramebuffer,
kImageView,
kPipeline,
kPipelineCache,
kPipelineLayout,
kQueryPool,
kRenderPass,
kSampler,
kSemaphore,
kShader,
kShaderModule,
kNumTypes
};
} // namespace HandleType
uint64_t AllocHandle(VkDevice device, HandleType::Enum type);
const VkDeviceSize kMaxDeviceMemory = VkDeviceSize(INTPTR_MAX) + 1;
} // anonymous namespace
struct VkDevice_T {
hwvulkan_dispatch_t dispatch;
VkInstance_T* instance;
VkQueue_T queue;
std::array<uint64_t, HandleType::kNumTypes> next_handle;
};
// -----------------------------------------------------------------------------
// Declare HAL_MODULE_INFO_SYM early so it can be referenced by nulldrv_device
// later.
namespace {
int OpenDevice(const hw_module_t* module, const char* id, hw_device_t** device);
hw_module_methods_t nulldrv_module_methods = {.open = OpenDevice};
} // namespace
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wmissing-variable-declarations"
__attribute__((visibility("default"))) hwvulkan_module_t HAL_MODULE_INFO_SYM = {
.common =
{
.tag = HARDWARE_MODULE_TAG,
.module_api_version = HWVULKAN_MODULE_API_VERSION_0_1,
.hal_api_version = HARDWARE_HAL_API_VERSION,
.id = HWVULKAN_HARDWARE_MODULE_ID,
.name = "Null Vulkan Driver",
.author = "The Android Open Source Project",
.methods = &nulldrv_module_methods,
},
};
#pragma clang diagnostic pop
// -----------------------------------------------------------------------------
namespace {
VkResult CreateInstance(const VkInstanceCreateInfo* create_info,
VkInstance* out_instance) {
// Assume the loader provided alloc callbacks even if the app didn't.
ALOG_ASSERT(
create_info->pAllocCb,
"Missing alloc callbacks, loader or app should have provided them");
VkInstance_T* instance =
static_cast<VkInstance_T*>(create_info->pAllocCb->pfnAlloc(
create_info->pAllocCb->pUserData, sizeof(VkInstance_T),
alignof(VkInstance_T), VK_SYSTEM_ALLOC_TYPE_API_OBJECT));
if (!instance)
return VK_ERROR_OUT_OF_HOST_MEMORY;
instance->dispatch.magic = HWVULKAN_DISPATCH_MAGIC;
instance->alloc = create_info->pAllocCb;
instance->physical_device.dispatch.magic = HWVULKAN_DISPATCH_MAGIC;
*out_instance = instance;
return VK_SUCCESS;
}
int CloseDevice(struct hw_device_t* /*device*/) {
// nothing to do - opening a device doesn't allocate any resources
return 0;
}
hwvulkan_device_t nulldrv_device = {
.common =
{
.tag = HARDWARE_DEVICE_TAG,
.version = HWVULKAN_DEVICE_API_VERSION_0_1,
.module = &HAL_MODULE_INFO_SYM.common,
.close = CloseDevice,
},
.EnumerateInstanceExtensionProperties =
EnumerateInstanceExtensionProperties,
.CreateInstance = CreateInstance,
.GetInstanceProcAddr = GetInstanceProcAddr};
int OpenDevice(const hw_module_t* /*module*/,
const char* id,
hw_device_t** device) {
if (strcmp(id, HWVULKAN_DEVICE_0) == 0) {
*device = &nulldrv_device.common;
return 0;
}
return -ENOENT;
}
VkInstance_T* GetInstanceFromPhysicalDevice(
VkPhysicalDevice_T* physical_device) {
return reinterpret_cast<VkInstance_T*>(
reinterpret_cast<uintptr_t>(physical_device) -
offsetof(VkInstance_T, physical_device));
}
uint64_t AllocHandle(VkDevice device, HandleType::Enum type) {
const uint64_t kHandleMask = (UINT64_C(1) << 56) - 1;
ALOGE_IF(device->next_handle[type] == kHandleMask,
"non-dispatchable handles of type=%u are about to overflow", type);
return (UINT64_C(1) << 63) | ((uint64_t(type) & 0x7) << 56) |
(device->next_handle[type]++ & kHandleMask);
}
} // namespace
namespace null_driver {
template <typename HandleT>
struct HandleTraits {};
template <typename HandleT>
typename HandleTraits<HandleT>::PointerType GetObjectFromHandle(
const HandleT& h) {
return reinterpret_cast<typename HandleTraits<HandleT>::PointerType>(
uintptr_t(h.handle));
}
template <typename T>
typename T::HandleType GetHandleToObject(const T* obj) {
