Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2005 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
Mark Salyzyn | 5aa26b2 | 2014-06-10 13:07:44 -0700 | [diff] [blame] | 17 | #include <assert.h> |
| 18 | #include <dirent.h> |
| 19 | #include <errno.h> |
| 20 | #include <fcntl.h> |
| 21 | #include <inttypes.h> |
| 22 | #include <memory.h> |
| 23 | #include <stdint.h> |
| 24 | #include <stdio.h> |
| 25 | #include <stdlib.h> |
| 26 | #include <string.h> |
| 27 | #include <sys/epoll.h> |
| 28 | #include <sys/limits.h> |
| 29 | #include <sys/inotify.h> |
| 30 | #include <sys/ioctl.h> |
Mark Salyzyn | 5aa26b2 | 2014-06-10 13:07:44 -0700 | [diff] [blame] | 31 | #include <sys/utsname.h> |
| 32 | #include <unistd.h> |
| 33 | |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 34 | #define LOG_TAG "EventHub" |
| 35 | |
| 36 | // #define LOG_NDEBUG 0 |
| 37 | |
| 38 | #include "EventHub.h" |
| 39 | |
| 40 | #include <hardware_legacy/power.h> |
| 41 | |
| 42 | #include <cutils/properties.h> |
Dan Albert | 677d87e | 2014-06-16 17:31:28 -0700 | [diff] [blame] | 43 | #include <openssl/sha.h> |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 44 | #include <utils/Log.h> |
| 45 | #include <utils/Timers.h> |
| 46 | #include <utils/threads.h> |
| 47 | #include <utils/Errors.h> |
| 48 | |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 49 | #include <input/KeyLayoutMap.h> |
| 50 | #include <input/KeyCharacterMap.h> |
| 51 | #include <input/VirtualKeyMap.h> |
| 52 | |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 53 | /* this macro is used to tell if "bit" is set in "array" |
| 54 | * it selects a byte from the array, and does a boolean AND |
| 55 | * operation with a byte that only has the relevant bit set. |
| 56 | * eg. to check for the 12th bit, we do (array[1] & 1<<4) |
| 57 | */ |
| 58 | #define test_bit(bit, array) (array[bit/8] & (1<<(bit%8))) |
| 59 | |
| 60 | /* this macro computes the number of bytes needed to represent a bit array of the specified size */ |
| 61 | #define sizeof_bit_array(bits) ((bits + 7) / 8) |
| 62 | |
| 63 | #define INDENT " " |
| 64 | #define INDENT2 " " |
| 65 | #define INDENT3 " " |
| 66 | |
| 67 | namespace android { |
| 68 | |
| 69 | static const char *WAKE_LOCK_ID = "KeyEvents"; |
| 70 | static const char *DEVICE_PATH = "/dev/input"; |
| 71 | |
| 72 | /* return the larger integer */ |
| 73 | static inline int max(int v1, int v2) |
| 74 | { |
| 75 | return (v1 > v2) ? v1 : v2; |
| 76 | } |
| 77 | |
| 78 | static inline const char* toString(bool value) { |
| 79 | return value ? "true" : "false"; |
| 80 | } |
| 81 | |
| 82 | static String8 sha1(const String8& in) { |
Dan Albert | 677d87e | 2014-06-16 17:31:28 -0700 | [diff] [blame] | 83 | SHA_CTX ctx; |
| 84 | SHA1_Init(&ctx); |
| 85 | SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size()); |
| 86 | u_char digest[SHA_DIGEST_LENGTH]; |
| 87 | SHA1_Final(digest, &ctx); |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 88 | |
| 89 | String8 out; |
Dan Albert | 677d87e | 2014-06-16 17:31:28 -0700 | [diff] [blame] | 90 | for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) { |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 91 | out.appendFormat("%02x", digest[i]); |
| 92 | } |
| 93 | return out; |
| 94 | } |
| 95 | |
| 96 | static void getLinuxRelease(int* major, int* minor) { |
| 97 | struct utsname info; |
| 98 | if (uname(&info) || sscanf(info.release, "%d.%d", major, minor) <= 0) { |
| 99 | *major = 0, *minor = 0; |
| 100 | ALOGE("Could not get linux version: %s", strerror(errno)); |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | // --- Global Functions --- |
| 105 | |
| 106 | uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) { |
| 107 | // Touch devices get dibs on touch-related axes. |
| 108 | if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) { |
| 109 | switch (axis) { |
| 110 | case ABS_X: |
| 111 | case ABS_Y: |
| 112 | case ABS_PRESSURE: |
| 113 | case ABS_TOOL_WIDTH: |
| 114 | case ABS_DISTANCE: |
| 115 | case ABS_TILT_X: |
| 116 | case ABS_TILT_Y: |
| 117 | case ABS_MT_SLOT: |
| 118 | case ABS_MT_TOUCH_MAJOR: |
| 119 | case ABS_MT_TOUCH_MINOR: |
| 120 | case ABS_MT_WIDTH_MAJOR: |
| 121 | case ABS_MT_WIDTH_MINOR: |
| 122 | case ABS_MT_ORIENTATION: |
| 123 | case ABS_MT_POSITION_X: |
| 124 | case ABS_MT_POSITION_Y: |
| 125 | case ABS_MT_TOOL_TYPE: |
| 126 | case ABS_MT_BLOB_ID: |
| 127 | case ABS_MT_TRACKING_ID: |
| 128 | case ABS_MT_PRESSURE: |
| 129 | case ABS_MT_DISTANCE: |
| 130 | return INPUT_DEVICE_CLASS_TOUCH; |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | // Joystick devices get the rest. |
| 135 | return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK; |
| 136 | } |
| 137 | |
| 138 | // --- EventHub::Device --- |
| 139 | |
| 140 | EventHub::Device::Device(int fd, int32_t id, const String8& path, |
| 141 | const InputDeviceIdentifier& identifier) : |
| 142 | next(NULL), |
| 143 | fd(fd), id(id), path(path), identifier(identifier), |
| 144 | classes(0), configuration(NULL), virtualKeyMap(NULL), |
| 145 | ffEffectPlaying(false), ffEffectId(-1), controllerNumber(0), |
| 146 | timestampOverrideSec(0), timestampOverrideUsec(0) { |
| 147 | memset(keyBitmask, 0, sizeof(keyBitmask)); |
| 148 | memset(absBitmask, 0, sizeof(absBitmask)); |
| 149 | memset(relBitmask, 0, sizeof(relBitmask)); |
| 150 | memset(swBitmask, 0, sizeof(swBitmask)); |
| 151 | memset(ledBitmask, 0, sizeof(ledBitmask)); |
| 152 | memset(ffBitmask, 0, sizeof(ffBitmask)); |
| 153 | memset(propBitmask, 0, sizeof(propBitmask)); |
| 154 | } |
| 155 | |
| 156 | EventHub::Device::~Device() { |
| 157 | close(); |
| 158 | delete configuration; |
| 159 | delete virtualKeyMap; |
| 160 | } |
| 161 | |
| 162 | void EventHub::Device::close() { |
| 163 | if (fd >= 0) { |
| 164 | ::close(fd); |
| 165 | fd = -1; |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | |
| 170 | // --- EventHub --- |
| 171 | |
| 172 | const uint32_t EventHub::EPOLL_ID_INOTIFY; |
| 173 | const uint32_t EventHub::EPOLL_ID_WAKE; |
| 174 | const int EventHub::EPOLL_SIZE_HINT; |
| 175 | const int EventHub::EPOLL_MAX_EVENTS; |
| 176 | |
| 177 | EventHub::EventHub(void) : |
| 178 | mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(), |
| 179 | mOpeningDevices(0), mClosingDevices(0), |
| 180 | mNeedToSendFinishedDeviceScan(false), |
| 181 | mNeedToReopenDevices(false), mNeedToScanDevices(true), |
| 182 | mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) { |
| 183 | acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); |
| 184 | |
| 185 | mEpollFd = epoll_create(EPOLL_SIZE_HINT); |
| 186 | LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno); |
| 187 | |
| 188 | mINotifyFd = inotify_init(); |
| 189 | int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE); |
| 190 | LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s. errno=%d", |
| 191 | DEVICE_PATH, errno); |
| 192 | |
| 193 | struct epoll_event eventItem; |
| 194 | memset(&eventItem, 0, sizeof(eventItem)); |
| 195 | eventItem.events = EPOLLIN; |
| 196 | eventItem.data.u32 = EPOLL_ID_INOTIFY; |
| 197 | result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem); |
| 198 | LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno); |
| 199 | |
| 200 | int wakeFds[2]; |
| 201 | result = pipe(wakeFds); |
| 202 | LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno); |
| 203 | |
| 204 | mWakeReadPipeFd = wakeFds[0]; |
| 205 | mWakeWritePipeFd = wakeFds[1]; |
| 206 | |
| 207 | result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK); |
| 208 | LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d", |
| 209 | errno); |
| 210 | |
| 211 | result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK); |
| 212 | LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d", |
| 213 | errno); |
| 214 | |
| 215 | eventItem.data.u32 = EPOLL_ID_WAKE; |
| 216 | result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem); |
| 217 | LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d", |
| 218 | errno); |
| 219 | |
| 220 | int major, minor; |
| 221 | getLinuxRelease(&major, &minor); |
| 222 | // EPOLLWAKEUP was introduced in kernel 3.5 |
| 223 | mUsingEpollWakeup = major > 3 || (major == 3 && minor >= 5); |
| 224 | } |
| 225 | |
| 226 | EventHub::~EventHub(void) { |
| 227 | closeAllDevicesLocked(); |
| 228 | |
| 229 | while (mClosingDevices) { |
| 230 | Device* device = mClosingDevices; |
| 231 | mClosingDevices = device->next; |
| 232 | delete device; |
