blob: db7a4ef7e7c7dbd0a5adc6cd9d69f645f8966519 [file] [log] [blame]
Hiroshi Yamauchid5307ec2014-03-27 21:07:51 -07001/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "concurrent_copying.h"
18
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -080019#include "gc/accounting/heap_bitmap-inl.h"
20#include "gc/accounting/space_bitmap-inl.h"
21#include "gc/space/image_space.h"
22#include "gc/space/space.h"
23#include "intern_table.h"
24#include "mirror/art_field-inl.h"
25#include "mirror/object-inl.h"
26#include "scoped_thread_state_change.h"
27#include "thread-inl.h"
28#include "thread_list.h"
29#include "well_known_classes.h"
30
Hiroshi Yamauchid5307ec2014-03-27 21:07:51 -070031namespace art {
32namespace gc {
33namespace collector {
34
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -080035ConcurrentCopying::ConcurrentCopying(Heap* heap, const std::string& name_prefix)
36 : GarbageCollector(heap,
37 name_prefix + (name_prefix.empty() ? "" : " ") +
38 "concurrent copying + mark sweep"),
39 region_space_(nullptr), gc_barrier_(new Barrier(0)), mark_queue_(2 * MB),
40 is_marking_(false), is_active_(false), is_asserting_to_space_invariant_(false),
41 heap_mark_bitmap_(nullptr), live_stack_freeze_size_(0),
42 skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
43 rb_table_(heap_->GetReadBarrierTable()),
44 force_evacuate_all_(false) {
45 static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
46 "The region space size and the read barrier table region size must match");
47 cc_heap_bitmap_.reset(new accounting::HeapBitmap(heap));
48 {
49 Thread* self = Thread::Current();
50 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
51 // Cache this so that we won't have to lock heap_bitmap_lock_ in
52 // Mark() which could cause a nested lock on heap_bitmap_lock_
53 // when GC causes a RB while doing GC or a lock order violation
54 // (class_linker_lock_ and heap_bitmap_lock_).
55 heap_mark_bitmap_ = heap->GetMarkBitmap();
56 }
57}
58
59ConcurrentCopying::~ConcurrentCopying() {
60}
61
62void ConcurrentCopying::RunPhases() {
63 CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
64 CHECK(!is_active_);
65 is_active_ = true;
66 Thread* self = Thread::Current();
67 Locks::mutator_lock_->AssertNotHeld(self);
68 {
69 ReaderMutexLock mu(self, *Locks::mutator_lock_);
70 InitializePhase();
71 }
72 FlipThreadRoots();
73 {
74 ReaderMutexLock mu(self, *Locks::mutator_lock_);
75 MarkingPhase();
76 }
77 // Verify no from space refs. This causes a pause.
78 if (kEnableNoFromSpaceRefsVerification || kIsDebugBuild) {
79 TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
80 ScopedPause pause(this);
81 CheckEmptyMarkQueue();
82 if (kVerboseMode) {
83 LOG(INFO) << "Verifying no from-space refs";
84 }
85 VerifyNoFromSpaceReferences();
86 CheckEmptyMarkQueue();
87 }
88 {
89 ReaderMutexLock mu(self, *Locks::mutator_lock_);
90 ReclaimPhase();
91 }
92 FinishPhase();
93 CHECK(is_active_);
94 is_active_ = false;
95}
96
97void ConcurrentCopying::BindBitmaps() {
98 Thread* self = Thread::Current();
99 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
100 // Mark all of the spaces we never collect as immune.
101 for (const auto& space : heap_->GetContinuousSpaces()) {
102 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
103 || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
104 CHECK(space->IsZygoteSpace() || space->IsImageSpace());
105 CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
106 const char* bitmap_name = space->IsImageSpace() ? "cc image space bitmap" :
107 "cc zygote space bitmap";
108 // TODO: try avoiding using bitmaps for image/zygote to save space.
109 accounting::ContinuousSpaceBitmap* bitmap =
110 accounting::ContinuousSpaceBitmap::Create(bitmap_name, space->Begin(), space->Capacity());
111 cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
112 cc_bitmaps_.push_back(bitmap);
113 } else if (space == region_space_) {
114 accounting::ContinuousSpaceBitmap* bitmap =
115 accounting::ContinuousSpaceBitmap::Create("cc region space bitmap",
116 space->Begin(), space->Capacity());
117 cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
118 cc_bitmaps_.push_back(bitmap);
119 region_space_bitmap_ = bitmap;
120 }
121 }
122}
123
124void ConcurrentCopying::InitializePhase() {
125 TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
126 if (kVerboseMode) {
127 LOG(INFO) << "GC InitializePhase";
128 LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
129 << reinterpret_cast<void*>(region_space_->Limit());
130 }
131 CHECK(mark_queue_.IsEmpty());
132 immune_region_.Reset();
133 bytes_moved_.StoreRelaxed(0);
134 objects_moved_.StoreRelaxed(0);
135 if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
136 GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
137 GetCurrentIteration()->GetClearSoftReferences()) {
138 force_evacuate_all_ = true;
139 } else {
140 force_evacuate_all_ = false;
141 }
142 BindBitmaps();
143 if (kVerboseMode) {
144 LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_;
145 LOG(INFO) << "Immune region: " << immune_region_.Begin() << "-" << immune_region_.End();
146 LOG(INFO) << "GC end of InitializePhase";
147 }
148}
149
150// Used to switch the thread roots of a thread from from-space refs to to-space refs.
151class ThreadFlipVisitor : public Closure {
152 public:
153 explicit ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
154 : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
155 }
156
157 virtual void Run(Thread* thread) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
158 // Note: self is not necessarily equal to thread since thread may be suspended.
159 Thread* self = Thread::Current();
160 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
161 << thread->GetState() << " thread " << thread << " self " << self;
162 if (use_tlab_ && thread->HasTlab()) {
163 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
164 // This must come before the revoke.
165 size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
166 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
167 reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)->
168 FetchAndAddSequentiallyConsistent(thread_local_objects);
169 } else {
170 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
171 }
172 }
173 if (kUseThreadLocalAllocationStack) {
174 thread->RevokeThreadLocalAllocationStack();
175 }
176 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
177 thread->VisitRoots(ConcurrentCopying::ProcessRootCallback, concurrent_copying_);
178 concurrent_copying_->GetBarrier().Pass(self);
179 }
180
181 private:
182 ConcurrentCopying* const concurrent_copying_;
183 const bool use_tlab_;
184};
185
186// Called back from Runtime::FlipThreadRoots() during a pause.
187class FlipCallback : public Closure {
188 public:
189 explicit FlipCallback(ConcurrentCopying* concurrent_copying)
190 : concurrent_copying_(concurrent_copying) {
191 }
192
193 virtual void Run(Thread* thread) OVERRIDE EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) {
194 ConcurrentCopying* cc = concurrent_copying_;
195 TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
196 // Note: self is not necessarily equal to thread since thread may be suspended.
