blob: 9eb112b821b37a3241dbf7b76645b2d433c36768 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Perform register memory operation.
28 */
29LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070030 int reg1, int base, int offset, ThrowKind kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070031 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
32 current_dalvik_offset_, reg1, base, offset);
33 OpRegMem(kOpCmp, reg1, base, offset);
34 LIR* branch = OpCondBranch(c_code, tgt);
35 // Remember branch target - will process later
36 throw_launchpads_.Insert(tgt);
37 return branch;
38}
39
40/*
Mark Mendell343adb52013-12-18 06:02:17 -080041 * Perform a compare of memory to immediate value
42 */
43LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code,
44 int base, int offset, int check_value, ThrowKind kind) {
45 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
46 current_dalvik_offset_, base, check_value, 0);
47 NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value);
48 LIR* branch = OpCondBranch(c_code, tgt);
49 // Remember branch target - will process later
50 throw_launchpads_.Insert(tgt);
51 return branch;
52}
53
54/*
Brian Carlstrom7940e442013-07-12 13:46:57 -070055 * Compare two 64-bit values
56 * x = y return 0
57 * x < y return -1
58 * x > y return 1
59 */
60void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070061 RegLocation rl_src2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070062 FlushAllRegs();
63 LockCallTemps(); // Prepare for explicit register usage
64 LoadValueDirectWideFixed(rl_src1, r0, r1);
65 LoadValueDirectWideFixed(rl_src2, r2, r3);
66 // Compute (r1:r0) = (r1:r0) - (r3:r2)
67 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
68 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
69 NewLIR2(kX86Set8R, r2, kX86CondL); // r2 = (r1:r0) < (r3:r2) ? 1 : 0
70 NewLIR2(kX86Movzx8RR, r2, r2);
71 OpReg(kOpNeg, r2); // r2 = -r2
72 OpRegReg(kOpOr, r0, r1); // r0 = high | low - sets ZF
73 NewLIR2(kX86Set8R, r0, kX86CondNz); // r0 = (r1:r0) != (r3:r2) ? 1 : 0
74 NewLIR2(kX86Movzx8RR, r0, r0);
75 OpRegReg(kOpOr, r0, r2); // r0 = r0 | r2
76 RegLocation rl_result = LocCReturn();
77 StoreValue(rl_dest, rl_result);
78}
79
80X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
81 switch (cond) {
82 case kCondEq: return kX86CondEq;
83 case kCondNe: return kX86CondNe;
84 case kCondCs: return kX86CondC;
85 case kCondCc: return kX86CondNc;
Vladimir Marko58af1f92013-12-19 13:31:15 +000086 case kCondUlt: return kX86CondC;
87 case kCondUge: return kX86CondNc;
Brian Carlstrom7940e442013-07-12 13:46:57 -070088 case kCondMi: return kX86CondS;
89 case kCondPl: return kX86CondNs;
90 case kCondVs: return kX86CondO;
91 case kCondVc: return kX86CondNo;
92 case kCondHi: return kX86CondA;
93 case kCondLs: return kX86CondBe;
94 case kCondGe: return kX86CondGe;
95 case kCondLt: return kX86CondL;
96 case kCondGt: return kX86CondG;
97 case kCondLe: return kX86CondLe;
98 case kCondAl:
99 case kCondNv: LOG(FATAL) << "Should not reach here";
100 }
101 return kX86CondO;
102}
103
104LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700105 LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700106 NewLIR2(kX86Cmp32RR, src1, src2);
107 X86ConditionCode cc = X86ConditionEncoding(cond);
108 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
109 cc);
110 branch->target = target;
111 return branch;
112}
113
114LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700115 int check_value, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700116 if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
117 // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
118 NewLIR2(kX86Test32RR, reg, reg);
119 } else {
120 NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value);
121 }
122 X86ConditionCode cc = X86ConditionEncoding(cond);
123 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
124 branch->target = target;
125 return branch;
126}
127
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700128LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700129 if (X86_FPREG(r_dest) || X86_FPREG(r_src))
130 return OpFpRegCopy(r_dest, r_src);
131 LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
132 r_dest, r_src);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800133 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700134 res->flags.is_nop = true;
135 }
136 return res;
137}
138
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700139LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700140 LIR *res = OpRegCopyNoInsert(r_dest, r_src);
141 AppendLIR(res);
142 return res;
143}
144
145void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700146 int src_lo, int src_hi) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700147 bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi);
148 bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi);
149 assert(X86_FPREG(src_lo) == X86_FPREG(src_hi));
150 assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi));
151 if (dest_fp) {
152 if (src_fp) {
153 OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
154 } else {
155 // TODO: Prevent this from happening in the code. The result is often
156 // unused or could have been loaded more easily from memory.
157 NewLIR2(kX86MovdxrRR, dest_lo, src_lo);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000158 dest_hi = AllocTempDouble();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700159 NewLIR2(kX86MovdxrRR, dest_hi, src_hi);
Razvan A Lupusoruf43adf62014-01-28 09:25:52 -0800160 NewLIR2(kX86PunpckldqRR, dest_lo, dest_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000161 FreeTemp(dest_hi);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700162 }
163 } else {
164 if (src_fp) {
165 NewLIR2(kX86MovdrxRR, dest_lo, src_lo);
166 NewLIR2(kX86PsrlqRI, src_lo, 32);
167 NewLIR2(kX86MovdrxRR, dest_hi, src_lo);
168 } else {
169 // Handle overlap
Razvan A Lupusoru3bc01742014-02-06 13:18:43 -0800170 if (src_hi == dest_lo && src_lo == dest_hi) {
171 // Deal with cycles.
172 int temp_reg = AllocTemp();
173 OpRegCopy(temp_reg, dest_hi);
174 OpRegCopy(dest_hi, dest_lo);
175 OpRegCopy(dest_lo, temp_reg);
176 FreeTemp(temp_reg);
177 } else if (src_hi == dest_lo) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700178 OpRegCopy(dest_hi, src_hi);
179 OpRegCopy(dest_lo, src_lo);
180 } else {
181 OpRegCopy(dest_lo, src_lo);
182 OpRegCopy(dest_hi, src_hi);
183 }
184 }
185 }
186}
187
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700188void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800189 RegLocation rl_result;
190 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
191 RegLocation rl_dest = mir_graph_->GetDest(mir);
192 rl_src = LoadValue(rl_src, kCoreReg);
193
194 // The kMirOpSelect has two variants, one for constants and one for moves.
195 const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
196
197 if (is_constant_case) {
198 int true_val = mir->dalvikInsn.vB;
199 int false_val = mir->dalvikInsn.vC;
200 rl_result = EvalLoc(rl_dest, kCoreReg, true);
201
202 /*
203 * 1) When the true case is zero and result_reg is not same as src_reg:
204 * xor result_reg, result_reg
205 * cmp $0, src_reg
206 * mov t1, $false_case
207 * cmovnz result_reg, t1
208 * 2) When the false case is zero and result_reg is not same as src_reg:
209 * xor result_reg, result_reg
210 * cmp $0, src_reg
211 * mov t1, $true_case
212 * cmovz result_reg, t1
213 * 3) All other cases (we do compare first to set eflags):
214 * cmp $0, src_reg
215 * mov result_reg, $true_case
216 * mov t1, $false_case
217 * cmovnz result_reg, t1
218 */
219 const bool result_reg_same_as_src = (rl_src.location == kLocPhysReg && rl_src.low_reg == rl_result.low_reg);
220 const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
221 const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
222 const bool catch_all_case = !(true_zero_case || false_zero_case);
223
224 if (true_zero_case || false_zero_case) {
225 OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
226 }
227
228 if (true_zero_case || false_zero_case || catch_all_case) {
229 OpRegImm(kOpCmp, rl_src.low_reg, 0);
230 }
231
232 if (catch_all_case) {
233 OpRegImm(kOpMov, rl_result.low_reg, true_val);
234 }
235
236 if (true_zero_case || false_zero_case || catch_all_case) {
237 int immediateForTemp = false_zero_case ? true_val : false_val;
238 int temp1_reg = AllocTemp();
239 OpRegImm(kOpMov, temp1_reg, immediateForTemp);
240
241 ConditionCode cc = false_zero_case ? kCondEq : kCondNe;
242 OpCondRegReg(kOpCmov, cc, rl_result.low_reg, temp1_reg);
243
244 FreeTemp(temp1_reg);
245 }
246 } else {
247 RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
248 RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
249 rl_true = LoadValue(rl_true, kCoreReg);
250 rl_false = LoadValue(rl_false, kCoreReg);
251 rl_result = EvalLoc(rl_dest, kCoreReg, true);
252
253 /*
254 * 1) When true case is already in place:
255 * cmp $0, src_reg
256 * cmovnz result_reg, false_reg
257 * 2) When false case is already in place:
258 * cmp $0, src_reg
259 * cmovz result_reg, true_reg
260 * 3) When neither cases are in place:
261 * cmp $0, src_reg
262 * mov result_reg, true_reg
263 * cmovnz result_reg, false_reg
264 */
265
266 // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
267 OpRegImm(kOpCmp, rl_src.low_reg, 0);
268
269 if (rl_result.low_reg == rl_true.low_reg) {
270 OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
271 } else if (rl_result.low_reg == rl_false.low_reg) {
272 OpCondRegReg(kOpCmov, kCondEq, rl_result.low_reg, rl_true.low_reg);
273 } else {
274 OpRegCopy(rl_result.low_reg, rl_true.low_reg);
275 OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
276 }
277 }
278
279 StoreValue(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700280}
281
282void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
buzbee0d829482013-10-11 15:24:55 -0700283 LIR* taken = &block_label_list_[bb->taken];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700284 RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
285 RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
Vladimir Markoa8946072014-01-22 10:30:44 +0000286 ConditionCode ccode = mir->meta.ccode;
Mark Mendell412d4f82013-12-18 13:32:36 -0800287
288 if (rl_src1.is_const) {
289 std::swap(rl_src1, rl_src2);
290 ccode = FlipComparisonOrder(ccode);
291 }
292 if (rl_src2.is_const) {
293 // Do special compare/branch against simple const operand
294 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
295 GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
296 return;
297 }
298
Brian Carlstrom7940e442013-07-12 13:46:57 -0700299 FlushAllRegs();
300 LockCallTemps(); // Prepare for explicit register usage
301 LoadValueDirectWideFixed(rl_src1, r0, r1);
302 LoadValueDirectWideFixed(rl_src2, r2, r3);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700303 // Swap operands and condition code to prevent use of zero flag.