| 233 | } |
| 234 | |
| 235 | ::close(mEpollFd); |
| 236 | ::close(mINotifyFd); |
| 237 | ::close(mWakeReadPipeFd); |
| 238 | ::close(mWakeWritePipeFd); |
| 239 | |
| 240 | release_wake_lock(WAKE_LOCK_ID); |
| 241 | } |
| 242 | |
| 243 | InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const { |
| 244 | AutoMutex _l(mLock); |
| 245 | Device* device = getDeviceLocked(deviceId); |
| 246 | if (device == NULL) return InputDeviceIdentifier(); |
| 247 | return device->identifier; |
| 248 | } |
| 249 | |
| 250 | uint32_t EventHub::getDeviceClasses(int32_t deviceId) const { |
| 251 | AutoMutex _l(mLock); |
| 252 | Device* device = getDeviceLocked(deviceId); |
| 253 | if (device == NULL) return 0; |
| 254 | return device->classes; |
| 255 | } |
| 256 | |
| 257 | int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const { |
| 258 | AutoMutex _l(mLock); |
| 259 | Device* device = getDeviceLocked(deviceId); |
| 260 | if (device == NULL) return 0; |
| 261 | return device->controllerNumber; |
| 262 | } |
| 263 | |
| 264 | void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const { |
| 265 | AutoMutex _l(mLock); |
| 266 | Device* device = getDeviceLocked(deviceId); |
| 267 | if (device && device->configuration) { |
| 268 | *outConfiguration = *device->configuration; |
| 269 | } else { |
| 270 | outConfiguration->clear(); |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis, |
| 275 | RawAbsoluteAxisInfo* outAxisInfo) const { |
| 276 | outAxisInfo->clear(); |
| 277 | |
| 278 | if (axis >= 0 && axis <= ABS_MAX) { |
| 279 | AutoMutex _l(mLock); |
| 280 | |
| 281 | Device* device = getDeviceLocked(deviceId); |
| 282 | if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) { |
| 283 | struct input_absinfo info; |
| 284 | if(ioctl(device->fd, EVIOCGABS(axis), &info)) { |
| 285 | ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", |
| 286 | axis, device->identifier.name.string(), device->fd, errno); |
| 287 | return -errno; |
| 288 | } |
| 289 | |
| 290 | if (info.minimum != info.maximum) { |
| 291 | outAxisInfo->valid = true; |
| 292 | outAxisInfo->minValue = info.minimum; |
| 293 | outAxisInfo->maxValue = info.maximum; |
| 294 | outAxisInfo->flat = info.flat; |
| 295 | outAxisInfo->fuzz = info.fuzz; |
| 296 | outAxisInfo->resolution = info.resolution; |
| 297 | } |
| 298 | return OK; |
| 299 | } |
| 300 | } |
| 301 | return -1; |
| 302 | } |
| 303 | |
| 304 | bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const { |
| 305 | if (axis >= 0 && axis <= REL_MAX) { |
| 306 | AutoMutex _l(mLock); |
| 307 | |
| 308 | Device* device = getDeviceLocked(deviceId); |
| 309 | if (device) { |
| 310 | return test_bit(axis, device->relBitmask); |
| 311 | } |
| 312 | } |
| 313 | return false; |
| 314 | } |
| 315 | |
| 316 | bool EventHub::hasInputProperty(int32_t deviceId, int property) const { |
| 317 | if (property >= 0 && property <= INPUT_PROP_MAX) { |
| 318 | AutoMutex _l(mLock); |
| 319 | |
| 320 | Device* device = getDeviceLocked(deviceId); |
| 321 | if (device) { |
| 322 | return test_bit(property, device->propBitmask); |
| 323 | } |
| 324 | } |
| 325 | return false; |
| 326 | } |
| 327 | |
| 328 | int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const { |
| 329 | if (scanCode >= 0 && scanCode <= KEY_MAX) { |
| 330 | AutoMutex _l(mLock); |
| 331 | |
| 332 | Device* device = getDeviceLocked(deviceId); |
| 333 | if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) { |
| 334 | uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)]; |
| 335 | memset(keyState, 0, sizeof(keyState)); |
| 336 | if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) { |
| 337 | return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; |
| 338 | } |
| 339 | } |
| 340 | } |
| 341 | return AKEY_STATE_UNKNOWN; |
| 342 | } |
| 343 | |
| 344 | int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const { |
| 345 | AutoMutex _l(mLock); |
| 346 | |
| 347 | Device* device = getDeviceLocked(deviceId); |
| 348 | if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) { |
| 349 | Vector<int32_t> scanCodes; |
| 350 | device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes); |
| 351 | if (scanCodes.size() != 0) { |
| 352 | uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)]; |
| 353 | memset(keyState, 0, sizeof(keyState)); |
| 354 | if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) { |
| 355 | for (size_t i = 0; i < scanCodes.size(); i++) { |
| 356 | int32_t sc = scanCodes.itemAt(i); |
| 357 | if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) { |
| 358 | return AKEY_STATE_DOWN; |
| 359 | } |
| 360 | } |
| 361 | return AKEY_STATE_UP; |
| 362 | } |
| 363 | } |
| 364 | } |
| 365 | return AKEY_STATE_UNKNOWN; |
| 366 | } |
| 367 | |
| 368 | int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const { |
| 369 | if (sw >= 0 && sw <= SW_MAX) { |
| 370 | AutoMutex _l(mLock); |
| 371 | |
| 372 | Device* device = getDeviceLocked(deviceId); |
| 373 | if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) { |
| 374 | uint8_t swState[sizeof_bit_array(SW_MAX + 1)]; |
| 375 | memset(swState, 0, sizeof(swState)); |
| 376 | if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) { |
| 377 | return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; |
| 378 | } |
| 379 | } |
| 380 | } |
| 381 | return AKEY_STATE_UNKNOWN; |
| 382 | } |
| 383 | |
| 384 | status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const { |
| 385 | *outValue = 0; |
| 386 | |
| 387 | if (axis >= 0 && axis <= ABS_MAX) { |
| 388 | AutoMutex _l(mLock); |
| 389 | |
| 390 | Device* device = getDeviceLocked(deviceId); |
| 391 | if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) { |
| 392 | struct input_absinfo info; |
| 393 | if(ioctl(device->fd, EVIOCGABS(axis), &info)) { |
| 394 | ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", |
| 395 | axis, device->identifier.name.string(), device->fd, errno); |
| 396 | return -errno; |
| 397 | } |
| 398 | |
| 399 | *outValue = info.value; |
| 400 | return OK; |
| 401 | } |
| 402 | } |
| 403 | return -1; |
| 404 | } |
| 405 | |
| 406 | bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes, |
| 407 | const int32_t* keyCodes, uint8_t* outFlags) const { |
| 408 | AutoMutex _l(mLock); |
| 409 | |
| 410 | Device* device = getDeviceLocked(deviceId); |
| 411 | if (device && device->keyMap.haveKeyLayout()) { |
| 412 | Vector<int32_t> scanCodes; |
| 413 | for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) { |
| 414 | scanCodes.clear(); |
| 415 | |
| 416 | status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey( |
| 417 | keyCodes[codeIndex], &scanCodes); |
| 418 | if (! err) { |
| 419 | // check the possible scan codes identified by the layout map against the |
| 420 | // map of codes actually emitted by the driver |
| 421 | for (size_t sc = 0; sc < scanCodes.size(); sc++) { |
| 422 | if (test_bit(scanCodes[sc], device->keyBitmask)) { |
| 423 | outFlags[codeIndex] = 1; |
| 424 | break; |
| 425 | } |
| 426 | } |
| 427 | } |
| 428 | } |
| 429 | return true; |
| 430 | } |
| 431 | return false; |
| 432 | } |
| 433 | |
| 434 | status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, |
| 435 | int32_t* outKeycode, uint32_t* outFlags) const { |
| 436 | AutoMutex _l(mLock); |
| 437 | Device* device = getDeviceLocked(deviceId); |
| 438 | |
| 439 | if (device) { |
| 440 | // Check the key character map first. |
| 441 | sp<KeyCharacterMap> kcm = device->getKeyCharacterMap(); |
| 442 | if (kcm != NULL) { |
| 443 | if (!kcm->mapKey(scanCode, usageCode, outKeycode)) { |
| 444 | *outFlags = 0; |
| 445 | return NO_ERROR; |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | // Check the key layout next. |
| 450 | if (device->keyMap.haveKeyLayout()) { |
| 451 | if (!device->keyMap.keyLayoutMap->mapKey( |
| 452 | scanCode, usageCode, outKeycode, outFlags)) { |
| 453 | return NO_ERROR; |
| 454 | } |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | *outKeycode = 0; |
| 459 | *outFlags = 0; |
| 460 | return NAME_NOT_FOUND; |
| 461 | } |
| 462 | |
| 463 | status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const { |
| 464 | AutoMutex _l(mLock); |
| 465 | Device* device = getDeviceLocked(deviceId); |
| 466 | |
| 467 | if (device && device->keyMap.haveKeyLayout()) { |
| 468 | status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo); |
| 469 | if (err == NO_ERROR) { |
| 470 | return NO_ERROR; |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | return NAME_NOT_FOUND; |
