blob: 802f3980faf7415887c903824a1883006d417747 [file] [log] [blame]
The Android Open Source Projecte09fd9e2008-12-17 18:05:43 -08001/* San Angeles Observation OpenGL ES version example
2 * Copyright 2004-2005 Jetro Lauha
3 * All rights reserved.
4 * Web: http://iki.fi/jetro/
5 *
6 * This source is free software; you can redistribute it and/or
7 * modify it under the terms of EITHER:
8 * (1) The GNU Lesser General Public License as published by the Free
9 * Software Foundation; either version 2.1 of the License, or (at
10 * your option) any later version. The text of the GNU Lesser
11 * General Public License is included with this source in the
12 * file LICENSE-LGPL.txt.
13 * (2) The BSD-style license that is included with this source in
14 * the file LICENSE-BSD.txt.
15 *
16 * This source is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
19 * LICENSE-LGPL.txt and LICENSE-BSD.txt for more details.
20 *
21 * $Id: demo.c,v 1.10 2005/02/08 20:54:39 tonic Exp $
22 * $Revision: 1.10 $
23 */
24
25#include <stdlib.h>
26#include <math.h>
27#include <float.h>
28#include <assert.h>
29
30#include <GLES/gl.h>
31
32#include "app.h"
33#include "shapes.h"
34#include "cams.h"
35
36
37// Total run length is 20 * camera track base unit length (see cams.h).
38#define RUN_LENGTH (20 * CAMTRACK_LEN)
39#undef PI
40#define PI 3.1415926535897932f
41#define RANDOM_UINT_MAX 65535
42
43
44static unsigned long sRandomSeed = 0;
45
46static void seedRandom(unsigned long seed)
47{
48 sRandomSeed = seed;
49}
50
51static unsigned long randomUInt()
52{
53 sRandomSeed = sRandomSeed * 0x343fd + 0x269ec3;
54 return sRandomSeed >> 16;
55}
56
57
58// Capped conversion from float to fixed.
59static long floatToFixed(float value)
60{
61 if (value < -32768) value = -32768;
62 if (value > 32767) value = 32767;
63 return (long)(value * 65536);
64}
65
66#define FIXED(value) floatToFixed(value)
67
68
69// Definition of one GL object in this demo.
70typedef struct {
71 /* Vertex array and color array are enabled for all objects, so their
72 * pointers must always be valid and non-NULL. Normal array is not
73 * used by the ground plane, so when its pointer is NULL then normal
74 * array usage is disabled.
75 *
76 * Vertex array is supposed to use GL_FIXED datatype and stride 0
77 * (i.e. tightly packed array). Color array is supposed to have 4
78 * components per color with GL_UNSIGNED_BYTE datatype and stride 0.
79 * Normal array is supposed to use GL_FIXED datatype and stride 0.
80 */
81 GLfixed *vertexArray;
82 GLubyte *colorArray;
83 GLfixed *normalArray;
84 GLint vertexComponents;
85 GLsizei count;
86} GLOBJECT;
87
88
89static long sStartTick = 0;
90static long sTick = 0;
91
92static int sCurrentCamTrack = 0;
93static long sCurrentCamTrackStartTick = 0;
94static long sNextCamTrackStartTick = 0x7fffffff;
95
96static GLOBJECT *sSuperShapeObjects[SUPERSHAPE_COUNT] = { NULL };
97static GLOBJECT *sGroundPlane = NULL;
98
99
100typedef struct {
101 float x, y, z;
102} VECTOR3;
103
104
105static void freeGLObject(GLOBJECT *object)
106{
107 if (object == NULL)
108 return;
109 free(object->normalArray);
110 free(object->colorArray);
111 free(object->vertexArray);
112 free(object);
113}
114
115
116static GLOBJECT * newGLObject(long vertices, int vertexComponents,
117 int useNormalArray)
118{
119 GLOBJECT *result;
120 result = (GLOBJECT *)malloc(sizeof(GLOBJECT));
121 if (result == NULL)
122 return NULL;
123 result->count = vertices;
124 result->vertexComponents = vertexComponents;
125 result->vertexArray = (GLfixed *)malloc(vertices * vertexComponents *
126 sizeof(GLfixed));
127 result->colorArray = (GLubyte *)malloc(vertices * 4 * sizeof(GLubyte));
128 if (useNormalArray)
129 {
130 result->normalArray = (GLfixed *)malloc(vertices * 3 *
131 sizeof(GLfixed));