return typename T::HandleType(reinterpret_cast<uintptr_t>(obj));
}
// -----------------------------------------------------------------------------
// Global
VkResult EnumerateInstanceExtensionProperties(const char*,
uint32_t* count,
VkExtensionProperties*) {
*count = 0;
return VK_SUCCESS;
}
PFN_vkVoidFunction GetInstanceProcAddr(VkInstance, const char* name) {
PFN_vkVoidFunction proc = LookupInstanceProcAddr(name);
if (!proc && strcmp(name, "vkGetDeviceProcAddr") == 0)
proc = reinterpret_cast<PFN_vkVoidFunction>(GetDeviceProcAddr);
return proc;
}
PFN_vkVoidFunction GetDeviceProcAddr(VkDevice, const char* name) {
PFN_vkVoidFunction proc = LookupDeviceProcAddr(name);
if (proc)
return proc;
if (strcmp(name, "vkGetSwapchainGrallocUsageANDROID") == 0)
return reinterpret_cast<PFN_vkVoidFunction>(
GetSwapchainGrallocUsageANDROID);
if (strcmp(name, "vkAcquireImageANDROID") == 0)
return reinterpret_cast<PFN_vkVoidFunction>(AcquireImageANDROID);
if (strcmp(name, "vkQueueSignalReleaseImageANDROID") == 0)
return reinterpret_cast<PFN_vkVoidFunction>(
QueueSignalReleaseImageANDROID);
return nullptr;
}
// -----------------------------------------------------------------------------
// Instance
void DestroyInstance(VkInstance instance) {
instance->alloc->pfnFree(instance->alloc->pUserData, instance);
}
// -----------------------------------------------------------------------------
// PhysicalDevice
VkResult EnumeratePhysicalDevices(VkInstance instance,
uint32_t* physical_device_count,
VkPhysicalDevice* physical_devices) {
if (physical_devices && *physical_device_count >= 1)
physical_devices[0] = &instance->physical_device;
*physical_device_count = 1;
return VK_SUCCESS;
}
void GetPhysicalDeviceProperties(VkPhysicalDevice,
VkPhysicalDeviceProperties* properties) {
properties->apiVersion = VK_API_VERSION;
properties->driverVersion = VK_MAKE_VERSION(0, 0, 1);
properties->vendorId = 0;
properties->deviceId = 0;
properties->deviceType = VK_PHYSICAL_DEVICE_TYPE_OTHER;
strcpy(properties->deviceName, "Android Vulkan Null Driver");
memset(properties->pipelineCacheUUID, 0,
sizeof(properties->pipelineCacheUUID));
}
void GetPhysicalDeviceQueueFamilyProperties(
VkPhysicalDevice,
uint32_t* count,
VkQueueFamilyProperties* properties) {
if (properties) {
properties->queueFlags =
VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_DMA_BIT;
properties->queueCount = 1;
properties->timestampValidBits = 64;
}
*count = 1;
}
void GetPhysicalDeviceMemoryProperties(
VkPhysicalDevice,
VkPhysicalDeviceMemoryProperties* properties) {
properties->memoryTypeCount = 1;
properties->memoryTypes[0].propertyFlags =
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
properties->memoryTypes[0].heapIndex = 0;
properties->memoryHeapCount = 1;
properties->memoryHeaps[0].size = kMaxDeviceMemory;
properties->memoryHeaps[0].flags = VK_MEMORY_HEAP_HOST_LOCAL_BIT;
}
// -----------------------------------------------------------------------------
// Device
VkResult CreateDevice(VkPhysicalDevice physical_device,
const VkDeviceCreateInfo*,
VkDevice* out_device) {
VkInstance_T* instance = GetInstanceFromPhysicalDevice(physical_device);
VkDevice_T* device = static_cast<VkDevice_T*>(instance->alloc->pfnAlloc(
instance->alloc->pUserData, sizeof(VkDevice_T), alignof(VkDevice_T),
VK_SYSTEM_ALLOC_TYPE_API_OBJECT));
if (!device)
return VK_ERROR_OUT_OF_HOST_MEMORY;
device->dispatch.magic = HWVULKAN_DISPATCH_MAGIC;
device->instance = instance;
device->queue.dispatch.magic = HWVULKAN_DISPATCH_MAGIC;
std::fill(device->next_handle.begin(), device->next_handle.end(),
UINT64_C(0));
*out_device = device;
return VK_SUCCESS;
}
void DestroyDevice(VkDevice device) {
if (!device)
return;
const VkAllocCallbacks* alloc = device->instance->alloc;