197 Thread* self = Thread::Current();
198 CHECK(thread == self);
199 Locks::mutator_lock_->AssertExclusiveHeld(self);
200 cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_);
201 cc->SwapStacks(self);
202 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
203 cc->RecordLiveStackFreezeSize(self);
204 cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
205 cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
206 }
207 cc->is_marking_ = true;
208 if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
Mathieu Chartier184c9dc2015-03-05 13:20:54 -0800209 CHECK(Runtime::Current()->IsAotCompiler());
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800210 TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings());
211 Runtime::Current()->VisitTransactionRoots(ConcurrentCopying::ProcessRootCallback, cc);
212 }
213 }
214
215 private:
216 ConcurrentCopying* const concurrent_copying_;
217};
218
219// Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
220void ConcurrentCopying::FlipThreadRoots() {
221 TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
222 if (kVerboseMode) {
223 LOG(INFO) << "time=" << region_space_->Time();
224 region_space_->DumpNonFreeRegions(LOG(INFO));
225 }
226 Thread* self = Thread::Current();
227 Locks::mutator_lock_->AssertNotHeld(self);
228 gc_barrier_->Init(self, 0);
229 ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
230 FlipCallback flip_callback(this);
231 size_t barrier_count = Runtime::Current()->FlipThreadRoots(
232 &thread_flip_visitor, &flip_callback, this);
233 {
234 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
235 gc_barrier_->Increment(self, barrier_count);
236 }
237 is_asserting_to_space_invariant_ = true;
238 QuasiAtomic::ThreadFenceForConstructor();
239 if (kVerboseMode) {
240 LOG(INFO) << "time=" << region_space_->Time();
241 region_space_->DumpNonFreeRegions(LOG(INFO));
242 LOG(INFO) << "GC end of FlipThreadRoots";
243 }
244}
245
246void ConcurrentCopying::SwapStacks(Thread* self) {
247 heap_->SwapStacks(self);
248}
249
250void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
251 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
252 live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
253}
254
255// Used to visit objects in the immune spaces.
256class ConcurrentCopyingImmuneSpaceObjVisitor {
257 public:
258 explicit ConcurrentCopyingImmuneSpaceObjVisitor(ConcurrentCopying* cc)
259 : collector_(cc) {}
260
261 void operator()(mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
262 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
263 DCHECK(obj != nullptr);
264 DCHECK(collector_->immune_region_.ContainsObject(obj));
265 accounting::ContinuousSpaceBitmap* cc_bitmap =
266 collector_->cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
267 DCHECK(cc_bitmap != nullptr)
268 << "An immune space object must have a bitmap";
269 if (kIsDebugBuild) {
270 DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj))
271 << "Immune space object must be already marked";
272 }
273 // This may or may not succeed, which is ok.
274 if (kUseBakerReadBarrier) {
275 obj->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
276 }
277 if (cc_bitmap->AtomicTestAndSet(obj)) {
278 // Already marked. Do nothing.
279 } else {
280 // Newly marked. Set the gray bit and push it onto the mark stack.
281 CHECK(!kUseBakerReadBarrier || obj->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
282 collector_->PushOntoMarkStack<true>(obj);
283 }
284 }
285
286 private:
287 ConcurrentCopying* collector_;
288};
289
290class EmptyCheckpoint : public Closure {
291 public:
292 explicit EmptyCheckpoint(ConcurrentCopying* concurrent_copying)
293 : concurrent_copying_(concurrent_copying) {
294 }
295
296 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
297 // Note: self is not necessarily equal to thread since thread may be suspended.
298 Thread* self = Thread::Current();
299 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
300 << thread->GetState() << " thread " << thread << " self " << self;
Lei Lidd9943d2015-02-02 14:24:44 +0800301 // If thread is a running mutator, then act on behalf of the garbage collector.
302 // See the code in ThreadList::RunCheckpoint.
303 if (thread->GetState() == kRunnable) {
304 concurrent_copying_->GetBarrier().Pass(self);
305 }
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800306 }
307
308 private:
309 ConcurrentCopying* const concurrent_copying_;
310};
311
312// Concurrently mark roots that are guarded by read barriers and process the mark stack.
313void ConcurrentCopying::MarkingPhase() {
314 TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
315 if (kVerboseMode) {
316 LOG(INFO) << "GC MarkingPhase";
317 }
318 {
319 // Mark the image root. The WB-based collectors do not need to
320 // scan the image objects from roots by relying on the card table,
321 // but it's necessary for the RB to-space invariant to hold.
322 TimingLogger::ScopedTiming split1("VisitImageRoots", GetTimings());
323 gc::space::ImageSpace* image = heap_->GetImageSpace();
324 if (image != nullptr) {
325 mirror::ObjectArray<mirror::Object>* image_root = image->GetImageHeader().GetImageRoots();
326 mirror::Object* marked_image_root = Mark(image_root);
327 CHECK_EQ(image_root, marked_image_root) << "An image object does not move";
328 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
329 AssertToSpaceInvariant(nullptr, MemberOffset(0), marked_image_root);
330 }
331 }
332 }
333 {
334 TimingLogger::ScopedTiming split2("VisitConstantRoots", GetTimings());
335 Runtime::Current()->VisitConstantRoots(ProcessRootCallback, this);
336 }
337 {
338 TimingLogger::ScopedTiming split3("VisitInternTableRoots", GetTimings());
339 Runtime::Current()->GetInternTable()->VisitRoots(ProcessRootCallback,
340 this, kVisitRootFlagAllRoots);
341 }
342 {
343 TimingLogger::ScopedTiming split4("VisitClassLinkerRoots", GetTimings());
344 Runtime::Current()->GetClassLinker()->VisitRoots(ProcessRootCallback,
345 this, kVisitRootFlagAllRoots);
346 }
347 {
348 // TODO: don't visit the transaction roots if it's not active.
349 TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
350 Runtime::Current()->VisitNonThreadRoots(ProcessRootCallback, this);
351 }
352
353 // Immune spaces.
354 for (auto& space : heap_->GetContinuousSpaces()) {
355 if (immune_region_.ContainsSpace(space)) {
356 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
357 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
358 ConcurrentCopyingImmuneSpaceObjVisitor visitor(this);
359 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
360 reinterpret_cast<uintptr_t>(space->Limit()),
361 visitor);
362 }
363 }
364
365 Thread* self = Thread::Current();
366 {
367 TimingLogger::ScopedTiming split6("ProcessMarkStack", GetTimings());
368 // Process the mark stack and issue an empty check point. If the
369 // mark stack is still empty after the check point, we're
370 // done. Otherwise, repeat.
371 ProcessMarkStack();
372 size_t count = 0;
373 while (!ProcessMarkStack()) {
374 ++count;
375 if (kVerboseMode) {
376 LOG(INFO) << "Issue an empty check point. " << count;
377 }
378 IssueEmptyCheckpoint();
379 }
380 // Need to ensure the mark stack is empty before reference
381 // processing to get rid of non-reference gray objects.
382 CheckEmptyMarkQueue();
383 // Enable the GetReference slow path and disallow access to the system weaks.
384 GetHeap()->GetReferenceProcessor()->EnableSlowPath();
385 Runtime::Current()->DisallowNewSystemWeaks();
386 QuasiAtomic::ThreadFenceForConstructor();
387 // Lock-unlock the system weak locks so that there's no thread in
388 // the middle of accessing system weaks.
389 Runtime::Current()->EnsureNewSystemWeaksDisallowed();
390 // Note: Do not issue a checkpoint from here to the
391 // SweepSystemWeaks call or else a deadlock due to
392 // WaitHoldingLocks() would occur.