132 }
133 else
134 result->normalArray = NULL;
135 if (result->vertexArray == NULL ||
136 result->colorArray == NULL ||
137 (useNormalArray && result->normalArray == NULL))
138 {
139 freeGLObject(result);
140 return NULL;
141 }
142 return result;
143}
144
145
146static void drawGLObject(GLOBJECT *object)
147{
148 assert(object != NULL);
149
150 glVertexPointer(object->vertexComponents, GL_FIXED,
151 0, object->vertexArray);
152 glColorPointer(4, GL_UNSIGNED_BYTE, 0, object->colorArray);
153
154 // Already done in initialization:
155 //glEnableClientState(GL_VERTEX_ARRAY);
156 //glEnableClientState(GL_COLOR_ARRAY);
157
158 if (object->normalArray)
159 {
160 glNormalPointer(GL_FIXED, 0, object->normalArray);
161 glEnableClientState(GL_NORMAL_ARRAY);
162 }
163 else
164 glDisableClientState(GL_NORMAL_ARRAY);
165 glDrawArrays(GL_TRIANGLES, 0, object->count);
166}
167
168
169static void vector3Sub(VECTOR3 *dest, VECTOR3 *v1, VECTOR3 *v2)
170{
171 dest->x = v1->x - v2->x;
172 dest->y = v1->y - v2->y;
173 dest->z = v1->z - v2->z;
174}
175
176
177static void superShapeMap(VECTOR3 *point, float r1, float r2, float t, float p)
178{
179 // sphere-mapping of supershape parameters
180 point->x = (float)(cos(t) * cos(p) / r1 / r2);
181 point->y = (float)(sin(t) * cos(p) / r1 / r2);
182 point->z = (float)(sin(p) / r2);
183}
184
185
186static float ssFunc(const float t, const float *p)
187{
188 return (float)(pow(pow(fabs(cos(p[0] * t / 4)) / p[1], p[4]) +
189 pow(fabs(sin(p[0] * t / 4)) / p[2], p[5]), 1 / p[3]));
190}
191
192
193// Creates and returns a supershape object.
194// Based on Paul Bourke's POV-Ray implementation.
195// http://astronomy.swin.edu.au/~pbourke/povray/supershape/
196static GLOBJECT * createSuperShape(const float *params)
197{
198 const int resol1 = (int)params[SUPERSHAPE_PARAMS - 3];
199 const int resol2 = (int)params[SUPERSHAPE_PARAMS - 2];
200 // latitude 0 to pi/2 for no mirrored bottom
201 // (latitudeBegin==0 for -pi/2 to pi/2 originally)
202 const int latitudeBegin = resol2 / 4;
203 const int latitudeEnd = resol2 / 2; // non-inclusive
204 const int longitudeCount = resol1;
205 const int latitudeCount = latitudeEnd - latitudeBegin;
206 const long triangleCount = longitudeCount * latitudeCount * 2;
207 const long vertices = triangleCount * 3;
208 GLOBJECT *result;
209 float baseColor[3];
210 int a, longitude, latitude;
211 long currentVertex, currentQuad;
212
213 result = newGLObject(vertices, 3, 1);
214 if (result == NULL)
215 return NULL;
216
217 for (a = 0; a < 3; ++a)
218 baseColor[a] = ((randomUInt() % 155) + 100) / 255.f;
219
220 currentQuad = 0;
221 currentVertex = 0;
222
223 // longitude -pi to pi
224 for (longitude = 0; longitude < longitudeCount; ++longitude)
225 {
226
227 // latitude 0 to pi/2
228 for (latitude = latitudeBegin; latitude < latitudeEnd; ++latitude)
229 {
230 float t1 = -PI + longitude * 2 * PI / resol1;
231 float t2 = -PI + (longitude + 1) * 2 * PI / resol1;
232 float p1 = -PI / 2 + latitude * 2 * PI / resol2;
233 float p2 = -PI / 2 + (latitude + 1) * 2 * PI / resol2;
234 float r0, r1, r2, r3;
235
236 r0 = ssFunc(t1, params);
237 r1 = ssFunc(p1, &params[6]);
238 r2 = ssFunc(t2, params);
239 r3 = ssFunc(p2, &params[6]);
240
241 if (r0 != 0 && r1 != 0 && r2 != 0 && r3 != 0)
242 {
243 VECTOR3 pa, pb, pc, pd;
244 VECTOR3 v1, v2, n;
245 float ca;
246 int i;
247 //float lenSq, invLenSq;
248
249 superShapeMap(&pa, r0, r1, t1, p1);
250 superShapeMap(&pb, r2, r1, t2, p1);
251 superShapeMap(&pc, r2, r3, t2, p2);
252 superShapeMap(&pd, r0, r3, t1, p2);
253
254 // kludge to set lower edge of the object to fixed level
255 if (latitude == latitudeBegin + 1)
256 pa.z = pb.z = 0;
257
258 vector3Sub(&v1, &pb, &pa);
259 vector3Sub(&v2, &pd, &pa);
260
261 // Calculate normal with cross product.