alloc->pfnFree(alloc->pUserData, device);
}
void GetDeviceQueue(VkDevice device, uint32_t, uint32_t, VkQueue* queue) {
*queue = &device->queue;
}
// -----------------------------------------------------------------------------
// CmdBuffer
VkResult CreateCommandBuffer(VkDevice device,
const VkCmdBufferCreateInfo*,
VkCmdBuffer* out_cmdbuf) {
const VkAllocCallbacks* alloc = device->instance->alloc;
VkCmdBuffer_T* cmdbuf = static_cast<VkCmdBuffer_T*>(alloc->pfnAlloc(
alloc->pUserData, sizeof(VkCmdBuffer_T), alignof(VkCmdBuffer_T),
VK_SYSTEM_ALLOC_TYPE_API_OBJECT));
if (!cmdbuf)
return VK_ERROR_OUT_OF_HOST_MEMORY;
cmdbuf->dispatch.magic = HWVULKAN_DISPATCH_MAGIC;
*out_cmdbuf = cmdbuf;
return VK_SUCCESS;
}
void DestroyCommandBuffer(VkDevice device, VkCmdBuffer cmdbuf) {
const VkAllocCallbacks* alloc = device->instance->alloc;
alloc->pfnFree(alloc->pUserData, cmdbuf);
}
// -----------------------------------------------------------------------------
// DeviceMemory
struct DeviceMemory {
typedef VkDeviceMemory HandleType;
VkDeviceSize size;
alignas(16) uint8_t data[0];
};
template <>
struct HandleTraits<VkDeviceMemory> {
typedef DeviceMemory* PointerType;
};
VkResult AllocMemory(VkDevice device,
const VkMemoryAllocInfo* alloc_info,
VkDeviceMemory* mem_handle) {
if (SIZE_MAX - sizeof(DeviceMemory) <= alloc_info->allocationSize)
return VK_ERROR_OUT_OF_HOST_MEMORY;
const VkAllocCallbacks* alloc = device->instance->alloc;
size_t size = sizeof(DeviceMemory) + size_t(alloc_info->allocationSize);
DeviceMemory* mem = static_cast<DeviceMemory*>(
alloc->pfnAlloc(alloc->pUserData, size, alignof(DeviceMemory),
VK_SYSTEM_ALLOC_TYPE_API_OBJECT));
if (!mem)
return VK_ERROR_OUT_OF_HOST_MEMORY;
mem->size = size;
*mem_handle = GetHandleToObject(mem);
return VK_SUCCESS;
}
void FreeMemory(VkDevice device, VkDeviceMemory mem_handle) {
const VkAllocCallbacks* alloc = device->instance->alloc;
DeviceMemory* mem = GetObjectFromHandle(mem_handle);
alloc->pfnFree(alloc->pUserData, mem);
}
VkResult MapMemory(VkDevice,
VkDeviceMemory mem_handle,
VkDeviceSize offset,
VkDeviceSize,
VkMemoryMapFlags,
void** out_ptr) {
DeviceMemory* mem = GetObjectFromHandle(mem_handle);
*out_ptr = &mem->data[0] + offset;
return VK_SUCCESS;
}
// -----------------------------------------------------------------------------
// Buffer
struct Buffer {
typedef VkBuffer HandleType;
VkDeviceSize size;
};
template <>
struct HandleTraits<VkBuffer> {
typedef Buffer* PointerType;
};
VkResult CreateBuffer(VkDevice device,
const VkBufferCreateInfo* create_info,
VkBuffer* buffer_handle) {
ALOGW_IF(create_info->size > kMaxDeviceMemory,
"CreateBuffer: requested size 0x%" PRIx64
" exceeds max device memory size 0x%" PRIx64,
create_info->size, kMaxDeviceMemory);
const VkAllocCallbacks* alloc = device->instance->alloc;
Buffer* buffer = static_cast<Buffer*>(
alloc->pfnAlloc(alloc->pUserData, sizeof(Buffer), alignof(Buffer),
VK_SYSTEM_ALLOC_TYPE_API_OBJECT));
if (!buffer)
return VK_ERROR_OUT_OF_HOST_MEMORY;
buffer->size = create_info->size;
*buffer_handle = GetHandleToObject(buffer);
return VK_SUCCESS;
}
void GetBufferMemoryRequirements(VkDevice,
VkBuffer buffer_handle,
VkMemoryRequirements* requirements) {
Buffer* buffer = GetObjectFromHandle(buffer_handle);
requirements->size = buffer->size;
requirements->alignment = 16; // allow fast Neon/SSE memcpy
requirements->memoryTypeBits = 0x1;
}
void DestroyBuffer(VkDevice device, VkBuffer buffer_handle) {
const VkAllocCallbacks* alloc = device->instance->alloc;
Buffer* buffer = GetObjectFromHandle(buffer_handle);
alloc->pfnFree(alloc->pUserData, buffer);
}
// -----------------------------------------------------------------------------
// Image
struct Image {
typedef VkImage HandleType;