| 475 | } |
| 476 | |
| 477 | void EventHub::setExcludedDevices(const Vector<String8>& devices) { |
| 478 | AutoMutex _l(mLock); |
| 479 | |
| 480 | mExcludedDevices = devices; |
| 481 | } |
| 482 | |
| 483 | bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const { |
| 484 | AutoMutex _l(mLock); |
| 485 | Device* device = getDeviceLocked(deviceId); |
| 486 | if (device && scanCode >= 0 && scanCode <= KEY_MAX) { |
| 487 | if (test_bit(scanCode, device->keyBitmask)) { |
| 488 | return true; |
| 489 | } |
| 490 | } |
| 491 | return false; |
| 492 | } |
| 493 | |
| 494 | bool EventHub::hasLed(int32_t deviceId, int32_t led) const { |
| 495 | AutoMutex _l(mLock); |
| 496 | Device* device = getDeviceLocked(deviceId); |
| 497 | int32_t sc; |
| 498 | if (device && mapLed(device, led, &sc) == NO_ERROR) { |
| 499 | if (test_bit(sc, device->ledBitmask)) { |
| 500 | return true; |
| 501 | } |
| 502 | } |
| 503 | return false; |
| 504 | } |
| 505 | |
| 506 | void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) { |
| 507 | AutoMutex _l(mLock); |
| 508 | Device* device = getDeviceLocked(deviceId); |
| 509 | setLedStateLocked(device, led, on); |
| 510 | } |
| 511 | |
| 512 | void EventHub::setLedStateLocked(Device* device, int32_t led, bool on) { |
| 513 | int32_t sc; |
| 514 | if (device && !device->isVirtual() && mapLed(device, led, &sc) != NAME_NOT_FOUND) { |
| 515 | struct input_event ev; |
| 516 | ev.time.tv_sec = 0; |
| 517 | ev.time.tv_usec = 0; |
| 518 | ev.type = EV_LED; |
| 519 | ev.code = sc; |
| 520 | ev.value = on ? 1 : 0; |
| 521 | |
| 522 | ssize_t nWrite; |
| 523 | do { |
| 524 | nWrite = write(device->fd, &ev, sizeof(struct input_event)); |
| 525 | } while (nWrite == -1 && errno == EINTR); |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | void EventHub::getVirtualKeyDefinitions(int32_t deviceId, |
| 530 | Vector<VirtualKeyDefinition>& outVirtualKeys) const { |
| 531 | outVirtualKeys.clear(); |
| 532 | |
| 533 | AutoMutex _l(mLock); |
| 534 | Device* device = getDeviceLocked(deviceId); |
| 535 | if (device && device->virtualKeyMap) { |
| 536 | outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys()); |
| 537 | } |
| 538 | } |
| 539 | |
| 540 | sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const { |
| 541 | AutoMutex _l(mLock); |
| 542 | Device* device = getDeviceLocked(deviceId); |
| 543 | if (device) { |
| 544 | return device->getKeyCharacterMap(); |
| 545 | } |
| 546 | return NULL; |
| 547 | } |
| 548 | |
| 549 | bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, |
| 550 | const sp<KeyCharacterMap>& map) { |
| 551 | AutoMutex _l(mLock); |
| 552 | Device* device = getDeviceLocked(deviceId); |
| 553 | if (device) { |
| 554 | if (map != device->overlayKeyMap) { |
| 555 | device->overlayKeyMap = map; |
| 556 | device->combinedKeyMap = KeyCharacterMap::combine( |
| 557 | device->keyMap.keyCharacterMap, map); |
| 558 | return true; |
| 559 | } |
| 560 | } |
| 561 | return false; |
| 562 | } |
| 563 | |
| 564 | static String8 generateDescriptor(InputDeviceIdentifier& identifier) { |
| 565 | String8 rawDescriptor; |
| 566 | rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor, |
| 567 | identifier.product); |
| 568 | // TODO add handling for USB devices to not uniqueify kbs that show up twice |
| 569 | if (!identifier.uniqueId.isEmpty()) { |
| 570 | rawDescriptor.append("uniqueId:"); |
| 571 | rawDescriptor.append(identifier.uniqueId); |
| 572 | } else if (identifier.nonce != 0) { |
| 573 | rawDescriptor.appendFormat("nonce:%04x", identifier.nonce); |
| 574 | } |
| 575 | |
| 576 | if (identifier.vendor == 0 && identifier.product == 0) { |
| 577 | // If we don't know the vendor and product id, then the device is probably |
| 578 | // built-in so we need to rely on other information to uniquely identify |
| 579 | // the input device. Usually we try to avoid relying on the device name or |
| 580 | // location but for built-in input device, they are unlikely to ever change. |
| 581 | if (!identifier.name.isEmpty()) { |
| 582 | rawDescriptor.append("name:"); |
| 583 | rawDescriptor.append(identifier.name); |
| 584 | } else if (!identifier.location.isEmpty()) { |
| 585 | rawDescriptor.append("location:"); |
| 586 | rawDescriptor.append(identifier.location); |
| 587 | } |
| 588 | } |
| 589 | identifier.descriptor = sha1(rawDescriptor); |
| 590 | return rawDescriptor; |
| 591 | } |
| 592 | |
| 593 | void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) { |
| 594 | // Compute a device descriptor that uniquely identifies the device. |
| 595 | // The descriptor is assumed to be a stable identifier. Its value should not |
| 596 | // change between reboots, reconnections, firmware updates or new releases |
| 597 | // of Android. In practice we sometimes get devices that cannot be uniquely |
| 598 | // identified. In this case we enforce uniqueness between connected devices. |
| 599 | // Ideally, we also want the descriptor to be short and relatively opaque. |
| 600 | |
| 601 | identifier.nonce = 0; |
| 602 | String8 rawDescriptor = generateDescriptor(identifier); |
| 603 | if (identifier.uniqueId.isEmpty()) { |
| 604 | // If it didn't have a unique id check for conflicts and enforce |
| 605 | // uniqueness if necessary. |
| 606 | while(getDeviceByDescriptorLocked(identifier.descriptor) != NULL) { |
| 607 | identifier.nonce++; |
| 608 | rawDescriptor = generateDescriptor(identifier); |
| 609 | } |
| 610 | } |
| 611 | ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(), |
| 612 | identifier.descriptor.string()); |
| 613 | } |
| 614 | |
| 615 | void EventHub::vibrate(int32_t deviceId, nsecs_t duration) { |
| 616 | AutoMutex _l(mLock); |
| 617 | Device* device = getDeviceLocked(deviceId); |
| 618 | if (device && !device->isVirtual()) { |
| 619 | ff_effect effect; |
| 620 | memset(&effect, 0, sizeof(effect)); |
| 621 | effect.type = FF_RUMBLE; |
| 622 | effect.id = device->ffEffectId; |
| 623 | effect.u.rumble.strong_magnitude = 0xc000; |
| 624 | effect.u.rumble.weak_magnitude = 0xc000; |
| 625 | effect.replay.length = (duration + 999999LL) / 1000000LL; |
| 626 | effect.replay.delay = 0; |
| 627 | if (ioctl(device->fd, EVIOCSFF, &effect)) { |
| 628 | ALOGW("Could not upload force feedback effect to device %s due to error %d.", |
| 629 | device->identifier.name.string(), errno); |
| 630 | return; |
| 631 | } |
| 632 | device->ffEffectId = effect.id; |
| 633 | |
| 634 | struct input_event ev; |
| 635 | ev.time.tv_sec = 0; |
| 636 | ev.time.tv_usec = 0; |
| 637 | ev.type = EV_FF; |
| 638 | ev.code = device->ffEffectId; |
| 639 | ev.value = 1; |
| 640 | if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) { |
| 641 | ALOGW("Could not start force feedback effect on device %s due to error %d.", |
| 642 | device->identifier.name.string(), errno); |
| 643 | return; |
| 644 | } |
| 645 | device->ffEffectPlaying = true; |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | void EventHub::cancelVibrate(int32_t deviceId) { |
| 650 | AutoMutex _l(mLock); |
| 651 | Device* device = getDeviceLocked(deviceId); |
| 652 | if (device && !device->isVirtual()) { |
| 653 | if (device->ffEffectPlaying) { |
| 654 | device->ffEffectPlaying = false; |
| 655 | |
| 656 | struct input_event ev; |
| 657 | ev.time.tv_sec = 0; |
| 658 | ev.time.tv_usec = 0; |
| 659 | ev.type = EV_FF; |
| 660 | ev.code = device->ffEffectId; |
| 661 | ev.value = 0; |
| 662 | if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) { |
| 663 | ALOGW("Could not stop force feedback effect on device %s due to error %d.", |
| 664 | device->identifier.name.string(), errno); |
| 665 | return; |
| 666 | } |
| 667 | } |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | EventHub::Device* EventHub::getDeviceByDescriptorLocked(String8& descriptor) const { |
| 672 | size_t size = mDevices.size(); |
| 673 | for (size_t i = 0; i < size; i++) { |
| 674 | Device* device = mDevices.valueAt(i); |
| 675 | if (descriptor.compare(device->identifier.descriptor) == 0) { |
| 676 | return device; |
| 677 | } |
| 678 | } |
| 679 | return NULL; |
| 680 | } |
| 681 | |
| 682 | EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const { |
| 683 | if (deviceId == BUILT_IN_KEYBOARD_ID) { |
| 684 | deviceId = mBuiltInKeyboardId; |
| 685 | } |
| 686 | ssize_t index = mDevices.indexOfKey(deviceId); |
| 687 | return index >= 0 ? mDevices.valueAt(index) : NULL; |
| 688 | } |
| 689 | |
| 690 | EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const { |