262 /* i j k i j
263 * v1.x v1.y v1.z | v1.x v1.y
264 * v2.x v2.y v2.z | v2.x v2.y
265 */
266
267 n.x = v1.y * v2.z - v1.z * v2.y;
268 n.y = v1.z * v2.x - v1.x * v2.z;
269 n.z = v1.x * v2.y - v1.y * v2.x;
270
271 /* Pre-normalization of the normals is disabled here because
272 * they will be normalized anyway later due to automatic
273 * normalization (GL_NORMALIZE). It is enabled because the
274 * objects are scaled with glScale.
275 */
276 /*
277 lenSq = n.x * n.x + n.y * n.y + n.z * n.z;
278 invLenSq = (float)(1 / sqrt(lenSq));
279 n.x *= invLenSq;
280 n.y *= invLenSq;
281 n.z *= invLenSq;
282 */
283
284 ca = pa.z + 0.5f;
285
286 for (i = currentVertex * 3;
287 i < (currentVertex + 6) * 3;
288 i += 3)
289 {
290 result->normalArray[i] = FIXED(n.x);
291 result->normalArray[i + 1] = FIXED(n.y);
292 result->normalArray[i + 2] = FIXED(n.z);
293 }
294 for (i = currentVertex * 4;
295 i < (currentVertex + 6) * 4;
296 i += 4)
297 {
298 int a, color[3];
299 for (a = 0; a < 3; ++a)
300 {
301 color[a] = (int)(ca * baseColor[a] * 255);
302 if (color[a] > 255) color[a] = 255;
303 }
304 result->colorArray[i] = (GLubyte)color[0];
305 result->colorArray[i + 1] = (GLubyte)color[1];
306 result->colorArray[i + 2] = (GLubyte)color[2];
307 result->colorArray[i + 3] = 0;
308 }
309 result->vertexArray[currentVertex * 3] = FIXED(pa.x);
310 result->vertexArray[currentVertex * 3 + 1] = FIXED(pa.y);
311 result->vertexArray[currentVertex * 3 + 2] = FIXED(pa.z);
312 ++currentVertex;
313 result->vertexArray[currentVertex * 3] = FIXED(pb.x);
314 result->vertexArray[currentVertex * 3 + 1] = FIXED(pb.y);
315 result->vertexArray[currentVertex * 3 + 2] = FIXED(pb.z);
316 ++currentVertex;
317 result->vertexArray[currentVertex * 3] = FIXED(pd.x);
318 result->vertexArray[currentVertex * 3 + 1] = FIXED(pd.y);
319 result->vertexArray[currentVertex * 3 + 2] = FIXED(pd.z);
320 ++currentVertex;
321 result->vertexArray[currentVertex * 3] = FIXED(pb.x);
322 result->vertexArray[currentVertex * 3 + 1] = FIXED(pb.y);
323 result->vertexArray[currentVertex * 3 + 2] = FIXED(pb.z);
324 ++currentVertex;
325 result->vertexArray[currentVertex * 3] = FIXED(pc.x);
326 result->vertexArray[currentVertex * 3 + 1] = FIXED(pc.y);
327 result->vertexArray[currentVertex * 3 + 2] = FIXED(pc.z);
328 ++currentVertex;
329 result->vertexArray[currentVertex * 3] = FIXED(pd.x);
330 result->vertexArray[currentVertex * 3 + 1] = FIXED(pd.y);
331 result->vertexArray[currentVertex * 3 + 2] = FIXED(pd.z);
332 ++currentVertex;
333 } // r0 && r1 && r2 && r3
334 ++currentQuad;
335 } // latitude
336 } // longitude
337
338 // Set number of vertices in object to the actual amount created.