304 if (ccode == kCondLe || ccode == kCondGt) {
305 // Compute (r3:r2) = (r3:r2) - (r1:r0)
306 OpRegReg(kOpSub, r2, r0); // r2 = r2 - r0
307 OpRegReg(kOpSbc, r3, r1); // r3 = r3 - r1 - CF
308 } else {
309 // Compute (r1:r0) = (r1:r0) - (r3:r2)
310 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
311 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
312 }
313 switch (ccode) {
314 case kCondEq:
315 case kCondNe:
316 OpRegReg(kOpOr, r0, r1); // r0 = r0 | r1
317 break;
318 case kCondLe:
319 ccode = kCondGe;
320 break;
321 case kCondGt:
322 ccode = kCondLt;
323 break;
324 case kCondLt:
325 case kCondGe:
326 break;
327 default:
328 LOG(FATAL) << "Unexpected ccode: " << ccode;
329 }
330 OpCondBranch(ccode, taken);
331}
332
Mark Mendell412d4f82013-12-18 13:32:36 -0800333void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
334 int64_t val, ConditionCode ccode) {
335 int32_t val_lo = Low32Bits(val);
336 int32_t val_hi = High32Bits(val);
337 LIR* taken = &block_label_list_[bb->taken];
338 LIR* not_taken = &block_label_list_[bb->fall_through];
339 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
340 int32_t low_reg = rl_src1.low_reg;
341 int32_t high_reg = rl_src1.high_reg;
342
343 if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
344 int t_reg = AllocTemp();
345 OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
346 FreeTemp(t_reg);
347 OpCondBranch(ccode, taken);
348 return;
349 }
350
351 OpRegImm(kOpCmp, high_reg, val_hi);
352 switch (ccode) {
353 case kCondEq:
354 case kCondNe:
355 OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
356 break;
357 case kCondLt:
358 OpCondBranch(kCondLt, taken);
359 OpCondBranch(kCondGt, not_taken);
360 ccode = kCondUlt;
361 break;
362 case kCondLe:
363 OpCondBranch(kCondLt, taken);
364 OpCondBranch(kCondGt, not_taken);
365 ccode = kCondLs;
366 break;
367 case kCondGt:
368 OpCondBranch(kCondGt, taken);
369 OpCondBranch(kCondLt, not_taken);
370 ccode = kCondHi;
371 break;
372 case kCondGe:
373 OpCondBranch(kCondGt, taken);
374 OpCondBranch(kCondLt, not_taken);
375 ccode = kCondUge;
376 break;
377 default:
378 LOG(FATAL) << "Unexpected ccode: " << ccode;
379 }
380 OpCmpImmBranch(ccode, low_reg, val_lo, taken);
381}
382
Mark Mendell2bf31e62014-01-23 12:13:40 -0800383void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
384 // It does not make sense to calculate magic and shift for zero divisor.
385 DCHECK_NE(divisor, 0);
386
387 /* According to H.S.Warren's Hacker's Delight Chapter 10 and
388 * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
389 * The magic number M and shift S can be calculated in the following way:
390 * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
391 * where divisor(d) >=2.
392 * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
393 * where divisor(d) <= -2.
394 * Thus nc can be calculated like:
395 * nc = 2^31 + 2^31 % d - 1, where d >= 2
396 * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
397 *
398 * So the shift p is the smallest p satisfying
399 * 2^p > nc * (d - 2^p % d), where d >= 2
400 * 2^p > nc * (d + 2^p % d), where d <= -2.
401 *
402 * the magic number M is calcuated by
403 * M = (2^p + d - 2^p % d) / d, where d >= 2
404 * M = (2^p - d - 2^p % d) / d, where d <= -2.
405 *
406 * Notice that p is always bigger than or equal to 32, so we just return 32-p as
407 * the shift number S.
408 */
409
410 int32_t p = 31;
411 const uint32_t two31 = 0x80000000U;
412
413 // Initialize the computations.
414 uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
415 uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
416 uint32_t abs_nc = tmp - 1 - tmp % abs_d;
417 uint32_t quotient1 = two31 / abs_nc;
418 uint32_t remainder1 = two31 % abs_nc;
419 uint32_t quotient2 = two31 / abs_d;
420 uint32_t remainder2 = two31 % abs_d;
421
422 /*
423 * To avoid handling both positive and negative divisor, Hacker's Delight
424 * introduces a method to handle these 2 cases together to avoid duplication.
425 */
426 uint32_t delta;
427 do {
428 p++;
429 quotient1 = 2 * quotient1;
430 remainder1 = 2 * remainder1;
431 if (remainder1 >= abs_nc) {
432 quotient1++;
433 remainder1 = remainder1 - abs_nc;
434 }
435 quotient2 = 2 * quotient2;
436 remainder2 = 2 * remainder2;
437 if (remainder2 >= abs_d) {
438 quotient2++;
439 remainder2 = remainder2 - abs_d;
440 }
441 delta = abs_d - remainder2;
442 } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
443
444 magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
445 shift = p - 32;
446}
447
Brian Carlstrom7940e442013-07-12 13:46:57 -0700448RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700449 int lit, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700450 LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
451 return rl_dest;
452}
453
Mark Mendell2bf31e62014-01-23 12:13:40 -0800454RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
455 int imm, bool is_div) {
456 // Use a multiply (and fixup) to perform an int div/rem by a constant.
457
458 // We have to use fixed registers, so flush all the temps.
459 FlushAllRegs();
460 LockCallTemps(); // Prepare for explicit register usage.
461
462 // Assume that the result will be in EDX.
463 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
464 r2, INVALID_REG, INVALID_SREG, INVALID_SREG};
465
466 // handle 0x80000000 / -1 special case.
467 LIR *minint_branch = 0;
468 if (imm == -1) {
469 if (is_div) {
470 LoadValueDirectFixed(rl_src, r0);
471 OpRegImm(kOpCmp, r0, 0x80000000);
472 minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
473
474 // for x != MIN_INT, x / -1 == -x.
475 NewLIR1(kX86Neg32R, r0);
476
477 LIR* branch_around = NewLIR1(kX86Jmp8, 0);
478 // The target for cmp/jmp above.
479 minint_branch->target = NewLIR0(kPseudoTargetLabel);
480 // EAX already contains the right value (0x80000000),
481 branch_around->target = NewLIR0(kPseudoTargetLabel);
482 } else {
483 // x % -1 == 0.
484 LoadConstantNoClobber(r0, 0);
485 }
486 // For this case, return the result in EAX.
487 rl_result.low_reg = r0;
488 } else {
489 DCHECK(imm <= -2 || imm >= 2);
490 // Use H.S.Warren's Hacker's Delight Chapter 10 and
491 // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
492 int magic, shift;
493 CalculateMagicAndShift(imm, magic, shift);
494
495 /*
496 * For imm >= 2,
497 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
498 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
499 * For imm <= -2,
500 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
501 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
502 * We implement this algorithm in the following way:
503 * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
504 * 2. if imm > 0 and magic < 0, add numerator to EDX
505 * if imm < 0 and magic > 0, sub numerator from EDX
506 * 3. if S !=0, SAR S bits for EDX
507 * 4. add 1 to EDX if EDX < 0
508 * 5. Thus, EDX is the quotient
509 */
510
511 // Numerator into EAX.
512 int numerator_reg = -1;
513 if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
514 // We will need the value later.
515 if (rl_src.location == kLocPhysReg) {
516 // We can use it directly.
517 DCHECK(rl_src.low_reg != r0 && rl_src.low_reg != r2);
518 numerator_reg = rl_src.low_reg;
519 } else {
520 LoadValueDirectFixed(rl_src, r1);
521 numerator_reg = r1;
522 }
523 OpRegCopy(r0, numerator_reg);
524 } else {
525 // Only need this once. Just put it into EAX.