393 if (kVerboseMode) {
394 LOG(INFO) << "Enabled the ref proc slow path & disabled access to system weaks.";
395 LOG(INFO) << "ProcessReferences";
396 }
397 ProcessReferences(self, true);
398 CheckEmptyMarkQueue();
399 if (kVerboseMode) {
400 LOG(INFO) << "SweepSystemWeaks";
401 }
402 SweepSystemWeaks(self);
403 if (kVerboseMode) {
404 LOG(INFO) << "SweepSystemWeaks done";
405 }
406 // Because hash_set::Erase() can call the hash function for
407 // arbitrary elements in the weak intern table in
408 // InternTable::Table::SweepWeaks(), the above SweepSystemWeaks()
409 // call may have marked some objects (strings) alive. So process
410 // the mark stack here once again.
411 ProcessMarkStack();
412 CheckEmptyMarkQueue();
413 // Disable marking.
414 if (kUseTableLookupReadBarrier) {
415 heap_->rb_table_->ClearAll();
416 DCHECK(heap_->rb_table_->IsAllCleared());
417 }
418 is_mark_queue_push_disallowed_.StoreSequentiallyConsistent(1);
419 is_marking_ = false;
420 if (kVerboseMode) {
421 LOG(INFO) << "AllowNewSystemWeaks";
422 }
423 Runtime::Current()->AllowNewSystemWeaks();
424 CheckEmptyMarkQueue();
425 }
426
427 if (kVerboseMode) {
428 LOG(INFO) << "GC end of MarkingPhase";
429 }
430}
431
432void ConcurrentCopying::IssueEmptyCheckpoint() {
433 Thread* self = Thread::Current();
434 EmptyCheckpoint check_point(this);
435 ThreadList* thread_list = Runtime::Current()->GetThreadList();
436 gc_barrier_->Init(self, 0);
437 size_t barrier_count = thread_list->RunCheckpoint(&check_point);
Lei Lidd9943d2015-02-02 14:24:44 +0800438 // If there are no threads to wait which implys that all the checkpoint functions are finished,
439 // then no need to release the mutator lock.
440 if (barrier_count == 0) {
441 return;
442 }
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800443 // Release locks then wait for all mutator threads to pass the barrier.
444 Locks::mutator_lock_->SharedUnlock(self);
445 {
446 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
447 gc_barrier_->Increment(self, barrier_count);
448 }
449 Locks::mutator_lock_->SharedLock(self);
450}
451
452mirror::Object* ConcurrentCopying::PopOffMarkStack() {
453 return mark_queue_.Dequeue();
454}
455
456template<bool kThreadSafe>
457void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) {
458 CHECK_EQ(is_mark_queue_push_disallowed_.LoadRelaxed(), 0)
459 << " " << to_ref << " " << PrettyTypeOf(to_ref);
460 if (kThreadSafe) {
461 CHECK(mark_queue_.Enqueue(to_ref)) << "Mark queue overflow";
462 } else {
463 CHECK(mark_queue_.EnqueueThreadUnsafe(to_ref)) << "Mark queue overflow";
464 }
465}
466
467accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
468 return heap_->allocation_stack_.get();
469}
470
471accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
472 return heap_->live_stack_.get();
473}
474
475inline mirror::Object* ConcurrentCopying::GetFwdPtr(mirror::Object* from_ref) {
476 DCHECK(region_space_->IsInFromSpace(from_ref));
477 LockWord lw = from_ref->GetLockWord(false);
478 if (lw.GetState() == LockWord::kForwardingAddress) {
479 mirror::Object* fwd_ptr = reinterpret_cast<mirror::Object*>(lw.ForwardingAddress());
480 CHECK(fwd_ptr != nullptr);
481 return fwd_ptr;
482 } else {
483 return nullptr;
484 }
485}
486
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800487// The following visitors are that used to verify that there's no
488// references to the from-space left after marking.
489class ConcurrentCopyingVerifyNoFromSpaceRefsVisitor {
490 public:
491 explicit ConcurrentCopyingVerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
492 : collector_(collector) {}
493
494 void operator()(mirror::Object* ref) const
495 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
496 if (ref == nullptr) {
497 // OK.
498 return;
499 }
500 collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
501 if (kUseBakerReadBarrier) {
502 if (collector_->RegionSpace()->IsInToSpace(ref)) {
503 CHECK(ref->GetReadBarrierPointer() == nullptr)
504 << "To-space ref " << ref << " " << PrettyTypeOf(ref)
505 << " has non-white rb_ptr " << ref->GetReadBarrierPointer();
506 } else {
507 CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
508 (ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
509 collector_->IsOnAllocStack(ref)))
510 << "Non-moving/unevac from space ref " << ref << " " << PrettyTypeOf(ref)
511 << " has non-black rb_ptr " << ref->GetReadBarrierPointer()
512 << " but isn't on the alloc stack (and has white rb_ptr)."
513 << " Is it in the non-moving space="
514 << (collector_->GetHeap()->GetNonMovingSpace()->HasAddress(ref));
515 }
516 }
517 }
518
519 static void RootCallback(mirror::Object** root, void *arg, const RootInfo& /*root_info*/)
520 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
521 ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
522 ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector);
523 DCHECK(root != nullptr);
524 visitor(*root);
525 }
526
527 private:
528 ConcurrentCopying* collector_;
529};
530
531class ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor {
532 public:
533 explicit ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
534 : collector_(collector) {}
535
536 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
537 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
538 mirror::Object* ref =
539 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
540 ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_);
541 visitor(ref);
542 }
543 void operator()(mirror::Class* klass, mirror::Reference* ref) const
544 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
545 CHECK(klass->IsTypeOfReferenceClass());
546 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
547 }
548
549 private:
550 ConcurrentCopying* collector_;
551};
552
553class ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor {
554 public:
555 explicit ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector)
556 : collector_(collector) {}
557 void operator()(mirror::Object* obj) const
558 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
559 ObjectCallback(obj, collector_);
560 }
561 static void ObjectCallback(mirror::Object* obj, void *arg)
562 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
563 CHECK(obj != nullptr);
564 ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
565 space::RegionSpace* region_space = collector->RegionSpace();
566 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
567 ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor visitor(collector);
568 obj->VisitReferences<true>(visitor, visitor);
569 if (kUseBakerReadBarrier) {
570 if (collector->RegionSpace()->IsInToSpace(obj)) {
571 CHECK(obj->GetReadBarrierPointer() == nullptr)
572 << "obj=" << obj << " non-white rb_ptr " << obj->GetReadBarrierPointer();
573 } else {
574 CHECK(obj->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
575 (obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
576 collector->IsOnAllocStack(obj)))
577 << "Non-moving space/unevac from space ref " << obj << " " << PrettyTypeOf(obj)
578 << " has non-black rb_ptr " << obj->GetReadBarrierPointer()
579 << " but isn't on the alloc stack (and has white rb_ptr). Is it in the non-moving space="
580 << (collector->GetHeap()->GetNonMovingSpace()->HasAddress(obj));
581 }
582 }
583 }
584
585 private:
586 ConcurrentCopying* const collector_;
587};
588
589// Verify there's no from-space references left after the marking phase.
590void ConcurrentCopying::VerifyNoFromSpaceReferences() {
591 Thread* self = Thread::Current();
592 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
593 ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor visitor(this);
594 // Roots.
595 {
596 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
597 Runtime::Current()->VisitRoots(
598 ConcurrentCopyingVerifyNoFromSpaceRefsVisitor::RootCallback, this);
599 }
600 // The to-space.
601 region_space_->WalkToSpace(ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor::ObjectCallback,
602 this);
603 // Non-moving spaces.
604 {
605 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
606 heap_->GetMarkBitmap()->Visit(visitor);
607 }
608 // The alloc stack.