339 result->count = currentVertex;
340
341 return result;
342}
343
344
345static GLOBJECT * createGroundPlane()
346{
347 const int scale = 4;
348 const int yBegin = -15, yEnd = 15; // ends are non-inclusive
349 const int xBegin = -15, xEnd = 15;
350 const long triangleCount = (yEnd - yBegin) * (xEnd - xBegin) * 2;
351 const long vertices = triangleCount * 3;
352 GLOBJECT *result;
353 int x, y;
354 long currentVertex, currentQuad;
355
356 result = newGLObject(vertices, 2, 0);
357 if (result == NULL)
358 return NULL;
359
360 currentQuad = 0;
361 currentVertex = 0;
362
363 for (y = yBegin; y < yEnd; ++y)
364 {
365 for (x = xBegin; x < xEnd; ++x)
366 {
367 GLubyte color;
368 int i, a;
369 color = (GLubyte)((randomUInt() & 0x5f) + 81); // 101 1111
370 for (i = currentVertex * 4; i < (currentVertex + 6) * 4; i += 4)
371 {
372 result->colorArray[i] = color;
373 result->colorArray[i + 1] = color;
374 result->colorArray[i + 2] = color;
375 result->colorArray[i + 3] = 0;
376 }
377
378 // Axis bits for quad triangles:
379 // x: 011100 (0x1c), y: 110001 (0x31) (clockwise)
380 // x: 001110 (0x0e), y: 100011 (0x23) (counter-clockwise)
381 for (a = 0; a < 6; ++a)
382 {
383 const int xm = x + ((0x1c >> a) & 1);
384 const int ym = y + ((0x31 >> a) & 1);
385 const float m = (float)(cos(xm * 2) * sin(ym * 4) * 0.75f);
386 result->vertexArray[currentVertex * 2] =
387 FIXED(xm * scale + m);
388 result->vertexArray[currentVertex * 2 + 1] =
389 FIXED(ym * scale + m);
390 ++currentVertex;
391 }
392 ++currentQuad;
393 }
394 }
395 return result;
396}
397
398
399static void drawGroundPlane()
400{
401 glDisable(GL_CULL_FACE);
402 glDisable(GL_DEPTH_TEST);
403 glEnable(GL_BLEND);
404 glBlendFunc(GL_ZERO, GL_SRC_COLOR);
405 glDisable(GL_LIGHTING);
406
407 drawGLObject(sGroundPlane);
408
409 glEnable(GL_LIGHTING);
410 glDisable(GL_BLEND);
411 glEnable(GL_DEPTH_TEST);
412}
413
414
415static void drawFadeQuad()
416{
417 static const GLfixed quadVertices[] = {
418 -0x10000, -0x10000,
419 0x10000, -0x10000,
420 -0x10000, 0x10000,
421 0x10000, -0x10000,
422 0x10000, 0x10000,
423 -0x10000, 0x10000
424 };
425
426 const int beginFade = sTick - sCurrentCamTrackStartTick;
427 const int endFade = sNextCamTrackStartTick - sTick;
428 const int minFade = beginFade < endFade ? beginFade : endFade;
429
430 if (minFade < 1024)
431 {
432 const GLfixed fadeColor = minFade << 6;
433 glColor4x(fadeColor, fadeColor, fadeColor, 0);
434
435 glDisable(GL_DEPTH_TEST);
436 glEnable(GL_BLEND);
437 glBlendFunc(GL_ZERO, GL_SRC_COLOR);
438 glDisable(GL_LIGHTING);
439
440 glMatrixMode(GL_MODELVIEW);
441 glLoadIdentity();
442
443 glMatrixMode(GL_PROJECTION);
444 glLoadIdentity();
445
446 glDisableClientState(GL_COLOR_ARRAY);
447 glDisableClientState(GL_NORMAL_ARRAY);
448 glVertexPointer(2, GL_FIXED, 0, quadVertices);
449 glDrawArrays(GL_TRIANGLES, 0, 6);
450
451 glEnableClientState(GL_COLOR_ARRAY);
452
453 glMatrixMode(GL_MODELVIEW);
454
455 glEnable(GL_LIGHTING);
456 glDisable(GL_BLEND);
457 glEnable(GL_DEPTH_TEST);
458 }
459}
460
461
462// Called from the app framework.