526 LoadValueDirectFixed(rl_src, r0);
527 }
528
529 // EDX = magic.
530 LoadConstantNoClobber(r2, magic);
531
532 // EDX:EAX = magic & dividend.
533 NewLIR1(kX86Imul32DaR, r2);
534
535 if (imm > 0 && magic < 0) {
536 // Add numerator to EDX.
537 DCHECK_NE(numerator_reg, -1);
538 NewLIR2(kX86Add32RR, r2, numerator_reg);
539 } else if (imm < 0 && magic > 0) {
540 DCHECK_NE(numerator_reg, -1);
541 NewLIR2(kX86Sub32RR, r2, numerator_reg);
542 }
543
544 // Do we need the shift?
545 if (shift != 0) {
546 // Shift EDX by 'shift' bits.
547 NewLIR2(kX86Sar32RI, r2, shift);
548 }
549
550 // Add 1 to EDX if EDX < 0.
551
552 // Move EDX to EAX.
553 OpRegCopy(r0, r2);
554
555 // Move sign bit to bit 0, zeroing the rest.
556 NewLIR2(kX86Shr32RI, r2, 31);
557
558 // EDX = EDX + EAX.
559 NewLIR2(kX86Add32RR, r2, r0);
560
561 // Quotient is in EDX.
562 if (!is_div) {
563 // We need to compute the remainder.
564 // Remainder is divisor - (quotient * imm).
565 DCHECK_NE(numerator_reg, -1);
566 OpRegCopy(r0, numerator_reg);
567
568 // EAX = numerator * imm.
569 OpRegRegImm(kOpMul, r2, r2, imm);
570
571 // EDX -= EAX.
572 NewLIR2(kX86Sub32RR, r0, r2);
573
574 // For this case, return the result in EAX.
575 rl_result.low_reg = r0;
576 }
577 }
578
579 return rl_result;
580}
581
Brian Carlstrom7940e442013-07-12 13:46:57 -0700582RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700583 int reg_hi, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700584 LOG(FATAL) << "Unexpected use of GenDivRem for x86";
585 return rl_dest;
586}
587
Mark Mendell2bf31e62014-01-23 12:13:40 -0800588RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
589 RegLocation rl_src2, bool is_div, bool check_zero) {
590 // We have to use fixed registers, so flush all the temps.
591 FlushAllRegs();
592 LockCallTemps(); // Prepare for explicit register usage.
593
594 // Load LHS into EAX.
595 LoadValueDirectFixed(rl_src1, r0);
596
597 // Load RHS into EBX.
598 LoadValueDirectFixed(rl_src2, r1);
599
600 // Copy LHS sign bit into EDX.
601 NewLIR0(kx86Cdq32Da);
602
603 if (check_zero) {
604 // Handle division by zero case.
605 GenImmedCheck(kCondEq, r1, 0, kThrowDivZero);
606 }
607
608 // Have to catch 0x80000000/-1 case, or we will get an exception!
609 OpRegImm(kOpCmp, r1, -1);
610 LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
611
612 // RHS is -1.
613 OpRegImm(kOpCmp, r0, 0x80000000);
614 LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
615
616 // In 0x80000000/-1 case.
617 if (!is_div) {
618 // For DIV, EAX is already right. For REM, we need EDX 0.
619 LoadConstantNoClobber(r2, 0);
620 }
621 LIR* done = NewLIR1(kX86Jmp8, 0);
622
623 // Expected case.
624 minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
625 minint_branch->target = minus_one_branch->target;
626 NewLIR1(kX86Idivmod32DaR, r1);
627 done->target = NewLIR0(kPseudoTargetLabel);
628
629 // Result is in EAX for div and EDX for rem.
630 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
631 r0, INVALID_REG, INVALID_SREG, INVALID_SREG};
632 if (!is_div) {
633 rl_result.low_reg = r2;
634 }
635 return rl_result;
636}
637
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700638bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700639 DCHECK_EQ(cu_->instruction_set, kX86);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800640
641 // Get the two arguments to the invoke and place them in GP registers.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700642 RegLocation rl_src1 = info->args[0];
643 RegLocation rl_src2 = info->args[1];
644 rl_src1 = LoadValue(rl_src1, kCoreReg);
645 rl_src2 = LoadValue(rl_src2, kCoreReg);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800646
Brian Carlstrom7940e442013-07-12 13:46:57 -0700647 RegLocation rl_dest = InlineTarget(info);
648 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800649
650 /*
651 * If the result register is the same as the second element, then we need to be careful.
652 * The reason is that the first copy will inadvertently clobber the second element with
653 * the first one thus yielding the wrong result. Thus we do a swap in that case.
654 */
655 if (rl_result.low_reg == rl_src2.low_reg) {
656 std::swap(rl_src1, rl_src2);
657 }
658
659 // Pick the first integer as min/max.
660 OpRegCopy(rl_result.low_reg, rl_src1.low_reg);
661
662 // If the integers are both in the same register, then there is nothing else to do
663 // because they are equal and we have already moved one into the result.
664 if (rl_src1.low_reg != rl_src2.low_reg) {
665 // It is possible we didn't pick correctly so do the actual comparison now.
666 OpRegReg(kOpCmp, rl_src1.low_reg, rl_src2.low_reg);
667
668 // Conditionally move the other integer into the destination register.
669 ConditionCode condition_code = is_min ? kCondGt : kCondLt;
670 OpCondRegReg(kOpCmov, condition_code, rl_result.low_reg, rl_src2.low_reg);
671 }
672
Brian Carlstrom7940e442013-07-12 13:46:57 -0700673 StoreValue(rl_dest, rl_result);
674 return true;
675}
676
Vladimir Markoe508a202013-11-04 15:24:22 +0000677bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
678 RegLocation rl_src_address = info->args[0]; // long address
679 rl_src_address.wide = 0; // ignore high half in info->args[1]
Mark Mendell55d0eac2014-02-06 11:02:52 -0800680 RegLocation rl_dest = size == kLong ? InlineTargetWide(info) : InlineTarget(info);
Vladimir Markoe508a202013-11-04 15:24:22 +0000681 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
682 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
683 if (size == kLong) {
684 // Unaligned access is allowed on x86.
685 LoadBaseDispWide(rl_address.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
686 StoreValueWide(rl_dest, rl_result);
687 } else {
688 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
689 // Unaligned access is allowed on x86.
690 LoadBaseDisp(rl_address.low_reg, 0, rl_result.low_reg, size, INVALID_SREG);
691 StoreValue(rl_dest, rl_result);
692 }
693 return true;
694}
695
696bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
697 RegLocation rl_src_address = info->args[0]; // long address
698 rl_src_address.wide = 0; // ignore high half in info->args[1]
699 RegLocation rl_src_value = info->args[2]; // [size] value
700 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
701 if (size == kLong) {
702 // Unaligned access is allowed on x86.
703 RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
704 StoreBaseDispWide(rl_address.low_reg, 0, rl_value.low_reg, rl_value.high_reg);
705 } else {
706 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
707 // Unaligned access is allowed on x86.
708 RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
709 StoreBaseDisp(rl_address.low_reg, 0, rl_value.low_reg, size);
710 }
711 return true;
712}
713
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700714void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700715 NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset);
716}
717
Ian Rogers468532e2013-08-05 10:56:33 -0700718void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) {
719 NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700720}
721
Vladimir Marko1c282e22013-11-21 14:49:47 +0000722bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
Vladimir Markoc29bb612013-11-27 16:47:25 +0000723 DCHECK_EQ(cu_->instruction_set, kX86);
724 // Unused - RegLocation rl_src_unsafe = info->args[0];
725 RegLocation rl_src_obj = info->args[1]; // Object - known non-null
726 RegLocation rl_src_offset = info->args[2]; // long low
727 rl_src_offset.wide = 0; // ignore high half in info->args[3]
728 RegLocation rl_src_expected = info->args[4]; // int, long or Object
729 // If is_long, high half is in info->args[5]
730 RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object
731 // If is_long, high half is in info->args[7]
732
733 if (is_long) {
Vladimir Marko70b797d2013-12-03 15:25:24 +0000734 FlushAllRegs();
735 LockCallTemps();
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000736 LoadValueDirectWideFixed(rl_src_expected, rAX, rDX);
737 LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000738 NewLIR1(kX86Push32R, rDI);
739 MarkTemp(rDI);
740 LockTemp(rDI);
741 NewLIR1(kX86Push32R, rSI);
742 MarkTemp(rSI);
743 LockTemp(rSI);
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000744 const int push_offset = 4 /* push edi */ + 4 /* push esi */;
745 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rDI);
746 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rSI);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000747 NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
748 FreeTemp(rSI);
749 UnmarkTemp(rSI);
750 NewLIR1(kX86Pop32R, rSI);
751 FreeTemp(rDI);
752 UnmarkTemp(rDI);
753 NewLIR1(kX86Pop32R, rDI);
754 FreeCallTemps();
Vladimir Markoc29bb612013-11-27 16:47:25 +0000755 } else {
756 // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
757 FlushReg(r0);
758 LockTemp(r0);
759
760 // Release store semantics, get the barrier out of the way. TODO: revisit
761 GenMemBarrier(kStoreLoad);
762
763 RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
764 RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
765
766 if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
767 // Mark card for object assuming new value is stored.