| 691 | for (size_t i = 0; i < mDevices.size(); i++) { |
| 692 | Device* device = mDevices.valueAt(i); |
| 693 | if (device->path == devicePath) { |
| 694 | return device; |
| 695 | } |
| 696 | } |
| 697 | return NULL; |
| 698 | } |
| 699 | |
| 700 | size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) { |
| 701 | ALOG_ASSERT(bufferSize >= 1); |
| 702 | |
| 703 | AutoMutex _l(mLock); |
| 704 | |
| 705 | struct input_event readBuffer[bufferSize]; |
| 706 | |
| 707 | RawEvent* event = buffer; |
| 708 | size_t capacity = bufferSize; |
| 709 | bool awoken = false; |
| 710 | for (;;) { |
| 711 | nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); |
| 712 | |
| 713 | // Reopen input devices if needed. |
| 714 | if (mNeedToReopenDevices) { |
| 715 | mNeedToReopenDevices = false; |
| 716 | |
| 717 | ALOGI("Reopening all input devices due to a configuration change."); |
| 718 | |
| 719 | closeAllDevicesLocked(); |
| 720 | mNeedToScanDevices = true; |
| 721 | break; // return to the caller before we actually rescan |
| 722 | } |
| 723 | |
| 724 | // Report any devices that had last been added/removed. |
| 725 | while (mClosingDevices) { |
| 726 | Device* device = mClosingDevices; |
| 727 | ALOGV("Reporting device closed: id=%d, name=%s\n", |
| 728 | device->id, device->path.string()); |
| 729 | mClosingDevices = device->next; |
| 730 | event->when = now; |
| 731 | event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id; |
| 732 | event->type = DEVICE_REMOVED; |
| 733 | event += 1; |
| 734 | delete device; |
| 735 | mNeedToSendFinishedDeviceScan = true; |
| 736 | if (--capacity == 0) { |
| 737 | break; |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | if (mNeedToScanDevices) { |
| 742 | mNeedToScanDevices = false; |
| 743 | scanDevicesLocked(); |
| 744 | mNeedToSendFinishedDeviceScan = true; |
| 745 | } |
| 746 | |
| 747 | while (mOpeningDevices != NULL) { |
| 748 | Device* device = mOpeningDevices; |
| 749 | ALOGV("Reporting device opened: id=%d, name=%s\n", |
| 750 | device->id, device->path.string()); |
| 751 | mOpeningDevices = device->next; |
| 752 | event->when = now; |
| 753 | event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; |
| 754 | event->type = DEVICE_ADDED; |
| 755 | event += 1; |
| 756 | mNeedToSendFinishedDeviceScan = true; |
| 757 | if (--capacity == 0) { |
| 758 | break; |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | if (mNeedToSendFinishedDeviceScan) { |
| 763 | mNeedToSendFinishedDeviceScan = false; |
| 764 | event->when = now; |
| 765 | event->type = FINISHED_DEVICE_SCAN; |
| 766 | event += 1; |
| 767 | if (--capacity == 0) { |
| 768 | break; |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | // Grab the next input event. |
| 773 | bool deviceChanged = false; |
| 774 | while (mPendingEventIndex < mPendingEventCount) { |
| 775 | const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++]; |
| 776 | if (eventItem.data.u32 == EPOLL_ID_INOTIFY) { |
| 777 | if (eventItem.events & EPOLLIN) { |
| 778 | mPendingINotify = true; |
| 779 | } else { |
| 780 | ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events); |
| 781 | } |
| 782 | continue; |
| 783 | } |
| 784 | |
| 785 | if (eventItem.data.u32 == EPOLL_ID_WAKE) { |
| 786 | if (eventItem.events & EPOLLIN) { |
| 787 | ALOGV("awoken after wake()"); |
| 788 | awoken = true; |
| 789 | char buffer[16]; |
| 790 | ssize_t nRead; |
| 791 | do { |
| 792 | nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer)); |
| 793 | } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer)); |
| 794 | } else { |
| 795 | ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.", |
| 796 | eventItem.events); |
| 797 | } |
| 798 | continue; |
| 799 | } |
| 800 | |
| 801 | ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32); |
| 802 | if (deviceIndex < 0) { |
| 803 | ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.", |
| 804 | eventItem.events, eventItem.data.u32); |
| 805 | continue; |
| 806 | } |
| 807 | |
| 808 | Device* device = mDevices.valueAt(deviceIndex); |
| 809 | if (eventItem.events & EPOLLIN) { |
| 810 | int32_t readSize = read(device->fd, readBuffer, |
| 811 | sizeof(struct input_event) * capacity); |
| 812 | if (readSize == 0 || (readSize < 0 && errno == ENODEV)) { |
| 813 | // Device was removed before INotify noticed. |
Mark Salyzyn | 5aa26b2 | 2014-06-10 13:07:44 -0700 | [diff] [blame] | 814 | ALOGW("could not get event, removed? (fd: %d size: %" PRId32 |
| 815 | " bufferSize: %zu capacity: %zu errno: %d)\n", |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 816 | device->fd, readSize, bufferSize, capacity, errno); |
| 817 | deviceChanged = true; |
| 818 | closeDeviceLocked(device); |
| 819 | } else if (readSize < 0) { |
| 820 | if (errno != EAGAIN && errno != EINTR) { |
| 821 | ALOGW("could not get event (errno=%d)", errno); |
| 822 | } |
| 823 | } else if ((readSize % sizeof(struct input_event)) != 0) { |
| 824 | ALOGE("could not get event (wrong size: %d)", readSize); |
| 825 | } else { |
| 826 | int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; |
| 827 | |
| 828 | size_t count = size_t(readSize) / sizeof(struct input_event); |
| 829 | for (size_t i = 0; i < count; i++) { |
| 830 | struct input_event& iev = readBuffer[i]; |
| 831 | ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d", |
| 832 | device->path.string(), |
| 833 | (int) iev.time.tv_sec, (int) iev.time.tv_usec, |
| 834 | iev.type, iev.code, iev.value); |
| 835 | |
| 836 | // Some input devices may have a better concept of the time |
| 837 | // when an input event was actually generated than the kernel |
| 838 | // which simply timestamps all events on entry to evdev. |
| 839 | // This is a custom Android extension of the input protocol |
| 840 | // mainly intended for use with uinput based device drivers. |
| 841 | if (iev.type == EV_MSC) { |
| 842 | if (iev.code == MSC_ANDROID_TIME_SEC) { |
| 843 | device->timestampOverrideSec = iev.value; |
| 844 | continue; |
| 845 | } else if (iev.code == MSC_ANDROID_TIME_USEC) { |
| 846 | device->timestampOverrideUsec = iev.value; |
| 847 | continue; |
| 848 | } |
| 849 | } |
| 850 | if (device->timestampOverrideSec || device->timestampOverrideUsec) { |
| 851 | iev.time.tv_sec = device->timestampOverrideSec; |
| 852 | iev.time.tv_usec = device->timestampOverrideUsec; |
| 853 | if (iev.type == EV_SYN && iev.code == SYN_REPORT) { |
| 854 | device->timestampOverrideSec = 0; |
| 855 | device->timestampOverrideUsec = 0; |
| 856 | } |
| 857 | ALOGV("applied override time %d.%06d", |
| 858 | int(iev.time.tv_sec), int(iev.time.tv_usec)); |
| 859 | } |
| 860 | |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 861 | // Use the time specified in the event instead of the current time |
| 862 | // so that downstream code can get more accurate estimates of |
| 863 | // event dispatch latency from the time the event is enqueued onto |
| 864 | // the evdev client buffer. |
| 865 | // |
| 866 | // The event's timestamp fortuitously uses the same monotonic clock |
| 867 | // time base as the rest of Android. The kernel event device driver |
| 868 | // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts(). |
| 869 | // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere |
| 870 | // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a |
| 871 | // system call that also queries ktime_get_ts(). |
| 872 | event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL |
| 873 | + nsecs_t(iev.time.tv_usec) * 1000LL; |
Mark Salyzyn | 5aa26b2 | 2014-06-10 13:07:44 -0700 | [diff] [blame] | 874 | ALOGV("event time %" PRId64 ", now %" PRId64, event->when, now); |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 875 | |
| 876 | // Bug 7291243: Add a guard in case the kernel generates timestamps |
| 877 | // that appear to be far into the future because they were generated |
| 878 | // using the wrong clock source. |
| 879 | // |
| 880 | // This can happen because when the input device is initially opened |
| 881 | // it has a default clock source of CLOCK_REALTIME. Any input events |
| 882 | // enqueued right after the device is opened will have timestamps |
| 883 | // generated using CLOCK_REALTIME. We later set the clock source |
| 884 | // to CLOCK_MONOTONIC but it is already too late. |
| 885 | // |
| 886 | // Invalid input event timestamps can result in ANRs, crashes and |
| 887 | // and other issues that are hard to track down. We must not let them |
| 888 | // propagate through the system. |