VkDeviceSize size;
};
template <>
struct HandleTraits<VkImage> {
typedef Image* PointerType;
};
VkResult CreateImage(VkDevice device,
const VkImageCreateInfo* create_info,
VkImage* image_handle) {
if (create_info->imageType != VK_IMAGE_TYPE_2D ||
create_info->format != VK_FORMAT_R8G8B8A8_UNORM ||
create_info->mipLevels != 1) {
ALOGE("CreateImage: not yet implemented: type=%d format=%d mips=%u",
create_info->imageType, create_info->format,
create_info->mipLevels);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
VkDeviceSize size =
VkDeviceSize(create_info->extent.width * create_info->extent.height) *
create_info->arrayLayers * create_info->samples * 4u;
ALOGW_IF(size > kMaxDeviceMemory,
"CreateImage: image size 0x%" PRIx64
" exceeds max device memory size 0x%" PRIx64,
size, kMaxDeviceMemory);
const VkAllocCallbacks* alloc = device->instance->alloc;
Image* image = static_cast<Image*>(
alloc->pfnAlloc(alloc->pUserData, sizeof(Image), alignof(Image),
VK_SYSTEM_ALLOC_TYPE_API_OBJECT));
if (!image)
return VK_ERROR_OUT_OF_HOST_MEMORY;
image->size = size;
*image_handle = GetHandleToObject(image);
return VK_SUCCESS;
}
void GetImageMemoryRequirements(VkDevice,
VkImage image_handle,
VkMemoryRequirements* requirements) {
Image* image = GetObjectFromHandle(image_handle);
requirements->size = image->size;
requirements->alignment = 16; // allow fast Neon/SSE memcpy
requirements->memoryTypeBits = 0x1;
}
void DestroyImage(VkDevice device, VkImage image_handle) {
const VkAllocCallbacks* alloc = device->instance->alloc;
Image* image = GetObjectFromHandle(image_handle);
alloc->pfnFree(alloc->pUserData, image);
}
// -----------------------------------------------------------------------------
// No-op types
VkResult CreateBufferView(VkDevice device,
const VkBufferViewCreateInfo*,
VkBufferView* view) {
*view = AllocHandle(device, HandleType::kBufferView);
return VK_SUCCESS;
}
VkResult CreateCommandPool(VkDevice device,
const VkCmdPoolCreateInfo*,
VkCmdPool* pool) {
*pool = AllocHandle(device, HandleType::kCmdPool);
return VK_SUCCESS;
}
VkResult CreateDescriptorPool(VkDevice device,
const VkDescriptorPoolCreateInfo*,
VkDescriptorPool* pool) {
*pool = AllocHandle(device, HandleType::kDescriptorPool);
return VK_SUCCESS;
}
VkResult AllocDescriptorSets(VkDevice device,
VkDescriptorPool,
VkDescriptorSetUsage,
uint32_t count,
const VkDescriptorSetLayout*,
VkDescriptorSet* sets) {
for (uint32_t i = 0; i < count; i++)
sets[i] = AllocHandle(device, HandleType::kDescriptorSet);
return VK_SUCCESS;
}
VkResult CreateDescriptorSetLayout(VkDevice device,
const VkDescriptorSetLayoutCreateInfo*,
VkDescriptorSetLayout* layout) {
*layout = AllocHandle(device, HandleType::kDescriptorSetLayout);
return VK_SUCCESS;
}
VkResult CreateEvent(VkDevice device,
const VkEventCreateInfo*,
VkEvent* event) {
*event = AllocHandle(device, HandleType::kEvent);
return VK_SUCCESS;
}
VkResult CreateFence(VkDevice device,
const VkFenceCreateInfo*,
VkFence* fence) {
*fence = AllocHandle(device, HandleType::kFence);
return VK_SUCCESS;
}
VkResult CreateFramebuffer(VkDevice device,
const VkFramebufferCreateInfo*,
VkFramebuffer* framebuffer) {
*framebuffer = AllocHandle(device, HandleType::kFramebuffer);
return VK_SUCCESS;
}
VkResult CreateImageView(VkDevice device,
const VkImageViewCreateInfo*,
VkImageView* view) {
*view = AllocHandle(device, HandleType::kImageView);
return VK_SUCCESS;
}
VkResult CreateGraphicsPipelines(VkDevice device,
VkPipelineCache,
uint32_t count,
const VkGraphicsPipelineCreateInfo*,
VkPipeline* pipelines) {
for (uint32_t i = 0; i < count; i++)
pipelines[i] = AllocHandle(device, HandleType::kPipeline);
return VK_SUCCESS;
}
VkResult CreateComputePipelines(VkDevice device,
VkPipelineCache,
uint32_t count,