768 FreeTemp(r0); // Temporarily release EAX for MarkGCCard().
769 MarkGCCard(rl_new_value.low_reg, rl_object.low_reg);
770 LockTemp(r0);
771 }
772
773 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
774 LoadValueDirect(rl_src_expected, r0);
775 NewLIR5(kX86LockCmpxchgAR, rl_object.low_reg, rl_offset.low_reg, 0, 0, rl_new_value.low_reg);
776
777 FreeTemp(r0);
778 }
779
780 // Convert ZF to boolean
781 RegLocation rl_dest = InlineTarget(info); // boolean place for result
782 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
783 NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondZ);
784 NewLIR2(kX86Movzx8RR, rl_result.low_reg, rl_result.low_reg);
785 StoreValue(rl_dest, rl_result);
786 return true;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700787}
788
789LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800790 CHECK(base_of_code_ != nullptr);
791
792 // Address the start of the method
793 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
794 LoadValueDirectFixed(rl_method, reg);
795 store_method_addr_used_ = true;
796
797 // Load the proper value from the literal area.
798 // We don't know the proper offset for the value, so pick one that will force
799 // 4 byte offset. We will fix this up in the assembler later to have the right
800 // value.
801 LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg, reg, 256, 0, 0, target);
802 res->target = target;
803 res->flags.fixup = kFixupLoad;
804 SetMemRefType(res, true, kLiteral);
805 store_method_addr_used_ = true;
806 return res;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700807}
808
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700809LIR* X86Mir2Lir::OpVldm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700810 LOG(FATAL) << "Unexpected use of OpVldm for x86";
811 return NULL;
812}
813
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700814LIR* X86Mir2Lir::OpVstm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700815 LOG(FATAL) << "Unexpected use of OpVstm for x86";
816 return NULL;
817}
818
819void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
820 RegLocation rl_result, int lit,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700821 int first_bit, int second_bit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700822 int t_reg = AllocTemp();
823 OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, second_bit - first_bit);
824 OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, t_reg);
825 FreeTemp(t_reg);
826 if (first_bit != 0) {
827 OpRegRegImm(kOpLsl, rl_result.low_reg, rl_result.low_reg, first_bit);
828 }
829}
830
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700831void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) {
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800832 // We are not supposed to clobber either of the provided registers, so allocate
833 // a temporary to use for the check.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700834 int t_reg = AllocTemp();
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800835
836 // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700837 OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi);
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800838
839 // In case of zero, throw ArithmeticException.
840 GenCheck(kCondEq, kThrowDivZero);
841
842 // The temp is no longer needed so free it at this time.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700843 FreeTemp(t_reg);
844}
845
846// Test suspend flag, return target of taken suspend branch
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700847LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
Ian Rogers468532e2013-08-05 10:56:33 -0700848 OpTlsCmp(Thread::ThreadFlagsOffset(), 0);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700849 return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
850}
851
852// Decrement register and branch on condition
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700853LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700854 OpRegImm(kOpSub, reg, 1);
Yixin Shoua0dac3e2014-01-23 05:01:22 -0800855 return OpCondBranch(c_code, target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700856}
857
buzbee11b63d12013-08-27 07:34:17 -0700858bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700859 RegLocation rl_src, RegLocation rl_dest, int lit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700860 LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
861 return false;
862}
863
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700864LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700865 LOG(FATAL) << "Unexpected use of OpIT in x86";
866 return NULL;
867}
868
Mark Mendell4708dcd2014-01-22 09:05:18 -0800869void X86Mir2Lir::GenImulRegImm(int dest, int src, int val) {
870 switch (val) {
871 case 0:
872 NewLIR2(kX86Xor32RR, dest, dest);
873 break;
874 case 1:
875 OpRegCopy(dest, src);
876 break;
877 default:
878 OpRegRegImm(kOpMul, dest, src, val);
879 break;
880 }
881}
882
883void X86Mir2Lir::GenImulMemImm(int dest, int sreg, int displacement, int val) {
884 LIR *m;
885 switch (val) {
886 case 0:
887 NewLIR2(kX86Xor32RR, dest, dest);
888 break;
889 case 1:
890 LoadBaseDisp(rX86_SP, displacement, dest, kWord, sreg);
891 break;
892 default:
893 m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest, rX86_SP,
894 displacement, val);
895 AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
896 break;
897 }
898}
899
Mark Mendelle02d48f2014-01-15 11:19:23 -0800900void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700901 RegLocation rl_src2) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800902 if (rl_src1.is_const) {
903 std::swap(rl_src1, rl_src2);
904 }
905 // Are we multiplying by a constant?
906 if (rl_src2.is_const) {
907 // Do special compare/branch against simple const operand
908 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
909 if (val == 0) {
910 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
911 OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
912 OpRegReg(kOpXor, rl_result.high_reg, rl_result.high_reg);
913 StoreValueWide(rl_dest, rl_result);
914 return;
915 } else if (val == 1) {
916 rl_src1 = EvalLocWide(rl_src1, kCoreReg, true);
917 StoreValueWide(rl_dest, rl_src1);
918 return;
919 } else if (val == 2) {
920 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
921 return;
922 } else if (IsPowerOfTwo(val)) {
923 int shift_amount = LowestSetBit(val);
924 if (!BadOverlap(rl_src1, rl_dest)) {
925 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
926 RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
927 rl_src1, shift_amount);
928 StoreValueWide(rl_dest, rl_result);
929 return;
930 }
931 }
932
933 // Okay, just bite the bullet and do it.
934 int32_t val_lo = Low32Bits(val);
935 int32_t val_hi = High32Bits(val);
936 FlushAllRegs();
937 LockCallTemps(); // Prepare for explicit register usage.
938 rl_src1 = UpdateLocWide(rl_src1);
939 bool src1_in_reg = rl_src1.location == kLocPhysReg;
940 int displacement = SRegOffset(rl_src1.s_reg_low);
941
942 // ECX <- 1H * 2L
943 // EAX <- 1L * 2H
944 if (src1_in_reg) {
945 GenImulRegImm(r1, rl_src1.high_reg, val_lo);
946 GenImulRegImm(r0, rl_src1.low_reg, val_hi);
947 } else {
948 GenImulMemImm(r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
949 GenImulMemImm(r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
950 }
951
952 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
953 NewLIR2(kX86Add32RR, r1, r0);
954
955 // EAX <- 2L
956 LoadConstantNoClobber(r0, val_lo);
957
958 // EDX:EAX <- 2L * 1L (double precision)
959 if (src1_in_reg) {
960 NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
961 } else {
962 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
963 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
964 true /* is_load */, true /* is_64bit */);
965 }
966
967 // EDX <- EDX + ECX (add high words)
968 NewLIR2(kX86Add32RR, r2, r1);
969
970 // Result is EDX:EAX
971 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
972 INVALID_SREG, INVALID_SREG};
973 StoreValueWide(rl_dest, rl_result);
974 return;
975 }
976
977 // Nope. Do it the hard way
978 FlushAllRegs();
979 LockCallTemps(); // Prepare for explicit register usage.
980 rl_src1 = UpdateLocWide(rl_src1);
981 rl_src2 = UpdateLocWide(rl_src2);
982
983 // At this point, the VRs are in their home locations.
984 bool src1_in_reg = rl_src1.location == kLocPhysReg;
985 bool src2_in_reg = rl_src2.location == kLocPhysReg;
986
987 // ECX <- 1H
988 if (src1_in_reg) {
989 NewLIR2(kX86Mov32RR, r1, rl_src1.high_reg);
990 } else {
991 LoadBaseDisp(rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, r1,
992 kWord, GetSRegHi(rl_src1.s_reg_low));
993 }
994
995 // EAX <- 2H
996 if (src2_in_reg) {
997 NewLIR2(kX86Mov32RR, r0, rl_src2.high_reg);
998 } else {
999 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, r0,
1000 kWord, GetSRegHi(rl_src2.s_reg_low));
1001 }
1002
1003 // EAX <- EAX * 1L (2H * 1L)
1004 if (src1_in_reg) {
1005 NewLIR2(kX86Imul32RR, r0, rl_src1.low_reg);
1006 } else {
1007 int displacement = SRegOffset(rl_src1.s_reg_low);
1008 LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
1009 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1010 true /* is_load */, true /* is_64bit */);
1011 }
1012
1013 // ECX <- ECX * 2L (1H * 2L)
1014 if (src2_in_reg) {
1015 NewLIR2(kX86Imul32RR, r1, rl_src2.low_reg);
1016 } else {
1017 int displacement = SRegOffset(rl_src2.s_reg_low);
1018 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1019 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1020 true /* is_load */, true /* is_64bit */);
1021 }
1022
1023 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
1024 NewLIR2(kX86Add32RR, r1, r0);
1025
1026 // EAX <- 2L
1027 if (src2_in_reg) {
1028 NewLIR2(kX86Mov32RR, r0, rl_src2.low_reg);
1029 } else {
1030 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, r0,
1031 kWord, rl_src2.s_reg_low);
1032 }
1033
1034 // EDX:EAX <- 2L * 1L (double precision)
1035 if (src1_in_reg) {
1036 NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
1037 } else {
1038 int displacement = SRegOffset(rl_src1.s_reg_low);
1039 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1040 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1041 true /* is_load */, true /* is_64bit */);
1042 }
1043
1044 // EDX <- EDX + ECX (add high words)
1045 NewLIR2(kX86Add32RR, r2, r1);
1046
1047 // Result is EDX:EAX
1048 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
1049 INVALID_SREG, INVALID_SREG};
1050 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001051}
Mark Mendelle02d48f2014-01-15 11:19:23 -08001052
1053void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1054 Instruction::Code op) {
1055 DCHECK_EQ(rl_dest.location, kLocPhysReg);
1056 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1057 if (rl_src.location == kLocPhysReg) {
1058 // Both operands are in registers.