| 889 | // |
| 890 | // Log a warning so that we notice the problem and recover gracefully. |
| 891 | if (event->when >= now + 10 * 1000000000LL) { |
| 892 | // Double-check. Time may have moved on. |
| 893 | nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC); |
| 894 | if (event->when > time) { |
| 895 | ALOGW("An input event from %s has a timestamp that appears to " |
| 896 | "have been generated using the wrong clock source " |
| 897 | "(expected CLOCK_MONOTONIC): " |
Mark Salyzyn | 5aa26b2 | 2014-06-10 13:07:44 -0700 | [diff] [blame] | 898 | "event time %" PRId64 ", current time %" PRId64 |
| 899 | ", call time %" PRId64 ". " |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 900 | "Using current time instead.", |
| 901 | device->path.string(), event->when, time, now); |
| 902 | event->when = time; |
| 903 | } else { |
| 904 | ALOGV("Event time is ok but failed the fast path and required " |
| 905 | "an extra call to systemTime: " |
Mark Salyzyn | 5aa26b2 | 2014-06-10 13:07:44 -0700 | [diff] [blame] | 906 | "event time %" PRId64 ", current time %" PRId64 |
| 907 | ", call time %" PRId64 ".", |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 908 | event->when, time, now); |
| 909 | } |
| 910 | } |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 911 | event->deviceId = deviceId; |
| 912 | event->type = iev.type; |
| 913 | event->code = iev.code; |
| 914 | event->value = iev.value; |
| 915 | event += 1; |
| 916 | capacity -= 1; |
| 917 | } |
| 918 | if (capacity == 0) { |
| 919 | // The result buffer is full. Reset the pending event index |
| 920 | // so we will try to read the device again on the next iteration. |
| 921 | mPendingEventIndex -= 1; |
| 922 | break; |
| 923 | } |
| 924 | } |
| 925 | } else if (eventItem.events & EPOLLHUP) { |
| 926 | ALOGI("Removing device %s due to epoll hang-up event.", |
| 927 | device->identifier.name.string()); |
| 928 | deviceChanged = true; |
| 929 | closeDeviceLocked(device); |
| 930 | } else { |
| 931 | ALOGW("Received unexpected epoll event 0x%08x for device %s.", |
| 932 | eventItem.events, device->identifier.name.string()); |
| 933 | } |
| 934 | } |
| 935 | |
| 936 | // readNotify() will modify the list of devices so this must be done after |
| 937 | // processing all other events to ensure that we read all remaining events |
| 938 | // before closing the devices. |
| 939 | if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) { |
| 940 | mPendingINotify = false; |
| 941 | readNotifyLocked(); |
| 942 | deviceChanged = true; |
| 943 | } |
| 944 | |
| 945 | // Report added or removed devices immediately. |
| 946 | if (deviceChanged) { |
| 947 | continue; |
| 948 | } |
| 949 | |
| 950 | // Return now if we have collected any events or if we were explicitly awoken. |
| 951 | if (event != buffer || awoken) { |
| 952 | break; |
| 953 | } |
| 954 | |
| 955 | // Poll for events. Mind the wake lock dance! |
| 956 | // We hold a wake lock at all times except during epoll_wait(). This works due to some |
| 957 | // subtle choreography. When a device driver has pending (unread) events, it acquires |
| 958 | // a kernel wake lock. However, once the last pending event has been read, the device |
| 959 | // driver will release the kernel wake lock. To prevent the system from going to sleep |
| 960 | // when this happens, the EventHub holds onto its own user wake lock while the client |
| 961 | // is processing events. Thus the system can only sleep if there are no events |
| 962 | // pending or currently being processed. |
| 963 | // |
| 964 | // The timeout is advisory only. If the device is asleep, it will not wake just to |
| 965 | // service the timeout. |
| 966 | mPendingEventIndex = 0; |
| 967 | |
| 968 | mLock.unlock(); // release lock before poll, must be before release_wake_lock |
| 969 | release_wake_lock(WAKE_LOCK_ID); |
| 970 | |
| 971 | int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis); |
| 972 | |
| 973 | acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); |
| 974 | mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock |
| 975 | |
| 976 | if (pollResult == 0) { |
| 977 | // Timed out. |
| 978 | mPendingEventCount = 0; |
| 979 | break; |
| 980 | } |
| 981 | |
| 982 | if (pollResult < 0) { |
| 983 | // An error occurred. |
| 984 | mPendingEventCount = 0; |
| 985 | |
| 986 | // Sleep after errors to avoid locking up the system. |
| 987 | // Hopefully the error is transient. |
| 988 | if (errno != EINTR) { |
| 989 | ALOGW("poll failed (errno=%d)\n", errno); |
| 990 | usleep(100000); |
| 991 | } |
| 992 | } else { |
| 993 | // Some events occurred. |
| 994 | mPendingEventCount = size_t(pollResult); |
| 995 | } |
| 996 | } |
| 997 | |
| 998 | // All done, return the number of events we read. |
| 999 | return event - buffer; |
| 1000 | } |
| 1001 | |
| 1002 | void EventHub::wake() { |
| 1003 | ALOGV("wake() called"); |
| 1004 | |
| 1005 | ssize_t nWrite; |
| 1006 | do { |
| 1007 | nWrite = write(mWakeWritePipeFd, "W", 1); |
| 1008 | } while (nWrite == -1 && errno == EINTR); |
| 1009 | |
| 1010 | if (nWrite != 1 && errno != EAGAIN) { |
| 1011 | ALOGW("Could not write wake signal, errno=%d", errno); |
| 1012 | } |
| 1013 | } |
| 1014 | |
| 1015 | void EventHub::scanDevicesLocked() { |
| 1016 | status_t res = scanDirLocked(DEVICE_PATH); |
| 1017 | if(res < 0) { |
| 1018 | ALOGE("scan dir failed for %s\n", DEVICE_PATH); |
| 1019 | } |
| 1020 | if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) { |
| 1021 | createVirtualKeyboardLocked(); |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | // ---------------------------------------------------------------------------- |
| 1026 | |
| 1027 | static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) { |
| 1028 | const uint8_t* end = array + endIndex; |
| 1029 | array += startIndex; |
| 1030 | while (array != end) { |
| 1031 | if (*(array++) != 0) { |
| 1032 | return true; |
| 1033 | } |
| 1034 | } |
| 1035 | return false; |
| 1036 | } |
| 1037 | |
| 1038 | static const int32_t GAMEPAD_KEYCODES[] = { |
| 1039 | AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C, |
| 1040 | AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z, |
| 1041 | AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1, |
| 1042 | AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2, |
| 1043 | AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR, |
| 1044 | AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE, |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 1045 | }; |
| 1046 | |
| 1047 | status_t EventHub::openDeviceLocked(const char *devicePath) { |
| 1048 | char buffer[80]; |
| 1049 | |
| 1050 | ALOGV("Opening device: %s", devicePath); |
| 1051 | |
| 1052 | int fd = open(devicePath, O_RDWR | O_CLOEXEC); |
| 1053 | if(fd < 0) { |
| 1054 | ALOGE("could not open %s, %s\n", devicePath, strerror(errno)); |
| 1055 | return -1; |
| 1056 | } |
| 1057 | |
| 1058 | InputDeviceIdentifier identifier; |
| 1059 | |
| 1060 | // Get device name. |
| 1061 | if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) { |
| 1062 | //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno)); |
| 1063 | } else { |
| 1064 | buffer[sizeof(buffer) - 1] = '\0'; |
| 1065 | identifier.name.setTo(buffer); |
| 1066 | } |
| 1067 | |
| 1068 | // Check to see if the device is on our excluded list |
| 1069 | for (size_t i = 0; i < mExcludedDevices.size(); i++) { |
| 1070 | const String8& item = mExcludedDevices.itemAt(i); |
| 1071 | if (identifier.name == item) { |
| 1072 | ALOGI("ignoring event id %s driver %s\n", devicePath, item.string()); |
| 1073 | close(fd); |
| 1074 | return -1; |
| 1075 | } |
| 1076 | } |
| 1077 | |
| 1078 | // Get device driver version. |
| 1079 | int driverVersion; |
| 1080 | if(ioctl(fd, EVIOCGVERSION, &driverVersion)) { |
| 1081 | ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno)); |
| 1082 | close(fd); |
| 1083 | return -1; |
| 1084 | } |
| 1085 | |
| 1086 | // Get device identifier. |
| 1087 | struct input_id inputId; |
| 1088 | if(ioctl(fd, EVIOCGID, &inputId)) { |
| 1089 | ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno)); |
| 1090 | close(fd); |
| 1091 | return -1; |
| 1092 | } |
| 1093 | identifier.bus = inputId.bustype; |
| 1094 | identifier.product = inputId.product; |
| 1095 | identifier.vendor = inputId.vendor; |
| 1096 | identifier.version = inputId.version; |
| 1097 | |
| 1098 | // Get device physical location. |