const VkComputePipelineCreateInfo*,
VkPipeline* pipelines) {
for (uint32_t i = 0; i < count; i++)
pipelines[i] = AllocHandle(device, HandleType::kPipeline);
return VK_SUCCESS;
}
VkResult CreatePipelineCache(VkDevice device,
const VkPipelineCacheCreateInfo*,
VkPipelineCache* cache) {
*cache = AllocHandle(device, HandleType::kPipelineCache);
return VK_SUCCESS;
}
VkResult CreatePipelineLayout(VkDevice device,
const VkPipelineLayoutCreateInfo*,
VkPipelineLayout* layout) {
*layout = AllocHandle(device, HandleType::kPipelineLayout);
return VK_SUCCESS;
}
VkResult CreateQueryPool(VkDevice device,
const VkQueryPoolCreateInfo*,
VkQueryPool* pool) {
*pool = AllocHandle(device, HandleType::kQueryPool);
return VK_SUCCESS;
}
VkResult CreateRenderPass(VkDevice device,
const VkRenderPassCreateInfo*,
VkRenderPass* renderpass) {
*renderpass = AllocHandle(device, HandleType::kRenderPass);
return VK_SUCCESS;
}
VkResult CreateSampler(VkDevice device,
const VkSamplerCreateInfo*,
VkSampler* sampler) {
*sampler = AllocHandle(device, HandleType::kSampler);
return VK_SUCCESS;
}
VkResult CreateSemaphore(VkDevice device,
const VkSemaphoreCreateInfo*,
VkSemaphore* semaphore) {
*semaphore = AllocHandle(device, HandleType::kSemaphore);
return VK_SUCCESS;
}
VkResult CreateShader(VkDevice device,
const VkShaderCreateInfo*,
VkShader* shader) {
*shader = AllocHandle(device, HandleType::kShader);
return VK_SUCCESS;
}
VkResult CreateShaderModule(VkDevice device,
const VkShaderModuleCreateInfo*,
VkShaderModule* module) {
*module = AllocHandle(device, HandleType::kShaderModule);
return VK_SUCCESS;
}
VkResult GetSwapchainGrallocUsageANDROID(VkDevice,
VkFormat,
VkImageUsageFlags,
int* grallocUsage) {
// The null driver never reads or writes the gralloc buffer
*grallocUsage = 0;
return VK_SUCCESS;
}
VkResult AcquireImageANDROID(VkDevice, VkImage, int fence, VkSemaphore) {
close(fence);
return VK_SUCCESS;
}
VkResult QueueSignalReleaseImageANDROID(VkQueue, VkImage, int* fence) {
*fence = -1;
return VK_SUCCESS;
}
// -----------------------------------------------------------------------------
// No-op entrypoints
// clang-format off
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-parameter"
void GetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures* pFeatures) {
ALOGV("TODO: vk%s", __FUNCTION__);
}
void GetPhysicalDeviceFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkFormatProperties* pFormatProperties) {
ALOGV("TODO: vk%s", __FUNCTION__);
}
void GetPhysicalDeviceImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkImageTiling tiling, VkImageUsageFlags usage, VkImageCreateFlags flags, VkImageFormatProperties* pImageFormatProperties) {
ALOGV("TODO: vk%s", __FUNCTION__);
}
VkResult EnumerateInstanceLayerProperties(uint32_t* pCount, VkLayerProperties* pProperties) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
VkResult EnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice, uint32_t* pCount, VkLayerProperties* pProperties) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
VkResult EnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice, const char* pLayerName, uint32_t* pCount, VkExtensionProperties* pProperties) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
VkResult QueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo* pSubmitInfo, VkFence fence) {
return VK_SUCCESS;
}
VkResult QueueWaitIdle(VkQueue queue) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
VkResult DeviceWaitIdle(VkDevice device) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
void UnmapMemory(VkDevice device, VkDeviceMemory mem) {
}
VkResult FlushMappedMemoryRanges(VkDevice device, uint32_t memRangeCount, const VkMappedMemoryRange* pMemRanges) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