1059 if (rl_dest.low_reg == rl_src.high_reg) {
1060 // The registers are the same, so we would clobber it before the use.
1061 int temp_reg = AllocTemp();
1062 OpRegCopy(temp_reg, rl_dest.low_reg);
1063 rl_src.high_reg = temp_reg;
1064 }
1065 NewLIR2(x86op, rl_dest.low_reg, rl_src.low_reg);
1066
1067 x86op = GetOpcode(op, rl_dest, rl_src, true);
1068 NewLIR2(x86op, rl_dest.high_reg, rl_src.high_reg);
1069 FreeTemp(rl_src.low_reg);
1070 FreeTemp(rl_src.high_reg);
1071 return;
1072 }
1073
1074 // RHS is in memory.
1075 DCHECK((rl_src.location == kLocDalvikFrame) ||
1076 (rl_src.location == kLocCompilerTemp));
1077 int rBase = TargetReg(kSp);
1078 int displacement = SRegOffset(rl_src.s_reg_low);
1079
1080 LIR *lir = NewLIR3(x86op, rl_dest.low_reg, rBase, displacement + LOWORD_OFFSET);
1081 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1082 true /* is_load */, true /* is64bit */);
1083 x86op = GetOpcode(op, rl_dest, rl_src, true);
1084 lir = NewLIR3(x86op, rl_dest.high_reg, rBase, displacement + HIWORD_OFFSET);
1085 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1086 true /* is_load */, true /* is64bit */);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001087}
1088
Mark Mendelle02d48f2014-01-15 11:19:23 -08001089void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1090 rl_dest = UpdateLocWide(rl_dest);
1091 if (rl_dest.location == kLocPhysReg) {
1092 // Ensure we are in a register pair
1093 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1094
1095 rl_src = UpdateLocWide(rl_src);
1096 GenLongRegOrMemOp(rl_result, rl_src, op);
1097 StoreFinalValueWide(rl_dest, rl_result);
1098 return;
1099 }
1100
1101 // It wasn't in registers, so it better be in memory.
1102 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1103 (rl_dest.location == kLocCompilerTemp));
1104 rl_src = LoadValueWide(rl_src, kCoreReg);
1105
1106 // Operate directly into memory.
1107 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1108 int rBase = TargetReg(kSp);
1109 int displacement = SRegOffset(rl_dest.s_reg_low);
1110
1111 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.low_reg);
1112 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1113 false /* is_load */, true /* is64bit */);
1114 x86op = GetOpcode(op, rl_dest, rl_src, true);
1115 lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.high_reg);
1116 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1117 false /* is_load */, true /* is64bit */);
1118 FreeTemp(rl_src.low_reg);
1119 FreeTemp(rl_src.high_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001120}
1121
Mark Mendelle02d48f2014-01-15 11:19:23 -08001122void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1123 RegLocation rl_src2, Instruction::Code op,
1124 bool is_commutative) {
1125 // Is this really a 2 operand operation?
1126 switch (op) {
1127 case Instruction::ADD_LONG_2ADDR:
1128 case Instruction::SUB_LONG_2ADDR:
1129 case Instruction::AND_LONG_2ADDR:
1130 case Instruction::OR_LONG_2ADDR:
1131 case Instruction::XOR_LONG_2ADDR:
1132 GenLongArith(rl_dest, rl_src2, op);
1133 return;
1134 default:
1135 break;
1136 }
1137
1138 if (rl_dest.location == kLocPhysReg) {
1139 RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1140
1141 // We are about to clobber the LHS, so it needs to be a temp.
1142 rl_result = ForceTempWide(rl_result);
1143
1144 // Perform the operation using the RHS.
1145 rl_src2 = UpdateLocWide(rl_src2);
1146 GenLongRegOrMemOp(rl_result, rl_src2, op);
1147
1148 // And now record that the result is in the temp.
1149 StoreFinalValueWide(rl_dest, rl_result);
1150 return;
1151 }
1152
1153 // It wasn't in registers, so it better be in memory.
1154 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1155 (rl_dest.location == kLocCompilerTemp));
1156 rl_src1 = UpdateLocWide(rl_src1);
1157 rl_src2 = UpdateLocWide(rl_src2);
1158
1159 // Get one of the source operands into temporary register.
1160 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1161 if (IsTemp(rl_src1.low_reg) && IsTemp(rl_src1.high_reg)) {
1162 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1163 } else if (is_commutative) {
1164 rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1165 // We need at least one of them to be a temporary.
1166 if (!(IsTemp(rl_src2.low_reg) && IsTemp(rl_src2.high_reg))) {
1167 rl_src1 = ForceTempWide(rl_src1);
1168 }
1169 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1170 } else {
1171 // Need LHS to be the temp.
1172 rl_src1 = ForceTempWide(rl_src1);
1173 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1174 }
1175
1176 StoreFinalValueWide(rl_dest, rl_src1);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001177}
1178
Mark Mendelle02d48f2014-01-15 11:19:23 -08001179void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001180 RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001181 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1182}
1183
1184void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1185 RegLocation rl_src1, RegLocation rl_src2) {
1186 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1187}
1188
1189void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1190 RegLocation rl_src1, RegLocation rl_src2) {
1191 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1192}
1193
1194void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1195 RegLocation rl_src1, RegLocation rl_src2) {
1196 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1197}
1198
1199void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1200 RegLocation rl_src1, RegLocation rl_src2) {
1201 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001202}
1203
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001204void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001205 rl_src = LoadValueWide(rl_src, kCoreReg);
1206 RegLocation rl_result = ForceTempWide(rl_src);
1207 if (rl_dest.low_reg == rl_src.high_reg) {
1208 // The registers are the same, so we would clobber it before the use.
1209 int temp_reg = AllocTemp();
1210 OpRegCopy(temp_reg, rl_result.low_reg);
1211 rl_result.high_reg = temp_reg;
1212 }
1213 OpRegReg(kOpNeg, rl_result.low_reg, rl_result.low_reg); // rLow = -rLow
1214 OpRegImm(kOpAdc, rl_result.high_reg, 0); // rHigh = rHigh + CF
1215 OpRegReg(kOpNeg, rl_result.high_reg, rl_result.high_reg); // rHigh = -rHigh
Brian Carlstrom7940e442013-07-12 13:46:57 -07001216 StoreValueWide(rl_dest, rl_result);
1217}
1218
Ian Rogers468532e2013-08-05 10:56:33 -07001219void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001220 X86OpCode opcode = kX86Bkpt;
1221 switch (op) {
1222 case kOpCmp: opcode = kX86Cmp32RT; break;
1223 case kOpMov: opcode = kX86Mov32RT; break;
1224 default:
1225 LOG(FATAL) << "Bad opcode: " << op;
1226 break;
1227 }
Ian Rogers468532e2013-08-05 10:56:33 -07001228 NewLIR2(opcode, r_dest, thread_offset.Int32Value());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001229}
1230
1231/*
1232 * Generate array load
1233 */
1234void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001235 RegLocation rl_index, RegLocation rl_dest, int scale) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001236 RegisterClass reg_class = oat_reg_class_by_size(size);
1237 int len_offset = mirror::Array::LengthOffset().Int32Value();
Brian Carlstrom7940e442013-07-12 13:46:57 -07001238 RegLocation rl_result;
1239 rl_array = LoadValue(rl_array, kCoreReg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001240
Mark Mendell343adb52013-12-18 06:02:17 -08001241 int data_offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001242 if (size == kLong || size == kDouble) {
1243 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1244 } else {
1245 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1246 }
1247
Mark Mendell343adb52013-12-18 06:02:17 -08001248 bool constant_index = rl_index.is_const;
1249 int32_t constant_index_value = 0;
1250 if (!constant_index) {
1251 rl_index = LoadValue(rl_index, kCoreReg);
1252 } else {
1253 constant_index_value = mir_graph_->ConstantValue(rl_index);
1254 // If index is constant, just fold it into the data offset
1255 data_offset += constant_index_value << scale;
1256 // treat as non array below
1257 rl_index.low_reg = INVALID_REG;
1258 }
1259
Brian Carlstrom7940e442013-07-12 13:46:57 -07001260 /* null object? */
1261 GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1262
1263 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001264 if (constant_index) {
1265 GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1266 constant_index_value, kThrowConstantArrayBounds);
1267 } else {
1268 GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1269 len_offset, kThrowArrayBounds);
1270 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001271 }
Mark Mendell343adb52013-12-18 06:02:17 -08001272 rl_result = EvalLoc(rl_dest, reg_class, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001273 if ((size == kLong) || (size == kDouble)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001274 LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_result.low_reg,
Brian Carlstrom7940e442013-07-12 13:46:57 -07001275 rl_result.high_reg, size, INVALID_SREG);
1276 StoreValueWide(rl_dest, rl_result);
1277 } else {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001278 LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale,
1279 data_offset, rl_result.low_reg, INVALID_REG, size,
1280 INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001281 StoreValue(rl_dest, rl_result);
1282 }
1283}
1284
1285/*
1286 * Generate array store
1287 *
1288 */
1289void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001290 RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001291 RegisterClass reg_class = oat_reg_class_by_size(size);
1292 int len_offset = mirror::Array::LengthOffset().Int32Value();
1293 int data_offset;
1294
1295 if (size == kLong || size == kDouble) {
1296 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1297 } else {
1298 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1299 }
1300
1301 rl_array = LoadValue(rl_array, kCoreReg);
Mark Mendell343adb52013-12-18 06:02:17 -08001302 bool constant_index = rl_index.is_const;
1303 int32_t constant_index_value = 0;
1304 if (!constant_index) {
1305 rl_index = LoadValue(rl_index, kCoreReg);
1306 } else {
1307 // If index is constant, just fold it into the data offset
1308 constant_index_value = mir_graph_->ConstantValue(rl_index);
1309 data_offset += constant_index_value << scale;
1310 // treat as non array below
1311 rl_index.low_reg = INVALID_REG;
1312 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001313
1314 /* null object? */
1315 GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1316
1317 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001318 if (constant_index) {
1319 GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1320 constant_index_value, kThrowConstantArrayBounds);
1321 } else {
1322 GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1323 len_offset, kThrowArrayBounds);
1324 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001325 }
1326 if ((size == kLong) || (size == kDouble)) {
1327 rl_src = LoadValueWide(rl_src, reg_class);
1328 } else {
1329 rl_src = LoadValue(rl_src, reg_class);
1330 }
1331 // If the src reg can't be byte accessed, move it to a temp first.