463void appInit()
464{
465 int a;
466
467 glEnable(GL_NORMALIZE);
468 glEnable(GL_DEPTH_TEST);
469 glDisable(GL_CULL_FACE);
470 glShadeModel(GL_FLAT);
471
472 glEnable(GL_LIGHTING);
473 glEnable(GL_LIGHT0);
474 glEnable(GL_LIGHT1);
475 glEnable(GL_LIGHT2);
476
477 glEnableClientState(GL_VERTEX_ARRAY);
478 glEnableClientState(GL_COLOR_ARRAY);
479
480 seedRandom(15);
481
482 for (a = 0; a < SUPERSHAPE_COUNT; ++a)
483 {
484 sSuperShapeObjects[a] = createSuperShape(sSuperShapeParams[a]);
485 assert(sSuperShapeObjects[a] != NULL);
486 }
487 sGroundPlane = createGroundPlane();
488 assert(sGroundPlane != NULL);
489}
490
491
492// Called from the app framework.
493void appDeinit()
494{
495 int a;
496 for (a = 0; a < SUPERSHAPE_COUNT; ++a)
497 freeGLObject(sSuperShapeObjects[a]);
498 freeGLObject(sGroundPlane);
499}
500
501
502static void gluPerspective(GLfloat fovy, GLfloat aspect,
503 GLfloat zNear, GLfloat zFar)
504{
505 GLfloat xmin, xmax, ymin, ymax;
506
507 ymax = zNear * (GLfloat)tan(fovy * PI / 360);
508 ymin = -ymax;
509 xmin = ymin * aspect;
510 xmax = ymax * aspect;
511
512 glFrustumx((GLfixed)(xmin * 65536), (GLfixed)(xmax * 65536),
513 (GLfixed)(ymin * 65536), (GLfixed)(ymax * 65536),
514 (GLfixed)(zNear * 65536), (GLfixed)(zFar * 65536));
515}
516
517
518static void prepareFrame(int width, int height)
519{
520 glViewport(0, 0, width, height);
521
522 glClearColorx((GLfixed)(0.1f * 65536),
523 (GLfixed)(0.2f * 65536),
524 (GLfixed)(0.3f * 65536), 0x10000);
525 glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
526
527 glMatrixMode(GL_PROJECTION);
528 glLoadIdentity();
529 gluPerspective(45, (float)width / height, 0.5f, 150);
530
531 glMatrixMode(GL_MODELVIEW);
532
533 glLoadIdentity();
534}
535
536
537static void configureLightAndMaterial()
538{
539 static GLfixed light0Position[] = { -0x40000, 0x10000, 0x10000, 0 };
540 static GLfixed light0Diffuse[] = { 0x10000, 0x6666, 0, 0x10000 };
541 static GLfixed light1Position[] = { 0x10000, -0x20000, -0x10000, 0 };
542 static GLfixed light1Diffuse[] = { 0x11eb, 0x23d7, 0x5999, 0x10000 };
543 static GLfixed light2Position[] = { -0x10000, 0, -0x40000, 0 };
544 static GLfixed light2Diffuse[] = { 0x11eb, 0x2b85, 0x23d7, 0x10000 };
545 static GLfixed materialSpecular[] = { 0x10000, 0x10000, 0x10000, 0x10000 };
546
547 glLightxv(GL_LIGHT0, GL_POSITION, light0Position);
548 glLightxv(GL_LIGHT0, GL_DIFFUSE, light0Diffuse);
549 glLightxv(GL_LIGHT1, GL_POSITION, light1Position);
550 glLightxv(GL_LIGHT1, GL_DIFFUSE, light1Diffuse);
551 glLightxv(GL_LIGHT2, GL_POSITION, light2Position);
552 glLightxv(GL_LIGHT2, GL_DIFFUSE, light2Diffuse);
553 glMaterialxv(GL_FRONT_AND_BACK, GL_SPECULAR, materialSpecular);
554
555 glMaterialx(GL_FRONT_AND_BACK, GL_SHININESS, 60 << 16);
556 glEnable(GL_COLOR_MATERIAL);
557}
558
559
560static void drawModels(float zScale)
561{
562 const int translationScale = 9;