VkResult InvalidateMappedMemoryRanges(VkDevice device, uint32_t memRangeCount, const VkMappedMemoryRange* pMemRanges) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
void GetDeviceMemoryCommitment(VkDevice device, VkDeviceMemory memory, VkDeviceSize* pCommittedMemoryInBytes) {
ALOGV("TODO: vk%s", __FUNCTION__);
}
VkResult BindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory mem, VkDeviceSize memOffset) {
return VK_SUCCESS;
}
VkResult BindImageMemory(VkDevice device, VkImage image, VkDeviceMemory mem, VkDeviceSize memOffset) {
return VK_SUCCESS;
}
void GetImageSparseMemoryRequirements(VkDevice device, VkImage image, uint32_t* pNumRequirements, VkSparseImageMemoryRequirements* pSparseMemoryRequirements) {
ALOGV("TODO: vk%s", __FUNCTION__);
}
void GetPhysicalDeviceSparseImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, uint32_t samples, VkImageUsageFlags usage, VkImageTiling tiling, uint32_t* pNumProperties, VkSparseImageFormatProperties* pProperties) {
ALOGV("TODO: vk%s", __FUNCTION__);
}
VkResult QueueBindSparseBufferMemory(VkQueue queue, VkBuffer buffer, uint32_t numBindings, const VkSparseMemoryBindInfo* pBindInfo) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
VkResult QueueBindSparseImageOpaqueMemory(VkQueue queue, VkImage image, uint32_t numBindings, const VkSparseMemoryBindInfo* pBindInfo) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
VkResult QueueBindSparseImageMemory(VkQueue queue, VkImage image, uint32_t numBindings, const VkSparseImageMemoryBindInfo* pBindInfo) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
void DestroyFence(VkDevice device, VkFence fence) {
}
VkResult ResetFences(VkDevice device, uint32_t fenceCount, const VkFence* pFences) {
return VK_SUCCESS;
}
VkResult GetFenceStatus(VkDevice device, VkFence fence) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
VkResult WaitForFences(VkDevice device, uint32_t fenceCount, const VkFence* pFences, VkBool32 waitAll, uint64_t timeout) {
return VK_SUCCESS;
}
void DestroySemaphore(VkDevice device, VkSemaphore semaphore) {
}
VkResult QueueSignalSemaphore(VkQueue queue, VkSemaphore semaphore) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
VkResult QueueWaitSemaphore(VkQueue queue, VkSemaphore semaphore) {
return VK_SUCCESS;
}
void DestroyEvent(VkDevice device, VkEvent event) {
}
VkResult GetEventStatus(VkDevice device, VkEvent event) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
VkResult SetEvent(VkDevice device, VkEvent event) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
VkResult ResetEvent(VkDevice device, VkEvent event) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
void DestroyQueryPool(VkDevice device, VkQueryPool queryPool) {
}
VkResult GetQueryPoolResults(VkDevice device, VkQueryPool queryPool, uint32_t startQuery, uint32_t queryCount, size_t* pDataSize, void* pData, VkQueryResultFlags flags) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
void DestroyBufferView(VkDevice device, VkBufferView bufferView) {
}
void GetImageSubresourceLayout(VkDevice device, VkImage image, const VkImageSubresource* pSubresource, VkSubresourceLayout* pLayout) {
ALOGV("TODO: vk%s", __FUNCTION__);
}
void DestroyImageView(VkDevice device, VkImageView imageView) {
}
void DestroyShaderModule(VkDevice device, VkShaderModule shaderModule) {
}
void DestroyShader(VkDevice device, VkShader shader) {
}
void DestroyPipelineCache(VkDevice device, VkPipelineCache pipelineCache) {
}
size_t GetPipelineCacheSize(VkDevice device, VkPipelineCache pipelineCache) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
VkResult GetPipelineCacheData(VkDevice device, VkPipelineCache pipelineCache, size_t dataSize, void* pData) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