609 {
610 ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
Mathieu Chartiercb535da2015-01-23 13:50:03 -0800611 for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
612 it < end; ++it) {
613 mirror::Object* const obj = it->AsMirrorPtr();
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800614 if (obj != nullptr && obj->GetClass() != nullptr) {
615 // TODO: need to call this only if obj is alive?
616 ref_visitor(obj);
617 visitor(obj);
618 }
619 }
620 }
621 // TODO: LOS. But only refs in LOS are classes.
622}
623
624// The following visitors are used to assert the to-space invariant.
625class ConcurrentCopyingAssertToSpaceInvariantRefsVisitor {
626 public:
627 explicit ConcurrentCopyingAssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector)
628 : collector_(collector) {}
629
630 void operator()(mirror::Object* ref) const
631 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
632 if (ref == nullptr) {
633 // OK.
634 return;
635 }
636 collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
637 }
638 static void RootCallback(mirror::Object** root, void *arg, const RootInfo& /*root_info*/)
639 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
640 ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
641 ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector);
642 DCHECK(root != nullptr);
643 visitor(*root);
644 }
645
646 private:
647 ConcurrentCopying* collector_;
648};
649
650class ConcurrentCopyingAssertToSpaceInvariantFieldVisitor {
651 public:
652 explicit ConcurrentCopyingAssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
653 : collector_(collector) {}
654
655 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
656 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
657 mirror::Object* ref =
658 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
659 ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_);
660 visitor(ref);
661 }
662 void operator()(mirror::Class* klass, mirror::Reference* /* ref */) const
663 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
664 CHECK(klass->IsTypeOfReferenceClass());
665 }
666
667 private:
668 ConcurrentCopying* collector_;
669};
670
671class ConcurrentCopyingAssertToSpaceInvariantObjectVisitor {
672 public:
673 explicit ConcurrentCopyingAssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector)
674 : collector_(collector) {}
675 void operator()(mirror::Object* obj) const
676 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
677 ObjectCallback(obj, collector_);
678 }
679 static void ObjectCallback(mirror::Object* obj, void *arg)
680 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
681 CHECK(obj != nullptr);
682 ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
683 space::RegionSpace* region_space = collector->RegionSpace();
684 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
685 collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj);
686 ConcurrentCopyingAssertToSpaceInvariantFieldVisitor visitor(collector);
687 obj->VisitReferences<true>(visitor, visitor);
688 }
689
690 private:
691 ConcurrentCopying* collector_;
692};
693
694bool ConcurrentCopying::ProcessMarkStack() {
695 if (kVerboseMode) {
696 LOG(INFO) << "ProcessMarkStack. ";
697 }
698 size_t count = 0;
699 mirror::Object* to_ref;
700 while ((to_ref = PopOffMarkStack()) != nullptr) {
701 ++count;
702 DCHECK(!region_space_->IsInFromSpace(to_ref));
703 if (kUseBakerReadBarrier) {
704 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
705 << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
706 << " is_marked=" << IsMarked(to_ref);
707 }
708 // Scan ref fields.
709 Scan(to_ref);
710 // Mark the gray ref as white or black.
711 if (kUseBakerReadBarrier) {
712 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
713 << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
714 << " is_marked=" << IsMarked(to_ref);
715 }
716 if (to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
717 to_ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr &&
718 !IsInToSpace(to_ref->AsReference()->GetReferent<kWithoutReadBarrier>())) {
719 // Leave References gray so that GetReferent() will trigger RB.
720 CHECK(to_ref->AsReference()->IsEnqueued()) << "Left unenqueued ref gray " << to_ref;
721 } else {
722 if (kUseBakerReadBarrier) {
723 if (region_space_->IsInToSpace(to_ref)) {
724 // If to-space, change from gray to white.
725 bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
726 ReadBarrier::WhitePtr());
727 CHECK(success) << "Must succeed as we won the race.";
728 CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
729 } else {
730 // If non-moving space/unevac from space, change from gray
731 // to black. We can't change gray to white because it's not
732 // safe to use CAS if two threads change values in opposite
733 // directions (A->B and B->A). So, we change it to black to
734 // indicate non-moving objects that have been marked
735 // through. Note we'd need to change from black to white
736 // later (concurrently).
737 bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
738 ReadBarrier::BlackPtr());
739 CHECK(success) << "Must succeed as we won the race.";
740 CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
741 }
742 }
743 }
744 if (ReadBarrier::kEnableToSpaceInvariantChecks || kIsDebugBuild) {
745 ConcurrentCopyingAssertToSpaceInvariantObjectVisitor visitor(this);
746 visitor(to_ref);
747 }
748 }
749 // Return true if the stack was empty.
750 return count == 0;
751}
752
753void ConcurrentCopying::CheckEmptyMarkQueue() {
754 if (!mark_queue_.IsEmpty()) {
755 while (!mark_queue_.IsEmpty()) {
756 mirror::Object* obj = mark_queue_.Dequeue();
757 if (kUseBakerReadBarrier) {
758 mirror::Object* rb_ptr = obj->GetReadBarrierPointer();
759 LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj) << " rb_ptr=" << rb_ptr
760 << " is_marked=" << IsMarked(obj);
761 } else {
762 LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj)
763 << " is_marked=" << IsMarked(obj);
764 }
765 }
766 LOG(FATAL) << "mark queue is not empty";
767 }
768}
769
770void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
771 TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
772 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
773 Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this);
774}
775
776void ConcurrentCopying::Sweep(bool swap_bitmaps) {
777 {
778 TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
779 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
780 if (kEnableFromSpaceAccountingCheck) {
781 CHECK_GE(live_stack_freeze_size_, live_stack->Size());
782 }
783 heap_->MarkAllocStackAsLive(live_stack);
784 live_stack->Reset();
785 }
786 CHECK(mark_queue_.IsEmpty());
787 TimingLogger::ScopedTiming split("Sweep", GetTimings());
788 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
789 if (space->IsContinuousMemMapAllocSpace()) {
790 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
791 if (space == region_space_ || immune_region_.ContainsSpace(space)) {
792 continue;
793 }
794 TimingLogger::ScopedTiming split2(
795 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
796 RecordFree(alloc_space->Sweep(swap_bitmaps));
797 }
798 }
799 SweepLargeObjects(swap_bitmaps);
800}
801
802void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
803 TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
804 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
805}
806
807class ConcurrentCopyingClearBlackPtrsVisitor {
808 public:
809 explicit ConcurrentCopyingClearBlackPtrsVisitor(ConcurrentCopying* cc)
810 : collector_(cc) {}
811 void operator()(mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
812 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
813 DCHECK(obj != nullptr);
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -0800814 DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj)) << obj;
815 DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << obj;
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800816 obj->SetReadBarrierPointer(ReadBarrier::WhitePtr());
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -0800817 DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800818 }
819
820 private:
821 ConcurrentCopying* const collector_;
822};
823
824// Clear the black ptrs in non-moving objects back to white.