| 1099 | if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) { |
| 1100 | //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno)); |
| 1101 | } else { |
| 1102 | buffer[sizeof(buffer) - 1] = '\0'; |
| 1103 | identifier.location.setTo(buffer); |
| 1104 | } |
| 1105 | |
| 1106 | // Get device unique id. |
| 1107 | if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) { |
| 1108 | //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno)); |
| 1109 | } else { |
| 1110 | buffer[sizeof(buffer) - 1] = '\0'; |
| 1111 | identifier.uniqueId.setTo(buffer); |
| 1112 | } |
| 1113 | |
| 1114 | // Fill in the descriptor. |
| 1115 | assignDescriptorLocked(identifier); |
| 1116 | |
| 1117 | // Make file descriptor non-blocking for use with poll(). |
| 1118 | if (fcntl(fd, F_SETFL, O_NONBLOCK)) { |
| 1119 | ALOGE("Error %d making device file descriptor non-blocking.", errno); |
| 1120 | close(fd); |
| 1121 | return -1; |
| 1122 | } |
| 1123 | |
| 1124 | // Allocate device. (The device object takes ownership of the fd at this point.) |
| 1125 | int32_t deviceId = mNextDeviceId++; |
| 1126 | Device* device = new Device(fd, deviceId, String8(devicePath), identifier); |
| 1127 | |
| 1128 | ALOGV("add device %d: %s\n", deviceId, devicePath); |
| 1129 | ALOGV(" bus: %04x\n" |
| 1130 | " vendor %04x\n" |
| 1131 | " product %04x\n" |
| 1132 | " version %04x\n", |
| 1133 | identifier.bus, identifier.vendor, identifier.product, identifier.version); |
| 1134 | ALOGV(" name: \"%s\"\n", identifier.name.string()); |
| 1135 | ALOGV(" location: \"%s\"\n", identifier.location.string()); |
| 1136 | ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.string()); |
| 1137 | ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.string()); |
| 1138 | ALOGV(" driver: v%d.%d.%d\n", |
| 1139 | driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff); |
| 1140 | |
| 1141 | // Load the configuration file for the device. |
| 1142 | loadConfigurationLocked(device); |
| 1143 | |
| 1144 | // Figure out the kinds of events the device reports. |
| 1145 | ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask); |
| 1146 | ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask); |
| 1147 | ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask); |
| 1148 | ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask); |
| 1149 | ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask); |
| 1150 | ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask); |
| 1151 | ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask); |
| 1152 | |
| 1153 | // See if this is a keyboard. Ignore everything in the button range except for |
| 1154 | // joystick and gamepad buttons which are handled like keyboards for the most part. |
| 1155 | bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC)) |
| 1156 | || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK), |
| 1157 | sizeof_bit_array(KEY_MAX + 1)); |
| 1158 | bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC), |
| 1159 | sizeof_bit_array(BTN_MOUSE)) |
| 1160 | || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK), |
| 1161 | sizeof_bit_array(BTN_DIGI)); |
| 1162 | if (haveKeyboardKeys || haveGamepadButtons) { |
| 1163 | device->classes |= INPUT_DEVICE_CLASS_KEYBOARD; |
| 1164 | } |
| 1165 | |
| 1166 | // See if this is a cursor device such as a trackball or mouse. |
| 1167 | if (test_bit(BTN_MOUSE, device->keyBitmask) |
| 1168 | && test_bit(REL_X, device->relBitmask) |
| 1169 | && test_bit(REL_Y, device->relBitmask)) { |
| 1170 | device->classes |= INPUT_DEVICE_CLASS_CURSOR; |
| 1171 | } |
| 1172 | |
| 1173 | // See if this is a touch pad. |
| 1174 | // Is this a new modern multi-touch driver? |
| 1175 | if (test_bit(ABS_MT_POSITION_X, device->absBitmask) |
| 1176 | && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) { |
| 1177 | // Some joysticks such as the PS3 controller report axes that conflict |
| 1178 | // with the ABS_MT range. Try to confirm that the device really is |
| 1179 | // a touch screen. |
| 1180 | if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) { |
| 1181 | device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT; |
| 1182 | } |
| 1183 | // Is this an old style single-touch driver? |
| 1184 | } else if (test_bit(BTN_TOUCH, device->keyBitmask) |
| 1185 | && test_bit(ABS_X, device->absBitmask) |
| 1186 | && test_bit(ABS_Y, device->absBitmask)) { |
| 1187 | device->classes |= INPUT_DEVICE_CLASS_TOUCH; |
| 1188 | } |
| 1189 | |
| 1190 | // See if this device is a joystick. |
| 1191 | // Assumes that joysticks always have gamepad buttons in order to distinguish them |
| 1192 | // from other devices such as accelerometers that also have absolute axes. |
| 1193 | if (haveGamepadButtons) { |
| 1194 | uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK; |
| 1195 | for (int i = 0; i <= ABS_MAX; i++) { |
| 1196 | if (test_bit(i, device->absBitmask) |
| 1197 | && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) { |
| 1198 | device->classes = assumedClasses; |
| 1199 | break; |
| 1200 | } |
| 1201 | } |
| 1202 | } |
| 1203 | |
| 1204 | // Check whether this device has switches. |
| 1205 | for (int i = 0; i <= SW_MAX; i++) { |
| 1206 | if (test_bit(i, device->swBitmask)) { |
| 1207 | device->classes |= INPUT_DEVICE_CLASS_SWITCH; |
| 1208 | break; |
| 1209 | } |
| 1210 | } |
| 1211 | |
| 1212 | // Check whether this device supports the vibrator. |
| 1213 | if (test_bit(FF_RUMBLE, device->ffBitmask)) { |
| 1214 | device->classes |= INPUT_DEVICE_CLASS_VIBRATOR; |
| 1215 | } |
| 1216 | |
| 1217 | // Configure virtual keys. |
| 1218 | if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) { |
| 1219 | // Load the virtual keys for the touch screen, if any. |
| 1220 | // We do this now so that we can make sure to load the keymap if necessary. |
| 1221 | status_t status = loadVirtualKeyMapLocked(device); |
| 1222 | if (!status) { |
| 1223 | device->classes |= INPUT_DEVICE_CLASS_KEYBOARD; |
| 1224 | } |
| 1225 | } |
| 1226 | |
| 1227 | // Load the key map. |
| 1228 | // We need to do this for joysticks too because the key layout may specify axes. |
| 1229 | status_t keyMapStatus = NAME_NOT_FOUND; |
| 1230 | if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) { |
| 1231 | // Load the keymap for the device. |
| 1232 | keyMapStatus = loadKeyMapLocked(device); |
| 1233 | } |
| 1234 | |
| 1235 | // Configure the keyboard, gamepad or virtual keyboard. |
| 1236 | if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) { |
| 1237 | // Register the keyboard as a built-in keyboard if it is eligible. |
| 1238 | if (!keyMapStatus |
| 1239 | && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD |
| 1240 | && isEligibleBuiltInKeyboard(device->identifier, |
| 1241 | device->configuration, &device->keyMap)) { |
| 1242 | mBuiltInKeyboardId = device->id; |
| 1243 | } |
| 1244 | |
| 1245 | // 'Q' key support = cheap test of whether this is an alpha-capable kbd |
| 1246 | if (hasKeycodeLocked(device, AKEYCODE_Q)) { |
| 1247 | device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY; |
| 1248 | } |
| 1249 | |
| 1250 | // See if this device has a DPAD. |
| 1251 | if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) && |
| 1252 | hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) && |
| 1253 | hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) && |
| 1254 | hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) && |
| 1255 | hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) { |
| 1256 | device->classes |= INPUT_DEVICE_CLASS_DPAD; |
| 1257 | } |
| 1258 | |
| 1259 | // See if this device has a gamepad. |
| 1260 | for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) { |
| 1261 | if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) { |
| 1262 | device->classes |= INPUT_DEVICE_CLASS_GAMEPAD; |
| 1263 | break; |
| 1264 | } |
| 1265 | } |
| 1266 | |
| 1267 | // Disable kernel key repeat since we handle it ourselves |
| 1268 | unsigned int repeatRate[] = {0,0}; |
| 1269 | if (ioctl(fd, EVIOCSREP, repeatRate)) { |
| 1270 | ALOGW("Unable to disable kernel key repeat for %s: %s", devicePath, strerror(errno)); |
| 1271 | } |
| 1272 | } |
| 1273 | |
| 1274 | // If the device isn't recognized as something we handle, don't monitor it. |
| 1275 | if (device->classes == 0) { |
| 1276 | ALOGV("Dropping device: id=%d, path='%s', name='%s'", |
| 1277 | deviceId, devicePath, device->identifier.name.string()); |
| 1278 | delete device; |
| 1279 | return -1; |
| 1280 | } |
| 1281 | |