VkResult MergePipelineCaches(VkDevice device, VkPipelineCache destCache, uint32_t srcCacheCount, const VkPipelineCache* pSrcCaches) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
void DestroyPipeline(VkDevice device, VkPipeline pipeline) {
}
void DestroyPipelineLayout(VkDevice device, VkPipelineLayout pipelineLayout) {
}
void DestroySampler(VkDevice device, VkSampler sampler) {
}
void DestroyDescriptorSetLayout(VkDevice device, VkDescriptorSetLayout descriptorSetLayout) {
}
void DestroyDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool) {
}
VkResult ResetDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
void UpdateDescriptorSets(VkDevice device, uint32_t writeCount, const VkWriteDescriptorSet* pDescriptorWrites, uint32_t copyCount, const VkCopyDescriptorSet* pDescriptorCopies) {
ALOGV("TODO: vk%s", __FUNCTION__);
}
VkResult FreeDescriptorSets(VkDevice device, VkDescriptorPool descriptorPool, uint32_t count, const VkDescriptorSet* pDescriptorSets) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
void DestroyFramebuffer(VkDevice device, VkFramebuffer framebuffer) {
}
void DestroyRenderPass(VkDevice device, VkRenderPass renderPass) {
}
void GetRenderAreaGranularity(VkDevice device, VkRenderPass renderPass, VkExtent2D* pGranularity) {
ALOGV("TODO: vk%s", __FUNCTION__);
}
void DestroyCommandPool(VkDevice device, VkCmdPool cmdPool) {
}
VkResult ResetCommandPool(VkDevice device, VkCmdPool cmdPool, VkCmdPoolResetFlags flags) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
VkResult BeginCommandBuffer(VkCmdBuffer cmdBuffer, const VkCmdBufferBeginInfo* pBeginInfo) {
return VK_SUCCESS;
}
VkResult EndCommandBuffer(VkCmdBuffer cmdBuffer) {
return VK_SUCCESS;
}
VkResult ResetCommandBuffer(VkCmdBuffer cmdBuffer, VkCmdBufferResetFlags flags) {
ALOGV("TODO: vk%s", __FUNCTION__);
return VK_SUCCESS;
}
void CmdBindPipeline(VkCmdBuffer cmdBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline pipeline) {
}
void CmdSetViewport(VkCmdBuffer cmdBuffer, uint32_t viewportCount, const VkViewport* pViewports) {
}
void CmdSetScissor(VkCmdBuffer cmdBuffer, uint32_t scissorCount, const VkRect2D* pScissors) {
}
void CmdSetLineWidth(VkCmdBuffer cmdBuffer, float lineWidth) {
}
void CmdSetDepthBias(VkCmdBuffer cmdBuffer, float depthBias, float depthBiasClamp, float slopeScaledDepthBias) {
}
void CmdSetBlendConstants(VkCmdBuffer cmdBuffer, const float blendConst[4]) {
}
void CmdSetDepthBounds(VkCmdBuffer cmdBuffer, float minDepthBounds, float maxDepthBounds) {
}
void CmdSetStencilCompareMask(VkCmdBuffer cmdBuffer, VkStencilFaceFlags faceMask, uint32_t stencilCompareMask) {
}
void CmdSetStencilWriteMask(VkCmdBuffer cmdBuffer, VkStencilFaceFlags faceMask, uint32_t stencilWriteMask) {
}
void CmdSetStencilReference(VkCmdBuffer cmdBuffer, VkStencilFaceFlags faceMask, uint32_t stencilReference) {
}
void CmdBindDescriptorSets(VkCmdBuffer cmdBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout layout, uint32_t firstSet, uint32_t setCount, const VkDescriptorSet* pDescriptorSets, uint32_t dynamicOffsetCount, const uint32_t* pDynamicOffsets) {
}
void CmdBindIndexBuffer(VkCmdBuffer cmdBuffer, VkBuffer buffer, VkDeviceSize offset, VkIndexType indexType) {
}
void CmdBindVertexBuffers(VkCmdBuffer cmdBuffer, uint32_t startBinding, uint32_t bindingCount, const VkBuffer* pBuffers, const VkDeviceSize* pOffsets) {
}
void CmdDraw(VkCmdBuffer cmdBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) {
}
void CmdDrawIndexed(VkCmdBuffer cmdBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) {
}
void CmdDrawIndirect(VkCmdBuffer cmdBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t count, uint32_t stride) {
}