825void ConcurrentCopying::ClearBlackPtrs() {
826 CHECK(kUseBakerReadBarrier);
827 TimingLogger::ScopedTiming split("ClearBlackPtrs", GetTimings());
828 ConcurrentCopyingClearBlackPtrsVisitor visitor(this);
829 for (auto& space : heap_->GetContinuousSpaces()) {
830 if (space == region_space_) {
831 continue;
832 }
833 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
834 if (kVerboseMode) {
835 LOG(INFO) << "ClearBlackPtrs: " << *space << " bitmap: " << *mark_bitmap;
836 }
837 mark_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
838 reinterpret_cast<uintptr_t>(space->Limit()),
839 visitor);
840 }
841 space::LargeObjectSpace* large_object_space = heap_->GetLargeObjectsSpace();
842 large_object_space->GetMarkBitmap()->VisitMarkedRange(
843 reinterpret_cast<uintptr_t>(large_object_space->Begin()),
844 reinterpret_cast<uintptr_t>(large_object_space->End()),
845 visitor);
846 // Objects on the allocation stack?
847 if (ReadBarrier::kEnableReadBarrierInvariantChecks || kIsDebugBuild) {
848 size_t count = GetAllocationStack()->Size();
Mathieu Chartiercb535da2015-01-23 13:50:03 -0800849 auto* it = GetAllocationStack()->Begin();
850 auto* end = GetAllocationStack()->End();
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800851 for (size_t i = 0; i < count; ++i, ++it) {
Mathieu Chartiercb535da2015-01-23 13:50:03 -0800852 CHECK_LT(it, end);
853 mirror::Object* obj = it->AsMirrorPtr();
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800854 if (obj != nullptr) {
855 // Must have been cleared above.
Mathieu Chartiercb535da2015-01-23 13:50:03 -0800856 CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800857 }
858 }
859 }
860}
861
862void ConcurrentCopying::ReclaimPhase() {
863 TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
864 if (kVerboseMode) {
865 LOG(INFO) << "GC ReclaimPhase";
866 }
867 Thread* self = Thread::Current();
868
869 {
870 // Double-check that the mark stack is empty.
871 // Note: need to set this after VerifyNoFromSpaceRef().
872 is_asserting_to_space_invariant_ = false;
873 QuasiAtomic::ThreadFenceForConstructor();
874 if (kVerboseMode) {
875 LOG(INFO) << "Issue an empty check point. ";
876 }
877 IssueEmptyCheckpoint();
878 // Disable the check.
879 is_mark_queue_push_disallowed_.StoreSequentiallyConsistent(0);
880 CheckEmptyMarkQueue();
881 }
882
883 {
884 // Record freed objects.
885 TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
886 // Don't include thread-locals that are in the to-space.
887 uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
888 uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
889 uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
890 uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
891 uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent();
892 uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent();
893 if (kEnableFromSpaceAccountingCheck) {
894 CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
895 CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
896 }
897 CHECK_LE(to_objects, from_objects);
898 CHECK_LE(to_bytes, from_bytes);
899 int64_t freed_bytes = from_bytes - to_bytes;
900 int64_t freed_objects = from_objects - to_objects;
901 if (kVerboseMode) {
902 LOG(INFO) << "RecordFree:"
903 << " from_bytes=" << from_bytes << " from_objects=" << from_objects
904 << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects
905 << " to_bytes=" << to_bytes << " to_objects=" << to_objects
906 << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
907 << " from_space size=" << region_space_->FromSpaceSize()
908 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
909 << " to_space size=" << region_space_->ToSpaceSize();
910 LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
911 }
912 RecordFree(ObjectBytePair(freed_objects, freed_bytes));
913 if (kVerboseMode) {
914 LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
915 }
916 }
917
918 {
919 TimingLogger::ScopedTiming split3("ComputeUnevacFromSpaceLiveRatio", GetTimings());
920 ComputeUnevacFromSpaceLiveRatio();
921 }
922
923 {
924 TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
925 region_space_->ClearFromSpace();
926 }
927
928 {
929 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
930 if (kUseBakerReadBarrier) {
931 ClearBlackPtrs();
932 }
933 Sweep(false);
934 SwapBitmaps();
935 heap_->UnBindBitmaps();
936
937 // Remove bitmaps for the immune spaces.
938 while (!cc_bitmaps_.empty()) {
939 accounting::ContinuousSpaceBitmap* cc_bitmap = cc_bitmaps_.back();
940 cc_heap_bitmap_->RemoveContinuousSpaceBitmap(cc_bitmap);
941 delete cc_bitmap;
942 cc_bitmaps_.pop_back();
943 }
944 region_space_bitmap_ = nullptr;
945 }
946
947 if (kVerboseMode) {
948 LOG(INFO) << "GC end of ReclaimPhase";
949 }
950}
951
952class ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor {
953 public:
954 explicit ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying* cc)
955 : collector_(cc) {}
956 void operator()(mirror::Object* ref) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
957 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
958 DCHECK(ref != nullptr);
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -0800959 DCHECK(collector_->region_space_bitmap_->Test(ref)) << ref;
960 DCHECK(collector_->region_space_->IsInUnevacFromSpace(ref)) << ref;
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800961 if (kUseBakerReadBarrier) {
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -0800962 DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << ref;
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800963 // Clear the black ptr.
964 ref->SetReadBarrierPointer(ReadBarrier::WhitePtr());
965 }
966 size_t obj_size = ref->SizeOf();
967 size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
968 collector_->region_space_->AddLiveBytes(ref, alloc_size);
969 }
970
971 private:
972 ConcurrentCopying* collector_;
973};
974
975// Compute how much live objects are left in regions.
976void ConcurrentCopying::ComputeUnevacFromSpaceLiveRatio() {
977 region_space_->AssertAllRegionLiveBytesZeroOrCleared();
978 ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor visitor(this);
979 region_space_bitmap_->VisitMarkedRange(reinterpret_cast<uintptr_t>(region_space_->Begin()),
980 reinterpret_cast<uintptr_t>(region_space_->Limit()),
981 visitor);
982}
983
984// Assert the to-space invariant.
985void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset,
986 mirror::Object* ref) {
987 CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
988 if (is_asserting_to_space_invariant_) {
989 if (region_space_->IsInToSpace(ref)) {
990 // OK.
991 return;
992 } else if (region_space_->IsInUnevacFromSpace(ref)) {
993 CHECK(region_space_bitmap_->Test(ref)) << ref;
994 } else if (region_space_->IsInFromSpace(ref)) {
995 // Not OK. Do extra logging.
996 if (obj != nullptr) {
997 if (kUseBakerReadBarrier) {
998 LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj)
999 << " holder rb_ptr=" << obj->GetReadBarrierPointer();
1000 } else {
1001 LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj);
1002 }
1003 if (region_space_->IsInFromSpace(obj)) {
1004 LOG(INFO) << "holder is in the from-space.";
1005 } else if (region_space_->IsInToSpace(obj)) {
1006 LOG(INFO) << "holder is in the to-space.";
1007 } else if (region_space_->IsInUnevacFromSpace(obj)) {
1008 LOG(INFO) << "holder is in the unevac from-space.";
1009 if (region_space_bitmap_->Test(obj)) {
1010 LOG(INFO) << "holder is marked in the region space bitmap.";
1011 } else {
1012 LOG(INFO) << "holder is not marked in the region space bitmap.";
1013 }
1014 } else {
1015 // In a non-moving space.