563 int x, y;
564
565 seedRandom(9);
566
567 glScalex(1 << 16, 1 << 16, (GLfixed)(zScale * 65536));
568
569 for (y = -5; y <= 5; ++y)
570 {
571 for (x = -5; x <= 5; ++x)
572 {
573 float buildingScale;
574 GLfixed fixedScale;
575
576 int curShape = randomUInt() % SUPERSHAPE_COUNT;
577 buildingScale = sSuperShapeParams[curShape][SUPERSHAPE_PARAMS - 1];
578 fixedScale = (GLfixed)(buildingScale * 65536);
579
580 glPushMatrix();
581 glTranslatex((x * translationScale) * 65536,
582 (y * translationScale) * 65536,
583 0);
584 glRotatex((GLfixed)((randomUInt() % 360) << 16), 0, 0, 1 << 16);
585 glScalex(fixedScale, fixedScale, fixedScale);
586
587 drawGLObject(sSuperShapeObjects[curShape]);
588 glPopMatrix();
589 }
590 }
591
592 for (x = -2; x <= 2; ++x)
593 {
594 const int shipScale100 = translationScale * 500;
595 const int offs100 = x * shipScale100 + (sTick % shipScale100);
596 float offs = offs100 * 0.01f;
597 GLfixed fixedOffs = (GLfixed)(offs * 65536);
598 glPushMatrix();
599 glTranslatex(fixedOffs, -4 * 65536, 2 << 16);
600 drawGLObject(sSuperShapeObjects[SUPERSHAPE_COUNT - 1]);
601 glPopMatrix();
602 glPushMatrix();
603 glTranslatex(-4 * 65536, fixedOffs, 4 << 16);
604 glRotatex(90 << 16, 0, 0, 1 << 16);
605 drawGLObject(sSuperShapeObjects[SUPERSHAPE_COUNT - 1]);
606 glPopMatrix();
607 }
608}
609
610
611/* Following gluLookAt implementation is adapted from the
612 * Mesa 3D Graphics library. http://www.mesa3d.org
613 */
614static void gluLookAt(GLfloat eyex, GLfloat eyey, GLfloat eyez,
615 GLfloat centerx, GLfloat centery, GLfloat centerz,
616 GLfloat upx, GLfloat upy, GLfloat upz)
617{
618 GLfloat m[16];
619 GLfloat x[3], y[3], z[3];
620 GLfloat mag;
621
622 /* Make rotation matrix */
623
624 /* Z vector */
625 z[0] = eyex - centerx;
626 z[1] = eyey - centery;
627 z[2] = eyez - centerz;
628 mag = (float)sqrt(z[0] * z[0] + z[1] * z[1] + z[2] * z[2]);
629 if (mag) { /* mpichler, 19950515 */
630 z[0] /= mag;
631 z[1] /= mag;
632 z[2] /= mag;
633 }
634
635 /* Y vector */
636 y[0] = upx;
637 y[1] = upy;
638 y[2] = upz;
639
640 /* X vector = Y cross Z */
641 x[0] = y[1] * z[2] - y[2] * z[1];
642 x[1] = -y[0] * z[2] + y[2] * z[0];
643 x[2] = y[0] * z[1] - y[1] * z[0];
644
645 /* Recompute Y = Z cross X */
646 y[0] = z[1] * x[2] - z[2] * x[1];
647 y[1] = -z[0] * x[2] + z[2] * x[0];
648 y[2] = z[0] * x[1] - z[1] * x[0];
649
650 /* mpichler, 19950515 */
651 /* cross product gives area of parallelogram, which is < 1.0 for
652 * non-perpendicular unit-length vectors; so normalize x, y here
653 */
654
655 mag = (float)sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
656 if (mag) {
657 x[0] /= mag;
658 x[1] /= mag;
659 x[2] /= mag;
660 }
661
662 mag = (float)sqrt(y[0] * y[0] + y[1] * y[1] + y[2] * y[2]);
663 if (mag) {
664 y[0] /= mag;
665 y[1] /= mag;
666 y[2] /= mag;
667 }
668
669#define M(row,col) m[col*4+row]