Tim Kilbourn | 063ff53 | 2015-04-08 10:26:18 -0700 | [diff] [blame] | 1282 | // Determine whether the device has a mic. |
| 1283 | if (deviceHasMicLocked(device)) { |
| 1284 | device->classes |= INPUT_DEVICE_CLASS_MIC; |
| 1285 | } |
| 1286 | |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 1287 | // Determine whether the device is external or internal. |
| 1288 | if (isExternalDeviceLocked(device)) { |
| 1289 | device->classes |= INPUT_DEVICE_CLASS_EXTERNAL; |
| 1290 | } |
| 1291 | |
Michael Wright | 42f2c6a | 2014-03-12 10:33:03 -0700 | [diff] [blame] | 1292 | if (device->classes & (INPUT_DEVICE_CLASS_JOYSTICK | INPUT_DEVICE_CLASS_DPAD) |
| 1293 | && device->classes & INPUT_DEVICE_CLASS_GAMEPAD) { |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 1294 | device->controllerNumber = getNextControllerNumberLocked(device); |
| 1295 | setLedForController(device); |
| 1296 | } |
| 1297 | |
| 1298 | // Register with epoll. |
| 1299 | struct epoll_event eventItem; |
| 1300 | memset(&eventItem, 0, sizeof(eventItem)); |
Tim Kilbourn | 3447df1 | 2015-03-26 14:12:42 -0700 | [diff] [blame] | 1301 | eventItem.events = EPOLLIN; |
| 1302 | if (mUsingEpollWakeup) { |
| 1303 | eventItem.events |= EPOLLWAKEUP; |
| 1304 | } |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 1305 | eventItem.data.u32 = deviceId; |
| 1306 | if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) { |
| 1307 | ALOGE("Could not add device fd to epoll instance. errno=%d", errno); |
| 1308 | delete device; |
| 1309 | return -1; |
| 1310 | } |
| 1311 | |
| 1312 | String8 wakeMechanism("EPOLLWAKEUP"); |
| 1313 | if (!mUsingEpollWakeup) { |
| 1314 | #ifndef EVIOCSSUSPENDBLOCK |
| 1315 | // uapi headers don't include EVIOCSSUSPENDBLOCK, and future kernels |
| 1316 | // will use an epoll flag instead, so as long as we want to support |
| 1317 | // this feature, we need to be prepared to define the ioctl ourselves. |
| 1318 | #define EVIOCSSUSPENDBLOCK _IOW('E', 0x91, int) |
| 1319 | #endif |
| 1320 | if (ioctl(fd, EVIOCSSUSPENDBLOCK, 1)) { |
| 1321 | wakeMechanism = "<none>"; |
| 1322 | } else { |
| 1323 | wakeMechanism = "EVIOCSSUSPENDBLOCK"; |
| 1324 | } |
| 1325 | } |
| 1326 | |
| 1327 | // Tell the kernel that we want to use the monotonic clock for reporting timestamps |
| 1328 | // associated with input events. This is important because the input system |
| 1329 | // uses the timestamps extensively and assumes they were recorded using the monotonic |
| 1330 | // clock. |
| 1331 | // |
| 1332 | // In older kernel, before Linux 3.4, there was no way to tell the kernel which |
| 1333 | // clock to use to input event timestamps. The standard kernel behavior was to |
| 1334 | // record a real time timestamp, which isn't what we want. Android kernels therefore |
| 1335 | // contained a patch to the evdev_event() function in drivers/input/evdev.c to |
| 1336 | // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic |
| 1337 | // clock to be used instead of the real time clock. |
| 1338 | // |
| 1339 | // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock. |
| 1340 | // Therefore, we no longer require the Android-specific kernel patch described above |
| 1341 | // as long as we make sure to set select the monotonic clock. We do that here. |
| 1342 | int clockId = CLOCK_MONOTONIC; |
| 1343 | bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId); |
| 1344 | |
| 1345 | ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, " |
| 1346 | "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, " |
| 1347 | "wakeMechanism=%s, usingClockIoctl=%s", |
| 1348 | deviceId, fd, devicePath, device->identifier.name.string(), |
| 1349 | device->classes, |
| 1350 | device->configurationFile.string(), |
| 1351 | device->keyMap.keyLayoutFile.string(), |
| 1352 | device->keyMap.keyCharacterMapFile.string(), |
| 1353 | toString(mBuiltInKeyboardId == deviceId), |
| 1354 | wakeMechanism.string(), toString(usingClockIoctl)); |
| 1355 | |
| 1356 | addDeviceLocked(device); |
| 1357 | return 0; |
| 1358 | } |
| 1359 | |
| 1360 | void EventHub::createVirtualKeyboardLocked() { |
| 1361 | InputDeviceIdentifier identifier; |
| 1362 | identifier.name = "Virtual"; |
| 1363 | identifier.uniqueId = "<virtual>"; |
| 1364 | assignDescriptorLocked(identifier); |
| 1365 | |
| 1366 | Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier); |
| 1367 | device->classes = INPUT_DEVICE_CLASS_KEYBOARD |
| 1368 | | INPUT_DEVICE_CLASS_ALPHAKEY |
| 1369 | | INPUT_DEVICE_CLASS_DPAD |
| 1370 | | INPUT_DEVICE_CLASS_VIRTUAL; |
| 1371 | loadKeyMapLocked(device); |
| 1372 | addDeviceLocked(device); |
| 1373 | } |
| 1374 | |
| 1375 | void EventHub::addDeviceLocked(Device* device) { |
| 1376 | mDevices.add(device->id, device); |
| 1377 | device->next = mOpeningDevices; |
| 1378 | mOpeningDevices = device; |
| 1379 | } |
| 1380 | |
| 1381 | void EventHub::loadConfigurationLocked(Device* device) { |
| 1382 | device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier( |
| 1383 | device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION); |
| 1384 | if (device->configurationFile.isEmpty()) { |
| 1385 | ALOGD("No input device configuration file found for device '%s'.", |
| 1386 | device->identifier.name.string()); |
| 1387 | } else { |
| 1388 | status_t status = PropertyMap::load(device->configurationFile, |
| 1389 | &device->configuration); |
| 1390 | if (status) { |
| 1391 | ALOGE("Error loading input device configuration file for device '%s'. " |
| 1392 | "Using default configuration.", |
| 1393 | device->identifier.name.string()); |
| 1394 | } |
| 1395 | } |
| 1396 | } |
| 1397 | |
| 1398 | status_t EventHub::loadVirtualKeyMapLocked(Device* device) { |
| 1399 | // The virtual key map is supplied by the kernel as a system board property file. |
| 1400 | String8 path; |
| 1401 | path.append("/sys/board_properties/virtualkeys."); |
| 1402 | path.append(device->identifier.name); |
| 1403 | if (access(path.string(), R_OK)) { |
| 1404 | return NAME_NOT_FOUND; |
| 1405 | } |
| 1406 | return VirtualKeyMap::load(path, &device->virtualKeyMap); |
| 1407 | } |
| 1408 | |
| 1409 | status_t EventHub::loadKeyMapLocked(Device* device) { |
| 1410 | return device->keyMap.load(device->identifier, device->configuration); |
| 1411 | } |
| 1412 | |
| 1413 | bool EventHub::isExternalDeviceLocked(Device* device) { |
| 1414 | if (device->configuration) { |
| 1415 | bool value; |
| 1416 | if (device->configuration->tryGetProperty(String8("device.internal"), value)) { |
| 1417 | return !value; |
| 1418 | } |
| 1419 | } |
| 1420 | return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH; |
| 1421 | } |
| 1422 | |
Tim Kilbourn | 063ff53 | 2015-04-08 10:26:18 -0700 | [diff] [blame] | 1423 | bool EventHub::deviceHasMicLocked(Device* device) { |
| 1424 | if (device->configuration) { |
| 1425 | bool value; |
| 1426 | if (device->configuration->tryGetProperty(String8("audio.mic"), value)) { |
| 1427 | return value; |
| 1428 | } |
| 1429 | } |
| 1430 | return false; |
| 1431 | } |
| 1432 | |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 1433 | int32_t EventHub::getNextControllerNumberLocked(Device* device) { |
| 1434 | if (mControllerNumbers.isFull()) { |
| 1435 | ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s", |
| 1436 | device->identifier.name.string()); |
| 1437 | return 0; |
| 1438 | } |
| 1439 | // Since the controller number 0 is reserved for non-controllers, translate all numbers up by |
| 1440 | // one |
| 1441 | return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1); |
| 1442 | } |
| 1443 | |
| 1444 | void EventHub::releaseControllerNumberLocked(Device* device) { |
| 1445 | int32_t num = device->controllerNumber; |
| 1446 | device->controllerNumber= 0; |
| 1447 | if (num == 0) { |
| 1448 | return; |
| 1449 | } |
| 1450 | mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1)); |
| 1451 | } |
| 1452 | |
| 1453 | void EventHub::setLedForController(Device* device) { |
| 1454 | for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) { |
| 1455 | setLedStateLocked(device, ALED_CONTROLLER_1 + i, device->controllerNumber == i + 1); |
| 1456 | } |
| 1457 | } |
| 1458 | |
| 1459 | bool EventHub::hasKeycodeLocked(Device* device, int keycode) const { |
Bernhard Rosenkränzer | 6183eb7 | 2014-11-17 21:09:14 +0100 | [diff] [blame] | 1460 | if (!device->keyMap.haveKeyLayout()) { |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 1461 | return false; |
| 1462 | } |
| 1463 | |