1016 if (immune_region_.ContainsObject(obj)) {
1017 LOG(INFO) << "holder is in the image or the zygote space.";
1018 accounting::ContinuousSpaceBitmap* cc_bitmap =
1019 cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
1020 CHECK(cc_bitmap != nullptr)
1021 << "An immune space object must have a bitmap.";
1022 if (cc_bitmap->Test(obj)) {
1023 LOG(INFO) << "holder is marked in the bit map.";
1024 } else {
1025 LOG(INFO) << "holder is NOT marked in the bit map.";
1026 }
1027 } else {
1028 LOG(INFO) << "holder is in a non-moving (or main) space.";
1029 accounting::ContinuousSpaceBitmap* mark_bitmap =
1030 heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
1031 accounting::LargeObjectBitmap* los_bitmap =
1032 heap_mark_bitmap_->GetLargeObjectBitmap(obj);
1033 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1034 bool is_los = mark_bitmap == nullptr;
1035 if (!is_los && mark_bitmap->Test(obj)) {
1036 LOG(INFO) << "holder is marked in the mark bit map.";
1037 } else if (is_los && los_bitmap->Test(obj)) {
1038 LOG(INFO) << "holder is marked in the los bit map.";
1039 } else {
1040 // If ref is on the allocation stack, then it is considered
1041 // mark/alive (but not necessarily on the live stack.)
1042 if (IsOnAllocStack(obj)) {
1043 LOG(INFO) << "holder is on the alloc stack.";
1044 } else {
1045 LOG(INFO) << "holder is not marked or on the alloc stack.";
1046 }
1047 }
1048 }
1049 }
1050 LOG(INFO) << "offset=" << offset.SizeValue();
1051 }
1052 CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1053 } else {
1054 // In a non-moving spaces. Check that the ref is marked.
1055 if (immune_region_.ContainsObject(ref)) {
1056 accounting::ContinuousSpaceBitmap* cc_bitmap =
1057 cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
1058 CHECK(cc_bitmap != nullptr)
1059 << "An immune space ref must have a bitmap. " << ref;
1060 if (kUseBakerReadBarrier) {
1061 CHECK(cc_bitmap->Test(ref))
1062 << "Unmarked immune space ref. obj=" << obj << " rb_ptr="
1063 << obj->GetReadBarrierPointer() << " ref=" << ref;
1064 } else {
1065 CHECK(cc_bitmap->Test(ref))
1066 << "Unmarked immune space ref. obj=" << obj << " ref=" << ref;
1067 }
1068 } else {
1069 accounting::ContinuousSpaceBitmap* mark_bitmap =
1070 heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
1071 accounting::LargeObjectBitmap* los_bitmap =
1072 heap_mark_bitmap_->GetLargeObjectBitmap(ref);
1073 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1074 bool is_los = mark_bitmap == nullptr;
1075 if ((!is_los && mark_bitmap->Test(ref)) ||
1076 (is_los && los_bitmap->Test(ref))) {
1077 // OK.
1078 } else {
1079 // If ref is on the allocation stack, then it may not be
1080 // marked live, but considered marked/alive (but not
1081 // necessarily on the live stack).
1082 CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. "
1083 << "obj=" << obj << " ref=" << ref;
1084 }
1085 }
1086 }
1087 }
1088}
1089
1090void ConcurrentCopying::ProcessRootCallback(mirror::Object** root, void* arg,
1091 const RootInfo& /*root_info*/) {
1092 reinterpret_cast<ConcurrentCopying*>(arg)->Process(root);
1093}
1094
1095// Used to scan ref fields of an object.
1096class ConcurrentCopyingRefFieldsVisitor {
1097 public:
1098 explicit ConcurrentCopyingRefFieldsVisitor(ConcurrentCopying* collector)
1099 : collector_(collector) {}
1100
1101 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
1102 const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1103 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1104 collector_->Process(obj, offset);
1105 }
1106
1107 void operator()(mirror::Class* klass, mirror::Reference* ref) const
1108 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
1109 CHECK(klass->IsTypeOfReferenceClass());
1110 collector_->DelayReferenceReferent(klass, ref);
1111 }
1112
1113 private:
1114 ConcurrentCopying* const collector_;
1115};
1116
1117// Scan ref fields of an object.
1118void ConcurrentCopying::Scan(mirror::Object* to_ref) {
1119 DCHECK(!region_space_->IsInFromSpace(to_ref));
1120 ConcurrentCopyingRefFieldsVisitor visitor(this);
1121 to_ref->VisitReferences<true>(visitor, visitor);
1122}
1123
1124// Process a field.
1125inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
1126 mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
1127 if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1128 return;
1129 }
1130 mirror::Object* to_ref = Mark(ref);
1131 if (to_ref == ref) {
1132 return;
1133 }
1134 // This may fail if the mutator writes to the field at the same time. But it's ok.
1135 mirror::Object* expected_ref = ref;
1136 mirror::Object* new_ref = to_ref;
1137 do {
1138 if (expected_ref !=
1139 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
1140 // It was updated by the mutator.
1141 break;
1142 }
1143 } while (!obj->CasFieldWeakSequentiallyConsistentObjectWithoutWriteBarrier<false, false, kVerifyNone>(
1144 offset, expected_ref, new_ref));
1145}
1146
1147// Process a root.
1148void ConcurrentCopying::Process(mirror::Object** root) {
1149 mirror::Object* ref = *root;
1150 if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1151 return;
1152 }
1153 mirror::Object* to_ref = Mark(ref);
1154 if (to_ref == ref) {
1155 return;
1156 }
1157 Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
1158 mirror::Object* expected_ref = ref;
1159 mirror::Object* new_ref = to_ref;
1160 do {
1161 if (expected_ref != addr->LoadRelaxed()) {
1162 // It was updated by the mutator.
1163 break;
1164 }
1165 } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref));
1166}
1167
1168// Fill the given memory block with a dummy object. Used to fill in a
1169// copy of objects that was lost in race.
1170void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) {
1171 CHECK(IsAligned<kObjectAlignment>(byte_size));
1172 memset(dummy_obj, 0, byte_size);
1173 mirror::Class* int_array_class = mirror::IntArray::GetArrayClass();
1174 CHECK(int_array_class != nullptr);
1175 AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
1176 size_t component_size = int_array_class->GetComponentSize();
1177 CHECK_EQ(component_size, sizeof(int32_t));
1178 size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
1179 if (data_offset > byte_size) {
1180 // An int array is too big. Use java.lang.Object.
1181 mirror::Class* java_lang_Object = WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object);
1182 AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object);
1183 CHECK_EQ(byte_size, java_lang_Object->GetObjectSize());
1184 dummy_obj->SetClass(java_lang_Object);
1185 CHECK_EQ(byte_size, dummy_obj->SizeOf());
1186 } else {
1187 // Use an int array.
1188 dummy_obj->SetClass(int_array_class);
1189 CHECK(dummy_obj->IsArrayInstance());
1190 int32_t length = (byte_size - data_offset) / component_size;
1191 dummy_obj->AsArray()->SetLength(length);
1192 CHECK_EQ(dummy_obj->AsArray()->GetLength(), length)
1193 << "byte_size=" << byte_size << " length=" << length
1194 << " component_size=" << component_size << " data_offset=" << data_offset;
1195 CHECK_EQ(byte_size, dummy_obj->SizeOf())
1196 << "byte_size=" << byte_size << " length=" << length
1197 << " component_size=" << component_size << " data_offset=" << data_offset;
1198 }
1199}
1200
1201// Reuse the memory blocks that were copy of objects that were lost in race.
1202mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) {
1203 // Try to reuse the blocks that were unused due to CAS failures.
1204 CHECK(IsAligned<space::RegionSpace::kAlignment>(alloc_size));
1205 Thread* self = Thread::Current();
1206 size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
1207 MutexLock mu(self, skipped_blocks_lock_);
1208 auto it = skipped_blocks_map_.lower_bound(alloc_size);
1209 if (it == skipped_blocks_map_.end()) {
1210 // Not found.