void CmdDrawIndexedIndirect(VkCmdBuffer cmdBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t count, uint32_t stride) {
}
void CmdDispatch(VkCmdBuffer cmdBuffer, uint32_t x, uint32_t y, uint32_t z) {
}
void CmdDispatchIndirect(VkCmdBuffer cmdBuffer, VkBuffer buffer, VkDeviceSize offset) {
}
void CmdCopyBuffer(VkCmdBuffer cmdBuffer, VkBuffer srcBuffer, VkBuffer destBuffer, uint32_t regionCount, const VkBufferCopy* pRegions) {
}
void CmdCopyImage(VkCmdBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkImageCopy* pRegions) {
}
void CmdBlitImage(VkCmdBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkImageBlit* pRegions, VkTexFilter filter) {
}
void CmdCopyBufferToImage(VkCmdBuffer cmdBuffer, VkBuffer srcBuffer, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkBufferImageCopy* pRegions) {
}
void CmdCopyImageToBuffer(VkCmdBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkBuffer destBuffer, uint32_t regionCount, const VkBufferImageCopy* pRegions) {
}
void CmdUpdateBuffer(VkCmdBuffer cmdBuffer, VkBuffer destBuffer, VkDeviceSize destOffset, VkDeviceSize dataSize, const uint32_t* pData) {
}
void CmdFillBuffer(VkCmdBuffer cmdBuffer, VkBuffer destBuffer, VkDeviceSize destOffset, VkDeviceSize fillSize, uint32_t data) {
}
void CmdClearColorImage(VkCmdBuffer cmdBuffer, VkImage image, VkImageLayout imageLayout, const VkClearColorValue* pColor, uint32_t rangeCount, const VkImageSubresourceRange* pRanges) {
}
void CmdClearDepthStencilImage(VkCmdBuffer cmdBuffer, VkImage image, VkImageLayout imageLayout, const VkClearDepthStencilValue* pDepthStencil, uint32_t rangeCount, const VkImageSubresourceRange* pRanges) {
}
void CmdClearAttachments(VkCmdBuffer cmdBuffer, uint32_t attachmentCount, const VkClearAttachment* pAttachments, uint32_t rectCount, const VkClearRect* pRects) {
}
void CmdResolveImage(VkCmdBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkImageResolve* pRegions) {
}
void CmdSetEvent(VkCmdBuffer cmdBuffer, VkEvent event, VkPipelineStageFlags stageMask) {
}
void CmdResetEvent(VkCmdBuffer cmdBuffer, VkEvent event, VkPipelineStageFlags stageMask) {
}
void CmdWaitEvents(VkCmdBuffer cmdBuffer, uint32_t eventCount, const VkEvent* pEvents, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags destStageMask, uint32_t memBarrierCount, const void* const* ppMemBarriers) {
}
void CmdPipelineBarrier(VkCmdBuffer cmdBuffer, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags destStageMask, VkBool32 byRegion, uint32_t memBarrierCount, const void* const* ppMemBarriers) {
}
void CmdBeginQuery(VkCmdBuffer cmdBuffer, VkQueryPool queryPool, uint32_t slot, VkQueryControlFlags flags) {
}
void CmdEndQuery(VkCmdBuffer cmdBuffer, VkQueryPool queryPool, uint32_t slot) {
}
void CmdResetQueryPool(VkCmdBuffer cmdBuffer, VkQueryPool queryPool, uint32_t startQuery, uint32_t queryCount) {
}
void CmdWriteTimestamp(VkCmdBuffer cmdBuffer, VkTimestampType timestampType, VkBuffer destBuffer, VkDeviceSize destOffset) {
}
void CmdCopyQueryPoolResults(VkCmdBuffer cmdBuffer, VkQueryPool queryPool, uint32_t startQuery, uint32_t queryCount, VkBuffer destBuffer, VkDeviceSize destOffset, VkDeviceSize destStride, VkQueryResultFlags flags) {
}
void CmdPushConstants(VkCmdBuffer cmdBuffer, VkPipelineLayout layout, VkShaderStageFlags stageFlags, uint32_t start, uint32_t length, const void* values) {
}
void CmdBeginRenderPass(VkCmdBuffer cmdBuffer, const VkRenderPassBeginInfo* pRenderPassBegin, VkRenderPassContents contents) {
}
void CmdNextSubpass(VkCmdBuffer cmdBuffer, VkRenderPassContents contents) {
}
void CmdEndRenderPass(VkCmdBuffer cmdBuffer) {
}
void CmdExecuteCommands(VkCmdBuffer cmdBuffer, uint32_t cmdBuffersCount, const VkCmdBuffer* pCmdBuffers) {
}
#pragma clang diagnostic pop
// clang-format on
} // namespace null_driver