1332 if ((size == kSignedByte || size == kUnsignedByte) && rl_src.low_reg >= 4) {
1333 int temp = AllocTemp();
1334 OpRegCopy(temp, rl_src.low_reg);
1335 StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, temp,
1336 INVALID_REG, size, INVALID_SREG);
1337 } else {
1338 StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_src.low_reg,
1339 rl_src.high_reg, size, INVALID_SREG);
1340 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001341 if (card_mark) {
Ian Rogers773aab12013-10-14 13:50:10 -07001342 // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
Mark Mendell343adb52013-12-18 06:02:17 -08001343 if (!constant_index) {
1344 FreeTemp(rl_index.low_reg);
1345 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001346 MarkGCCard(rl_src.low_reg, rl_array.low_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001347 }
1348}
1349
Mark Mendell4708dcd2014-01-22 09:05:18 -08001350RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1351 RegLocation rl_src, int shift_amount) {
1352 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1353 switch (opcode) {
1354 case Instruction::SHL_LONG:
1355 case Instruction::SHL_LONG_2ADDR:
1356 DCHECK_NE(shift_amount, 1); // Prevent a double store from happening.
1357 if (shift_amount == 32) {
1358 OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1359 LoadConstant(rl_result.low_reg, 0);
1360 } else if (shift_amount > 31) {
1361 OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1362 FreeTemp(rl_src.high_reg);
1363 NewLIR2(kX86Sal32RI, rl_result.high_reg, shift_amount - 32);
1364 LoadConstant(rl_result.low_reg, 0);
1365 } else {
1366 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1367 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1368 NewLIR3(kX86Shld32RRI, rl_result.high_reg, rl_result.low_reg, shift_amount);
1369 NewLIR2(kX86Sal32RI, rl_result.low_reg, shift_amount);
1370 }
1371 break;
1372 case Instruction::SHR_LONG:
1373 case Instruction::SHR_LONG_2ADDR:
1374 if (shift_amount == 32) {
1375 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1376 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1377 NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1378 } else if (shift_amount > 31) {
1379 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1380 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1381 NewLIR2(kX86Sar32RI, rl_result.low_reg, shift_amount - 32);
1382 NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1383 } else {
1384 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1385 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1386 NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1387 NewLIR2(kX86Sar32RI, rl_result.high_reg, shift_amount);
1388 }
1389 break;
1390 case Instruction::USHR_LONG:
1391 case Instruction::USHR_LONG_2ADDR:
1392 if (shift_amount == 32) {
1393 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1394 LoadConstant(rl_result.high_reg, 0);
1395 } else if (shift_amount > 31) {
1396 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1397 NewLIR2(kX86Shr32RI, rl_result.low_reg, shift_amount - 32);
1398 LoadConstant(rl_result.high_reg, 0);
1399 } else {
1400 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1401 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1402 NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1403 NewLIR2(kX86Shr32RI, rl_result.high_reg, shift_amount);
1404 }
1405 break;
1406 default:
1407 LOG(FATAL) << "Unexpected case";
1408 }
1409 return rl_result;
1410}
1411
Brian Carlstrom7940e442013-07-12 13:46:57 -07001412void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
Mark Mendell4708dcd2014-01-22 09:05:18 -08001413 RegLocation rl_src, RegLocation rl_shift) {
1414 // Per spec, we only care about low 6 bits of shift amount.
1415 int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1416 if (shift_amount == 0) {
1417 rl_src = LoadValueWide(rl_src, kCoreReg);
1418 StoreValueWide(rl_dest, rl_src);
1419 return;
1420 } else if (shift_amount == 1 &&
1421 (opcode == Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1422 // Need to handle this here to avoid calling StoreValueWide twice.
1423 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1424 return;
1425 }
1426 if (BadOverlap(rl_src, rl_dest)) {
1427 GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1428 return;
1429 }
1430 rl_src = LoadValueWide(rl_src, kCoreReg);
1431 RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1432 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001433}
1434
1435void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001436 RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001437 switch (opcode) {
1438 case Instruction::ADD_LONG:
1439 case Instruction::AND_LONG:
1440 case Instruction::OR_LONG:
1441 case Instruction::XOR_LONG:
1442 if (rl_src2.is_const) {
1443 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1444 } else {
1445 DCHECK(rl_src1.is_const);
1446 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1447 }
1448 break;
1449 case Instruction::SUB_LONG:
1450 case Instruction::SUB_LONG_2ADDR:
1451 if (rl_src2.is_const) {
1452 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1453 } else {
1454 GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1455 }
1456 break;
1457 case Instruction::ADD_LONG_2ADDR:
1458 case Instruction::OR_LONG_2ADDR:
1459 case Instruction::XOR_LONG_2ADDR:
1460 case Instruction::AND_LONG_2ADDR:
1461 if (rl_src2.is_const) {
1462 GenLongImm(rl_dest, rl_src2, opcode);
1463 } else {
1464 DCHECK(rl_src1.is_const);
1465 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1466 }
1467 break;
1468 default:
1469 // Default - bail to non-const handler.