1211 return nullptr;
1212 }
1213 {
1214 size_t byte_size = it->first;
1215 CHECK_GE(byte_size, alloc_size);
1216 if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
1217 // If remainder would be too small for a dummy object, retry with a larger request size.
1218 it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
1219 if (it == skipped_blocks_map_.end()) {
1220 // Not found.
1221 return nullptr;
1222 }
1223 CHECK(IsAligned<space::RegionSpace::kAlignment>(it->first - alloc_size));
1224 CHECK_GE(it->first - alloc_size, min_object_size)
1225 << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
1226 }
1227 }
1228 // Found a block.
1229 CHECK(it != skipped_blocks_map_.end());
1230 size_t byte_size = it->first;
1231 uint8_t* addr = it->second;
1232 CHECK_GE(byte_size, alloc_size);
1233 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
1234 CHECK(IsAligned<space::RegionSpace::kAlignment>(byte_size));
1235 if (kVerboseMode) {
1236 LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
1237 }
1238 skipped_blocks_map_.erase(it);
1239 memset(addr, 0, byte_size);
1240 if (byte_size > alloc_size) {
1241 // Return the remainder to the map.
1242 CHECK(IsAligned<space::RegionSpace::kAlignment>(byte_size - alloc_size));
1243 CHECK_GE(byte_size - alloc_size, min_object_size);
1244 FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size),
1245 byte_size - alloc_size);
1246 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
1247 skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
1248 }
1249 return reinterpret_cast<mirror::Object*>(addr);
1250}
1251
1252mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref) {
1253 DCHECK(region_space_->IsInFromSpace(from_ref));
1254 // No read barrier to avoid nested RB that might violate the to-space
1255 // invariant. Note that from_ref is a from space ref so the SizeOf()
1256 // call will access the from-space meta objects, but it's ok and necessary.
1257 size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags, kWithoutReadBarrier>();
1258 size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1259 size_t region_space_bytes_allocated = 0U;
1260 size_t non_moving_space_bytes_allocated = 0U;
1261 size_t bytes_allocated = 0U;
Hiroshi Yamauchi4460a842015-03-09 11:57:48 -07001262 size_t dummy;
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001263 mirror::Object* to_ref = region_space_->AllocNonvirtual<true>(
Hiroshi Yamauchi4460a842015-03-09 11:57:48 -07001264 region_space_alloc_size, &region_space_bytes_allocated, nullptr, &dummy);
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001265 bytes_allocated = region_space_bytes_allocated;
1266 if (to_ref != nullptr) {
1267 DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
1268 }
1269 bool fall_back_to_non_moving = false;
1270 if (UNLIKELY(to_ref == nullptr)) {
1271 // Failed to allocate in the region space. Try the skipped blocks.
1272 to_ref = AllocateInSkippedBlock(region_space_alloc_size);
1273 if (to_ref != nullptr) {
1274 // Succeeded to allocate in a skipped block.
1275 if (heap_->use_tlab_) {
1276 // This is necessary for the tlab case as it's not accounted in the space.
1277 region_space_->RecordAlloc(to_ref);
1278 }
1279 bytes_allocated = region_space_alloc_size;
1280 } else {
1281 // Fall back to the non-moving space.
1282 fall_back_to_non_moving = true;
1283 if (kVerboseMode) {
1284 LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
1285 << to_space_bytes_skipped_.LoadSequentiallyConsistent()
1286 << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent();
1287 }
1288 fall_back_to_non_moving = true;
1289 to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size,
Hiroshi Yamauchi4460a842015-03-09 11:57:48 -07001290 &non_moving_space_bytes_allocated, nullptr, &dummy);
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001291 CHECK(to_ref != nullptr) << "Fall-back non-moving space allocation failed";
1292 bytes_allocated = non_moving_space_bytes_allocated;
1293 // Mark it in the mark bitmap.
1294 accounting::ContinuousSpaceBitmap* mark_bitmap =
1295 heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1296 CHECK(mark_bitmap != nullptr);
1297 CHECK(!mark_bitmap->AtomicTestAndSet(to_ref));
1298 }
1299 }
1300 DCHECK(to_ref != nullptr);
1301
1302 // Attempt to install the forward pointer. This is in a loop as the
1303 // lock word atomic write can fail.
1304 while (true) {
1305 // Copy the object. TODO: copy only the lockword in the second iteration and on?
1306 memcpy(to_ref, from_ref, obj_size);
1307 // Set the gray ptr.
1308 if (kUseBakerReadBarrier) {
1309 to_ref->SetReadBarrierPointer(ReadBarrier::GrayPtr());
1310 }
1311
1312 LockWord old_lock_word = to_ref->GetLockWord(false);
1313
1314 if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
1315 // Lost the race. Another thread (either GC or mutator) stored
1316 // the forwarding pointer first. Make the lost copy (to_ref)
1317 // look like a valid but dead (dummy) object and keep it for
1318 // future reuse.
1319 FillWithDummyObject(to_ref, bytes_allocated);
1320 if (!fall_back_to_non_moving) {
1321 DCHECK(region_space_->IsInToSpace(to_ref));
1322 if (bytes_allocated > space::RegionSpace::kRegionSize) {
1323 // Free the large alloc.
1324 region_space_->FreeLarge(to_ref, bytes_allocated);
1325 } else {
1326 // Record the lost copy for later reuse.
1327 heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1328 to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1329 to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1);
1330 MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1331 skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
1332 reinterpret_cast<uint8_t*>(to_ref)));
1333 }
1334 } else {
1335 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1336 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1337 // Free the non-moving-space chunk.
1338 accounting::ContinuousSpaceBitmap* mark_bitmap =
1339 heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1340 CHECK(mark_bitmap != nullptr);
1341 CHECK(mark_bitmap->Clear(to_ref));
1342 heap_->non_moving_space_->Free(Thread::Current(), to_ref);
1343 }
1344
1345 // Get the winner's forward ptr.
1346 mirror::Object* lost_fwd_ptr = to_ref;
1347 to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
1348 CHECK(to_ref != nullptr);
1349 CHECK_NE(to_ref, lost_fwd_ptr);
1350 CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref));
1351 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1352 return to_ref;
1353 }
1354
1355 LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
1356
1357 // Try to atomically write the fwd ptr.
1358 bool success = from_ref->CasLockWordWeakSequentiallyConsistent(old_lock_word, new_lock_word);
1359 if (LIKELY(success)) {
1360 // The CAS succeeded.
1361 objects_moved_.FetchAndAddSequentiallyConsistent(1);
1362 bytes_moved_.FetchAndAddSequentiallyConsistent(region_space_alloc_size);
1363 if (LIKELY(!fall_back_to_non_moving)) {
1364 DCHECK(region_space_->IsInToSpace(to_ref));
1365 } else {
1366 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1367 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1368 }
1369 if (kUseBakerReadBarrier) {
1370 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1371 }
1372 DCHECK(GetFwdPtr(from_ref) == to_ref);
1373 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1374 PushOntoMarkStack<true>(to_ref);
1375 return to_ref;
1376 } else {
1377 // The CAS failed. It may have lost the race or may have failed
1378 // due to monitor/hashcode ops. Either way, retry.
1379 }
1380 }
1381}
1382
1383mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
1384 DCHECK(from_ref != nullptr);
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -08001385 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
1386 if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001387 // It's already marked.