670 M(0, 0) = x[0];
671 M(0, 1) = x[1];
672 M(0, 2) = x[2];
673 M(0, 3) = 0.0;
674 M(1, 0) = y[0];
675 M(1, 1) = y[1];
676 M(1, 2) = y[2];
677 M(1, 3) = 0.0;
678 M(2, 0) = z[0];
679 M(2, 1) = z[1];
680 M(2, 2) = z[2];
681 M(2, 3) = 0.0;
682 M(3, 0) = 0.0;
683 M(3, 1) = 0.0;
684 M(3, 2) = 0.0;
685 M(3, 3) = 1.0;
686#undef M
687 {
688 int a;
689 GLfixed fixedM[16];
690 for (a = 0; a < 16; ++a)
691 fixedM[a] = (GLfixed)(m[a] * 65536);
692 glMultMatrixx(fixedM);
693 }
694
695 /* Translate Eye to Origin */
696 glTranslatex((GLfixed)(-eyex * 65536),
697 (GLfixed)(-eyey * 65536),
698 (GLfixed)(-eyez * 65536));
699}
700
701
702static void camTrack()
703{
704 float lerp[5];
705 float eX, eY, eZ, cX, cY, cZ;
706 float trackPos;
707 CAMTRACK *cam;
708 long currentCamTick;
709 int a;
710
711 if (sNextCamTrackStartTick <= sTick)
712 {
713 ++sCurrentCamTrack;
714 sCurrentCamTrackStartTick = sNextCamTrackStartTick;
715 }
716 sNextCamTrackStartTick = sCurrentCamTrackStartTick +
717 sCamTracks[sCurrentCamTrack].len * CAMTRACK_LEN;
718
719 cam = &sCamTracks[sCurrentCamTrack];
720 currentCamTick = sTick - sCurrentCamTrackStartTick;
721 trackPos = (float)currentCamTick / (CAMTRACK_LEN * cam->len);
722
723 for (a = 0; a < 5; ++a)
724 lerp[a] = (cam->src[a] + cam->dest[a] * trackPos) * 0.01f;
725
726 if (cam->dist)
727 {
728 float dist = cam->dist * 0.1f;
729 cX = lerp[0];
730 cY = lerp[1];
731 cZ = lerp[2];
732 eX = cX - (float)cos(lerp[3]) * dist;
733 eY = cY - (float)sin(lerp[3]) * dist;
734 eZ = cZ - lerp[4];
735 }
736 else
737 {
738 eX = lerp[0];
739 eY = lerp[1];
740 eZ = lerp[2];
741 cX = eX + (float)cos(lerp[3]);
742 cY = eY + (float)sin(lerp[3]);
743 cZ = eZ + lerp[4];
744 }
745 gluLookAt(eX, eY, eZ, cX, cY, cZ, 0, 0, 1);
746}
747
748
749// Called from the app framework.
750/* The tick is current time in milliseconds, width and height
751 * are the image dimensions to be rendered.
752 */
753void appRender(long tick, int width, int height)
754{
755 if (sStartTick == 0)
756 sStartTick = tick;
757 if (!gAppAlive)
758 return;
759
760 // Actual tick value is "blurred" a little bit.
761 sTick = (sTick + tick - sStartTick) >> 1;
762
763 // Terminate application after running through the demonstration once.
764 if (sTick >= RUN_LENGTH)
765 {
766 gAppAlive = 0;
767 return;
768 }
769
770 // Prepare OpenGL ES for rendering of the frame.
771 prepareFrame(width, height);
772
773 // Update the camera position and set the lookat.
774 camTrack();
775
776 // Configure environment.
777 configureLightAndMaterial();
778
779 // Draw the reflection by drawing models with negated Z-axis.
780 glPushMatrix();
781 drawModels(-1);
782 glPopMatrix();
783
784 // Blend the ground plane to the window.
785 drawGroundPlane();
786
787 // Draw all the models normally.
788 drawModels(1);
789
790 // Draw fade quad over whole window (when changing cameras).
791 drawFadeQuad();
792}