1470 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1471 break;
1472 }
1473}
1474
1475bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1476 switch (op) {
1477 case Instruction::AND_LONG_2ADDR:
1478 case Instruction::AND_LONG:
1479 return value == -1;
1480 case Instruction::OR_LONG:
1481 case Instruction::OR_LONG_2ADDR:
1482 case Instruction::XOR_LONG:
1483 case Instruction::XOR_LONG_2ADDR:
1484 return value == 0;
1485 default:
1486 return false;
1487 }
1488}
1489
1490X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1491 bool is_high_op) {
1492 bool rhs_in_mem = rhs.location != kLocPhysReg;
1493 bool dest_in_mem = dest.location != kLocPhysReg;
1494 DCHECK(!rhs_in_mem || !dest_in_mem);
1495 switch (op) {
1496 case Instruction::ADD_LONG:
1497 case Instruction::ADD_LONG_2ADDR:
1498 if (dest_in_mem) {
1499 return is_high_op ? kX86Adc32MR : kX86Add32MR;
1500 } else if (rhs_in_mem) {
1501 return is_high_op ? kX86Adc32RM : kX86Add32RM;
1502 }
1503 return is_high_op ? kX86Adc32RR : kX86Add32RR;
1504 case Instruction::SUB_LONG:
1505 case Instruction::SUB_LONG_2ADDR:
1506 if (dest_in_mem) {
1507 return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1508 } else if (rhs_in_mem) {
1509 return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1510 }
1511 return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1512 case Instruction::AND_LONG_2ADDR:
1513 case Instruction::AND_LONG:
1514 if (dest_in_mem) {
1515 return kX86And32MR;
1516 }
1517 return rhs_in_mem ? kX86And32RM : kX86And32RR;
1518 case Instruction::OR_LONG:
1519 case Instruction::OR_LONG_2ADDR:
1520 if (dest_in_mem) {
1521 return kX86Or32MR;
1522 }
1523 return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1524 case Instruction::XOR_LONG:
1525 case Instruction::XOR_LONG_2ADDR:
1526 if (dest_in_mem) {
1527 return kX86Xor32MR;
1528 }
1529 return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1530 default:
1531 LOG(FATAL) << "Unexpected opcode: " << op;
1532 return kX86Add32RR;
1533 }
1534}
1535
1536X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1537 int32_t value) {
1538 bool in_mem = loc.location != kLocPhysReg;
1539 bool byte_imm = IS_SIMM8(value);
1540 DCHECK(in_mem || !IsFpReg(loc.low_reg));
1541 switch (op) {
1542 case Instruction::ADD_LONG:
1543 case Instruction::ADD_LONG_2ADDR:
1544 if (byte_imm) {
1545 if (in_mem) {
1546 return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1547 }
1548 return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1549 }
1550 if (in_mem) {
1551 return is_high_op ? kX86Adc32MI : kX86Add32MI;
1552 }
1553 return is_high_op ? kX86Adc32RI : kX86Add32RI;
1554 case Instruction::SUB_LONG:
1555 case Instruction::SUB_LONG_2ADDR:
1556 if (byte_imm) {
1557 if (in_mem) {
1558 return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1559 }
1560 return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1561 }
1562 if (in_mem) {
1563 return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1564 }
1565 return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1566 case Instruction::AND_LONG_2ADDR:
1567 case Instruction::AND_LONG:
1568 if (byte_imm) {
1569 return in_mem ? kX86And32MI8 : kX86And32RI8;
1570 }
1571 return in_mem ? kX86And32MI : kX86And32RI;
1572 case Instruction::OR_LONG:
1573 case Instruction::OR_LONG_2ADDR:
1574 if (byte_imm) {
1575 return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1576 }
1577 return in_mem ? kX86Or32MI : kX86Or32RI;
1578 case Instruction::XOR_LONG:
1579 case Instruction::XOR_LONG_2ADDR:
1580 if (byte_imm) {
1581 return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1582 }
1583 return in_mem ? kX86Xor32MI : kX86Xor32RI;
1584 default:
1585 LOG(FATAL) << "Unexpected opcode: " << op;
1586 return kX86Add32MI;
1587 }
1588}
1589
1590void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1591 DCHECK(rl_src.is_const);
1592 int64_t val = mir_graph_->ConstantValueWide(rl_src);
1593 int32_t val_lo = Low32Bits(val);
1594 int32_t val_hi = High32Bits(val);
1595 rl_dest = UpdateLocWide(rl_dest);
1596
1597 // Can we just do this into memory?
1598 if ((rl_dest.location == kLocDalvikFrame) ||
1599 (rl_dest.location == kLocCompilerTemp)) {
1600 int rBase = TargetReg(kSp);
1601 int displacement = SRegOffset(rl_dest.s_reg_low);
1602
1603 if (!IsNoOp(op, val_lo)) {
1604 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1605 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo);
1606 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1607 false /* is_load */, true /* is64bit */);
1608 }
1609 if (!IsNoOp(op, val_hi)) {
1610 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1611 LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi);
1612 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1613 false /* is_load */, true /* is64bit */);
1614 }
1615 return;
1616 }
1617
1618 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1619 DCHECK_EQ(rl_result.location, kLocPhysReg);
1620 DCHECK(!IsFpReg(rl_result.low_reg));
1621
1622 if (!IsNoOp(op, val_lo)) {
1623 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1624 NewLIR2(x86op, rl_result.low_reg, val_lo);
1625 }
1626 if (!IsNoOp(op, val_hi)) {
1627 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1628 NewLIR2(x86op, rl_result.high_reg, val_hi);
1629 }
1630 StoreValueWide(rl_dest, rl_result);
1631}
1632
1633void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1634 RegLocation rl_src2, Instruction::Code op) {
1635 DCHECK(rl_src2.is_const);
1636 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1637 int32_t val_lo = Low32Bits(val);
1638 int32_t val_hi = High32Bits(val);
1639 rl_dest = UpdateLocWide(rl_dest);
1640 rl_src1 = UpdateLocWide(rl_src1);
1641
1642 // Can we do this directly into the destination registers?
1643 if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
1644 rl_dest.low_reg == rl_src1.low_reg && rl_dest.high_reg == rl_src1.high_reg &&
1645 !IsFpReg(rl_dest.low_reg)) {
1646 if (!IsNoOp(op, val_lo)) {
1647 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1648 NewLIR2(x86op, rl_dest.low_reg, val_lo);
1649 }
1650 if (!IsNoOp(op, val_hi)) {
1651 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1652 NewLIR2(x86op, rl_dest.high_reg, val_hi);
1653 }
1654 return;
1655 }
1656
1657 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1658 DCHECK_EQ(rl_src1.location, kLocPhysReg);
1659
1660 // We need the values to be in a temporary
1661 RegLocation rl_result = ForceTempWide(rl_src1);
1662 if (!IsNoOp(op, val_lo)) {
1663 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1664 NewLIR2(x86op, rl_result.low_reg, val_lo);
1665 }
1666 if (!IsNoOp(op, val_hi)) {
1667 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1668 NewLIR2(x86op, rl_result.high_reg, val_hi);
1669 }
1670
1671 StoreFinalValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001672}
1673
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001674// For final classes there are no sub-classes to check and so we can answer the instance-of
1675// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1676void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1677 RegLocation rl_dest, RegLocation rl_src) {
1678 RegLocation object = LoadValue(rl_src, kCoreReg);
1679 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1680 int result_reg = rl_result.low_reg;
1681
1682 // SETcc only works with EAX..EDX.
1683 if (result_reg == object.low_reg || result_reg >= 4) {
1684 result_reg = AllocTypedTemp(false, kCoreReg);
1685 DCHECK_LT(result_reg, 4);
1686 }
1687
1688 // Assume that there is no match.
1689 LoadConstant(result_reg, 0);
1690 LIR* null_branchover = OpCmpImmBranch(kCondEq, object.low_reg, 0, NULL);
1691
1692 int check_class = AllocTypedTemp(false, kCoreReg);
1693
1694 // If Method* is already in a register, we can save a copy.
1695 RegLocation rl_method = mir_graph_->GetMethodLoc();
1696 int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1697 (sizeof(mirror::Class*) * type_idx);
1698
1699 if (rl_method.location == kLocPhysReg) {
1700 if (use_declaring_class) {
1701 LoadWordDisp(rl_method.low_reg,
1702 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1703 check_class);
1704 } else {
1705 LoadWordDisp(rl_method.low_reg,
1706 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1707 check_class);
1708 LoadWordDisp(check_class, offset_of_type, check_class);
1709 }
1710 } else {
1711 LoadCurrMethodDirect(check_class);
1712 if (use_declaring_class) {
1713 LoadWordDisp(check_class,
1714 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1715 check_class);
1716 } else {
1717 LoadWordDisp(check_class,
1718 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1719 check_class);
1720 LoadWordDisp(check_class, offset_of_type, check_class);
1721 }
1722 }
1723
1724 // Compare the computed class to the class in the object.
1725 DCHECK_EQ(object.location, kLocPhysReg);
1726 OpRegMem(kOpCmp, check_class, object.low_reg,
1727 mirror::Object::ClassOffset().Int32Value());
1728
1729 // Set the low byte of the result to 0 or 1 from the compare condition code.
1730 NewLIR2(kX86Set8R, result_reg, kX86CondEq);
1731
1732 LIR* target = NewLIR0(kPseudoTargetLabel);
1733 null_branchover->target = target;
1734 FreeTemp(check_class);
1735 if (IsTemp(result_reg)) {
1736 OpRegCopy(rl_result.low_reg, result_reg);
1737 FreeTemp(result_reg);
1738 }
1739 StoreValue(rl_dest, rl_result);
1740}
1741
Mark Mendell6607d972014-02-10 06:54:18 -08001742void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1743 bool type_known_abstract, bool use_declaring_class,
1744 bool can_assume_type_is_in_dex_cache,
1745 uint32_t type_idx, RegLocation rl_dest,
1746 RegLocation rl_src) {
1747 FlushAllRegs();
1748 // May generate a call - use explicit registers.
1749 LockCallTemps();
1750 LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 gets current Method*.
1751 int class_reg = TargetReg(kArg2); // kArg2 will hold the Class*.
1752 // Reference must end up in kArg0.
1753 if (needs_access_check) {
1754 // Check we have access to type_idx and if not throw IllegalAccessError,
1755 // Caller function returns Class* in kArg0.
1756 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
1757 type_idx, true);
1758 OpRegCopy(class_reg, TargetReg(kRet0));
1759 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1760 } else if (use_declaring_class) {
1761 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1762 LoadWordDisp(TargetReg(kArg1),
1763 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg);
1764 } else {
1765 // Load dex cache entry into class_reg (kArg2).
1766 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1767 LoadWordDisp(TargetReg(kArg1),
1768 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
1769 int32_t offset_of_type =
1770 mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
1771 * type_idx);
1772 LoadWordDisp(class_reg, offset_of_type, class_reg);
1773 if (!can_assume_type_is_in_dex_cache) {
1774 // Need to test presence of type in dex cache at runtime.