| 1464 | Vector<int32_t> scanCodes; |
| 1465 | device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes); |
| 1466 | const size_t N = scanCodes.size(); |
| 1467 | for (size_t i=0; i<N && i<=KEY_MAX; i++) { |
| 1468 | int32_t sc = scanCodes.itemAt(i); |
| 1469 | if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) { |
| 1470 | return true; |
| 1471 | } |
| 1472 | } |
| 1473 | |
| 1474 | return false; |
| 1475 | } |
| 1476 | |
| 1477 | status_t EventHub::mapLed(Device* device, int32_t led, int32_t* outScanCode) const { |
Bernhard Rosenkränzer | 6183eb7 | 2014-11-17 21:09:14 +0100 | [diff] [blame] | 1478 | if (!device->keyMap.haveKeyLayout()) { |
Michael Wright | d02c5b6 | 2014-02-10 15:10:22 -0800 | [diff] [blame] | 1479 | return NAME_NOT_FOUND; |
| 1480 | } |
| 1481 | |
| 1482 | int32_t scanCode; |
| 1483 | if(device->keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) { |
| 1484 | if(scanCode >= 0 && scanCode <= LED_MAX && test_bit(scanCode, device->ledBitmask)) { |
| 1485 | *outScanCode = scanCode; |
| 1486 | return NO_ERROR; |
| 1487 | } |
| 1488 | } |
| 1489 | return NAME_NOT_FOUND; |
| 1490 | } |
| 1491 | |
| 1492 | status_t EventHub::closeDeviceByPathLocked(const char *devicePath) { |
| 1493 | Device* device = getDeviceByPathLocked(devicePath); |
| 1494 | if (device) { |
| 1495 | closeDeviceLocked(device); |
| 1496 | return 0; |
| 1497 | } |
| 1498 | ALOGV("Remove device: %s not found, device may already have been removed.", devicePath); |
| 1499 | return -1; |
| 1500 | } |
| 1501 | |
| 1502 | void EventHub::closeAllDevicesLocked() { |
| 1503 | while (mDevices.size() > 0) { |
| 1504 | closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1)); |
| 1505 | } |
| 1506 | } |
| 1507 | |
| 1508 | void EventHub::closeDeviceLocked(Device* device) { |
| 1509 | ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n", |
| 1510 | device->path.string(), device->identifier.name.string(), device->id, |
| 1511 | device->fd, device->classes); |
| 1512 | |
| 1513 | if (device->id == mBuiltInKeyboardId) { |
| 1514 | ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this", |
| 1515 | device->path.string(), mBuiltInKeyboardId); |
| 1516 | mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD; |
| 1517 | } |
| 1518 | |
| 1519 | if (!device->isVirtual()) { |
| 1520 | if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) { |
| 1521 | ALOGW("Could not remove device fd from epoll instance. errno=%d", errno); |
| 1522 | } |
| 1523 | } |
| 1524 | |
| 1525 | releaseControllerNumberLocked(device); |
| 1526 | |
| 1527 | mDevices.removeItem(device->id); |
| 1528 | device->close(); |
| 1529 | |
| 1530 | // Unlink for opening devices list if it is present. |
| 1531 | Device* pred = NULL; |
| 1532 | bool found = false; |
| 1533 | for (Device* entry = mOpeningDevices; entry != NULL; ) { |
| 1534 | if (entry == device) { |
| 1535 | found = true; |
| 1536 | break; |
| 1537 | } |
| 1538 | pred = entry; |
| 1539 | entry = entry->next; |
| 1540 | } |
| 1541 | if (found) { |
| 1542 | // Unlink the device from the opening devices list then delete it. |
| 1543 | // We don't need to tell the client that the device was closed because |
| 1544 | // it does not even know it was opened in the first place. |
| 1545 | ALOGI("Device %s was immediately closed after opening.", device->path.string()); |
| 1546 | if (pred) { |
| 1547 | pred->next = device->next; |
| 1548 | } else { |
| 1549 | mOpeningDevices = device->next; |
| 1550 | } |
| 1551 | delete device; |
| 1552 | } else { |
| 1553 | // Link into closing devices list. |
| 1554 | // The device will be deleted later after we have informed the client. |
| 1555 | device->next = mClosingDevices; |
| 1556 | mClosingDevices = device; |
| 1557 | } |
| 1558 | } |
| 1559 | |
| 1560 | status_t EventHub::readNotifyLocked() { |
| 1561 | int res; |
| 1562 | char devname[PATH_MAX]; |
| 1563 | char *filename; |
| 1564 | char event_buf[512]; |
| 1565 | int event_size; |
| 1566 | int event_pos = 0; |
| 1567 | struct inotify_event *event; |
| 1568 | |
| 1569 | ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd); |
| 1570 | res = read(mINotifyFd, event_buf, sizeof(event_buf)); |
| 1571 | if(res < (int)sizeof(*event)) { |
| 1572 | if(errno == EINTR) |
| 1573 | return 0; |
| 1574 | ALOGW("could not get event, %s\n", strerror(errno)); |
| 1575 | return -1; |
| 1576 | } |
| 1577 | //printf("got %d bytes of event information\n", res); |
| 1578 | |
| 1579 | strcpy(devname, DEVICE_PATH); |
| 1580 | filename = devname + strlen(devname); |
| 1581 | *filename++ = '/'; |
| 1582 | |
| 1583 | while(res >= (int)sizeof(*event)) { |
| 1584 | event = (struct inotify_event *)(event_buf + event_pos); |
| 1585 | //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : ""); |
| 1586 | if(event->len) { |
| 1587 | strcpy(filename, event->name); |
| 1588 | if(event->mask & IN_CREATE) { |
| 1589 | openDeviceLocked(devname); |
| 1590 | } else { |
| 1591 | ALOGI("Removing device '%s' due to inotify event\n", devname); |
| 1592 | closeDeviceByPathLocked(devname); |
| 1593 | } |
| 1594 | } |
| 1595 | event_size = sizeof(*event) + event->len; |
| 1596 | res -= event_size; |
| 1597 | event_pos += event_size; |
| 1598 | } |
| 1599 | return 0; |
| 1600 | } |
| 1601 | |
| 1602 | status_t EventHub::scanDirLocked(const char *dirname) |
| 1603 | { |
| 1604 | char devname[PATH_MAX]; |
| 1605 | char *filename; |
| 1606 | DIR *dir; |
| 1607 | struct dirent *de; |
| 1608 | dir = opendir(dirname); |
| 1609 | if(dir == NULL) |
| 1610 | return -1; |
| 1611 | strcpy(devname, dirname); |
| 1612 | filename = devname + strlen(devname); |
| 1613 | *filename++ = '/'; |
| 1614 | while((de = readdir(dir))) { |
| 1615 | if(de->d_name[0] == '.' && |
| 1616 | (de->d_name[1] == '\0' || |
| 1617 | (de->d_name[1] == '.' && de->d_name[2] == '\0'))) |
| 1618 | continue; |
| 1619 | strcpy(filename, de->d_name); |
| 1620 | openDeviceLocked(devname); |
| 1621 | } |
| 1622 | closedir(dir); |
| 1623 | return 0; |
| 1624 | } |
| 1625 | |
| 1626 | void EventHub::requestReopenDevices() { |
| 1627 | ALOGV("requestReopenDevices() called"); |
| 1628 | |
| 1629 | AutoMutex _l(mLock); |
| 1630 | mNeedToReopenDevices = true; |
| 1631 | } |
| 1632 | |
| 1633 | void EventHub::dump(String8& dump) { |
| 1634 | dump.append("Event Hub State:\n"); |
| 1635 | |
| 1636 | { // acquire lock |
| 1637 | AutoMutex _l(mLock); |
| 1638 | |
| 1639 | dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId); |
| 1640 | |
| 1641 | dump.append(INDENT "Devices:\n"); |
| 1642 | |
| 1643 | for (size_t i = 0; i < mDevices.size(); i++) { |
| 1644 | const Device* device = mDevices.valueAt(i); |
| 1645 | if (mBuiltInKeyboardId == device->id) { |
| 1646 | dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n", |
| 1647 | device->id, device->identifier.name.string()); |
| 1648 | } else { |
| 1649 | dump.appendFormat(INDENT2 "%d: %s\n", device->id, |
| 1650 | device->identifier.name.string()); |
| 1651 | } |
| 1652 | dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes); |
| 1653 | dump.appendFormat(INDENT3 "Path: %s\n", device->path.string()); |
| 1654 | dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string()); |
| 1655 | dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string()); |
| 1656 | dump.appendFormat(INDENT3 "ControllerNumber: %d\n", device->controllerNumber); |
| 1657 | dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string()); |
| 1658 | dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, " |
| 1659 | "product=0x%04x, version=0x%04x\n", |
| 1660 | device->identifier.bus, device->identifier.vendor, |
| 1661 | device->identifier.product, device->identifier.version); |
| 1662 | dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n", |
| 1663 | device->keyMap.keyLayoutFile.string()); |
| 1664 | dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n", |
| 1665 | device->keyMap.keyCharacterMapFile.string()); |
| 1666 | dump.appendFormat(INDENT3 "ConfigurationFile: %s\n", |
| 1667 | device->configurationFile.string()); |
| 1668 | dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n", |
| 1669 | toString(device->overlayKeyMap != NULL)); |
| 1670 | } |
| 1671 | } // release lock |
| 1672 | } |
| 1673 | |
| 1674 | void EventHub::monitor() { |
| 1675 | // Acquire and release the lock to ensure that the event hub has not deadlocked. |
| 1676 | mLock.lock(); |
| 1677 | mLock.unlock(); |
| 1678 | } |
| 1679 | |
| 1680 | |
| 1681 | }; // namespace android |