1775 LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1776 // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
1777 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true);
1778 OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path.
1779 LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* Reload Ref. */
1780 // Rejoin code paths
1781 LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1782 hop_branch->target = hop_target;
1783 }
1784 }
1785 /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
1786 RegLocation rl_result = GetReturn(false);
1787
1788 // SETcc only works with EAX..EDX.
1789 DCHECK_LT(rl_result.low_reg, 4);
1790
1791 // Is the class NULL?
1792 LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1793
1794 /* Load object->klass_. */
1795 DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1796 LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1797 /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
1798 LIR* branchover = nullptr;
1799 if (type_known_final) {
1800 // Ensure top 3 bytes of result are 0.
1801 LoadConstant(rl_result.low_reg, 0);
1802 OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
1803 // Set the low byte of the result to 0 or 1 from the compare condition code.
1804 NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondEq);
1805 } else {
1806 if (!type_known_abstract) {
1807 LoadConstant(rl_result.low_reg, 1); // Assume result succeeds.
1808 branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1809 }
1810 OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
1811 OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial));
1812 }
1813 // TODO: only clobber when type isn't final?
1814 ClobberCallerSave();
1815 /* Branch targets here. */
1816 LIR* target = NewLIR0(kPseudoTargetLabel);
1817 StoreValue(rl_dest, rl_result);
1818 branch1->target = target;
1819 if (branchover != nullptr) {
1820 branchover->target = target;
1821 }
1822}
1823
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001824void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1825 RegLocation rl_lhs, RegLocation rl_rhs) {
1826 OpKind op = kOpBkpt;
1827 bool is_div_rem = false;
1828 bool unary = false;
1829 bool shift_op = false;
1830 bool is_two_addr = false;
1831 RegLocation rl_result;
1832 switch (opcode) {
1833 case Instruction::NEG_INT:
1834 op = kOpNeg;
1835 unary = true;
1836 break;
1837 case Instruction::NOT_INT:
1838 op = kOpMvn;
1839 unary = true;
1840 break;
1841 case Instruction::ADD_INT_2ADDR:
1842 is_two_addr = true;
1843 // Fallthrough
1844 case Instruction::ADD_INT:
1845 op = kOpAdd;
1846 break;
1847 case Instruction::SUB_INT_2ADDR:
1848 is_two_addr = true;
1849 // Fallthrough
1850 case Instruction::SUB_INT:
1851 op = kOpSub;
1852 break;
1853 case Instruction::MUL_INT_2ADDR:
1854 is_two_addr = true;
1855 // Fallthrough
1856 case Instruction::MUL_INT:
1857 op = kOpMul;
1858 break;
1859 case Instruction::DIV_INT_2ADDR:
1860 is_two_addr = true;
1861 // Fallthrough
1862 case Instruction::DIV_INT:
1863 op = kOpDiv;
1864 is_div_rem = true;
1865 break;
1866 /* NOTE: returns in kArg1 */
1867 case Instruction::REM_INT_2ADDR:
1868 is_two_addr = true;
1869 // Fallthrough
1870 case Instruction::REM_INT:
1871 op = kOpRem;
1872 is_div_rem = true;
1873 break;
1874 case Instruction::AND_INT_2ADDR:
1875 is_two_addr = true;
1876 // Fallthrough
1877 case Instruction::AND_INT:
1878 op = kOpAnd;
1879 break;
1880 case Instruction::OR_INT_2ADDR:
1881 is_two_addr = true;
1882 // Fallthrough
1883 case Instruction::OR_INT:
1884 op = kOpOr;
1885 break;
1886 case Instruction::XOR_INT_2ADDR:
1887 is_two_addr = true;
1888 // Fallthrough
1889 case Instruction::XOR_INT:
1890 op = kOpXor;
1891 break;
1892 case Instruction::SHL_INT_2ADDR:
1893 is_two_addr = true;
1894 // Fallthrough
1895 case Instruction::SHL_INT:
1896 shift_op = true;
1897 op = kOpLsl;
1898 break;
1899 case Instruction::SHR_INT_2ADDR:
1900 is_two_addr = true;
1901 // Fallthrough
1902 case Instruction::SHR_INT:
1903 shift_op = true;
1904 op = kOpAsr;
1905 break;
1906 case Instruction::USHR_INT_2ADDR:
1907 is_two_addr = true;
1908 // Fallthrough
1909 case Instruction::USHR_INT:
1910 shift_op = true;
1911 op = kOpLsr;
1912 break;
1913 default:
1914 LOG(FATAL) << "Invalid word arith op: " << opcode;
1915 }
1916
1917 // Can we convert to a two address instruction?
1918 if (!is_two_addr &&
1919 (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
1920 mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
1921 is_two_addr = true;
1922 }
1923
1924 // Get the div/rem stuff out of the way.
1925 if (is_div_rem) {
1926 rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
1927 StoreValue(rl_dest, rl_result);
1928 return;
1929 }
1930
1931 if (unary) {
1932 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1933 rl_result = UpdateLoc(rl_dest);
1934 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1935 OpRegReg(op, rl_result.low_reg, rl_lhs.low_reg);
1936 } else {
1937 if (shift_op) {
1938 // X86 doesn't require masking and must use ECX.
1939 int t_reg = TargetReg(kCount); // rCX
1940 LoadValueDirectFixed(rl_rhs, t_reg);
1941 if (is_two_addr) {
1942 // Can we do this directly into memory?
1943 rl_result = UpdateLoc(rl_dest);
1944 rl_rhs = LoadValue(rl_rhs, kCoreReg);
1945 if (rl_result.location != kLocPhysReg) {
1946 // Okay, we can do this into memory
1947 OpMemReg(op, rl_result, t_reg);
1948 FreeTemp(t_reg);
1949 return;
1950 } else if (!IsFpReg(rl_result.low_reg)) {
1951 // Can do this directly into the result register
1952 OpRegReg(op, rl_result.low_reg, t_reg);
1953 FreeTemp(t_reg);
1954 StoreFinalValue(rl_dest, rl_result);
1955 return;
1956 }
1957 }
1958 // Three address form, or we can't do directly.
1959 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1960 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1961 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, t_reg);
1962 FreeTemp(t_reg);
1963 } else {
1964 // Multiply is 3 operand only (sort of).
1965 if (is_two_addr && op != kOpMul) {
1966 // Can we do this directly into memory?
1967 rl_result = UpdateLoc(rl_dest);
1968 if (rl_result.location == kLocPhysReg) {
1969 // Can we do this from memory directly?
1970 rl_rhs = UpdateLoc(rl_rhs);
1971 if (rl_rhs.location != kLocPhysReg) {
1972 OpRegMem(op, rl_result.low_reg, rl_rhs);
1973 StoreFinalValue(rl_dest, rl_result);
1974 return;
1975 } else if (!IsFpReg(rl_rhs.low_reg)) {
1976 OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
1977 StoreFinalValue(rl_dest, rl_result);
1978 return;
1979 }
1980 }
1981 rl_rhs = LoadValue(rl_rhs, kCoreReg);
1982 if (rl_result.location != kLocPhysReg) {
1983 // Okay, we can do this into memory.
1984 OpMemReg(op, rl_result, rl_rhs.low_reg);
1985 return;
1986 } else if (!IsFpReg(rl_result.low_reg)) {
1987 // Can do this directly into the result register.
1988 OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
1989 StoreFinalValue(rl_dest, rl_result);
1990 return;
1991 } else {
1992 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1993 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1994 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
1995 }
1996 } else {
1997 // Try to use reg/memory instructions.
1998 rl_lhs = UpdateLoc(rl_lhs);
1999 rl_rhs = UpdateLoc(rl_rhs);
2000 // We can't optimize with FP registers.
2001 if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2002 // Something is difficult, so fall back to the standard case.
2003 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2004 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2005 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2006 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2007 } else {
2008 // We can optimize by moving to result and using memory operands.
2009 if (rl_rhs.location != kLocPhysReg) {
2010 // Force LHS into result.
2011 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2012 LoadValueDirect(rl_lhs, rl_result.low_reg);
2013 OpRegMem(op, rl_result.low_reg, rl_rhs);
2014 } else if (rl_lhs.location != kLocPhysReg) {
2015 // RHS is in a register; LHS is in memory.
2016 if (op != kOpSub) {
2017 // Force RHS into result and operate on memory.
2018 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2019 OpRegCopy(rl_result.low_reg, rl_rhs.low_reg);
2020 OpRegMem(op, rl_result.low_reg, rl_lhs);
2021 } else {
2022 // Subtraction isn't commutative.
2023 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2024 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2025 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2026 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2027 }
2028 } else {
2029 // Both are in registers.
2030 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2031 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2032 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2033 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2034 }
2035 }
2036 }
2037 }
2038 }
2039 StoreValue(rl_dest, rl_result);
2040}
2041
2042bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2043 // If we have non-core registers, then we can't do good things.
2044 if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.low_reg)) {
2045 return false;
2046 }
2047 if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.low_reg)) {
2048 return false;
2049 }
2050
2051 // Everything will be fine :-).
2052 return true;
2053}
Brian Carlstrom7940e442013-07-12 13:46:57 -07002054} // namespace art