1388 return from_ref;
1389 }
1390 mirror::Object* to_ref;
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -08001391 if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001392 to_ref = GetFwdPtr(from_ref);
1393 DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
1394 heap_->non_moving_space_->HasAddress(to_ref))
1395 << "from_ref=" << from_ref << " to_ref=" << to_ref;
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -08001396 } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001397 if (region_space_bitmap_->Test(from_ref)) {
1398 to_ref = from_ref;
1399 } else {
1400 to_ref = nullptr;
1401 }
1402 } else {
1403 // from_ref is in a non-moving space.
1404 if (immune_region_.ContainsObject(from_ref)) {
1405 accounting::ContinuousSpaceBitmap* cc_bitmap =
1406 cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1407 DCHECK(cc_bitmap != nullptr)
1408 << "An immune space object must have a bitmap";
1409 if (kIsDebugBuild) {
1410 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1411 << "Immune space object must be already marked";
1412 }
1413 if (cc_bitmap->Test(from_ref)) {
1414 // Already marked.
1415 to_ref = from_ref;
1416 } else {
1417 // Newly marked.
1418 to_ref = nullptr;
1419 }
1420 } else {
1421 // Non-immune non-moving space. Use the mark bitmap.
1422 accounting::ContinuousSpaceBitmap* mark_bitmap =
1423 heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1424 accounting::LargeObjectBitmap* los_bitmap =
1425 heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1426 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1427 bool is_los = mark_bitmap == nullptr;
1428 if (!is_los && mark_bitmap->Test(from_ref)) {
1429 // Already marked.
1430 to_ref = from_ref;
1431 } else if (is_los && los_bitmap->Test(from_ref)) {
1432 // Already marked in LOS.
1433 to_ref = from_ref;
1434 } else {
1435 // Not marked.
1436 if (IsOnAllocStack(from_ref)) {
1437 // If on the allocation stack, it's considered marked.
1438 to_ref = from_ref;
1439 } else {
1440 // Not marked.
1441 to_ref = nullptr;
1442 }
1443 }
1444 }
1445 }
1446 return to_ref;
1447}
1448
1449bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
1450 QuasiAtomic::ThreadFenceAcquire();
1451 accounting::ObjectStack* alloc_stack = GetAllocationStack();
Mathieu Chartiercb535da2015-01-23 13:50:03 -08001452 return alloc_stack->Contains(ref);
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001453}
1454
1455mirror::Object* ConcurrentCopying::Mark(mirror::Object* from_ref) {
1456 if (from_ref == nullptr) {
1457 return nullptr;
1458 }
1459 DCHECK(from_ref != nullptr);
1460 DCHECK(heap_->collector_type_ == kCollectorTypeCC);
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -08001461 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
1462 if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001463 // It's already marked.
1464 return from_ref;
1465 }
1466 mirror::Object* to_ref;
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -08001467 if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001468 to_ref = GetFwdPtr(from_ref);
1469 if (kUseBakerReadBarrier) {
1470 DCHECK(to_ref != ReadBarrier::GrayPtr()) << "from_ref=" << from_ref << " to_ref=" << to_ref;
1471 }
1472 if (to_ref == nullptr) {
1473 // It isn't marked yet. Mark it by copying it to the to-space.
1474 to_ref = Copy(from_ref);
1475 }
1476 DCHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
1477 << "from_ref=" << from_ref << " to_ref=" << to_ref;
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -08001478 } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001479 // This may or may not succeed, which is ok.
1480 if (kUseBakerReadBarrier) {
1481 from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1482 }
1483 if (region_space_bitmap_->AtomicTestAndSet(from_ref)) {
1484 // Already marked.
1485 to_ref = from_ref;
1486 } else {
1487 // Newly marked.
1488 to_ref = from_ref;
1489 if (kUseBakerReadBarrier) {
1490 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1491 }
1492 PushOntoMarkStack<true>(to_ref);
1493 }
1494 } else {
1495 // from_ref is in a non-moving space.
1496 DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
1497 if (immune_region_.ContainsObject(from_ref)) {
1498 accounting::ContinuousSpaceBitmap* cc_bitmap =
1499 cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1500 DCHECK(cc_bitmap != nullptr)
1501 << "An immune space object must have a bitmap";
1502 if (kIsDebugBuild) {
1503 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1504 << "Immune space object must be already marked";
1505 }
1506 // This may or may not succeed, which is ok.
1507 if (kUseBakerReadBarrier) {
1508 from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1509 }
1510 if (cc_bitmap->AtomicTestAndSet(from_ref)) {
1511 // Already marked.
1512 to_ref = from_ref;
1513 } else {
1514 // Newly marked.
1515 to_ref = from_ref;
1516 if (kUseBakerReadBarrier) {
1517 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1518 }
1519 PushOntoMarkStack<true>(to_ref);
1520 }
1521 } else {
1522 // Use the mark bitmap.
1523 accounting::ContinuousSpaceBitmap* mark_bitmap =
1524 heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1525 accounting::LargeObjectBitmap* los_bitmap =
1526 heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1527 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1528 bool is_los = mark_bitmap == nullptr;
1529 if (!is_los && mark_bitmap->Test(from_ref)) {
1530 // Already marked.
1531 to_ref = from_ref;
1532 if (kUseBakerReadBarrier) {
1533 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
1534 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1535 }
1536 } else if (is_los && los_bitmap->Test(from_ref)) {
1537 // Already marked in LOS.
1538 to_ref = from_ref;
1539 if (kUseBakerReadBarrier) {
1540 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
1541 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1542 }
1543 } else {
1544 // Not marked.
1545 if (IsOnAllocStack(from_ref)) {
1546 // If it's on the allocation stack, it's considered marked. Keep it white.
1547 to_ref = from_ref;
1548 // Objects on the allocation stack need not be marked.
1549 if (!is_los) {
1550 DCHECK(!mark_bitmap->Test(to_ref));
1551 } else {
1552 DCHECK(!los_bitmap->Test(to_ref));
1553 }
1554 if (kUseBakerReadBarrier) {
1555 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
1556 }
1557 } else {
1558 // Not marked or on the allocation stack. Try to mark it.
1559 // This may or may not succeed, which is ok.
1560 if (kUseBakerReadBarrier) {
1561 from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1562 }
1563 if (!is_los && mark_bitmap->AtomicTestAndSet(from_ref)) {
1564 // Already marked.
1565 to_ref = from_ref;
1566 } else if (is_los && los_bitmap->AtomicTestAndSet(from_ref)) {
1567 // Already marked in LOS.
1568 to_ref = from_ref;
1569 } else {
1570 // Newly marked.
1571 to_ref = from_ref;
1572 if (kUseBakerReadBarrier) {
1573 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1574 }
1575 PushOntoMarkStack<true>(to_ref);
1576 }
1577 }
1578 }
1579 }
1580 }
1581 return to_ref;
1582}
1583
1584void ConcurrentCopying::FinishPhase() {
1585 region_space_ = nullptr;
1586 CHECK(mark_queue_.IsEmpty());
1587 mark_queue_.Clear();
1588 {
1589 MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1590 skipped_blocks_map_.clear();
1591 }
1592 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1593 heap_->ClearMarkedObjects();
1594}
1595
1596mirror::Object* ConcurrentCopying::IsMarkedCallback(mirror::Object* from_ref, void* arg) {
1597 return reinterpret_cast<ConcurrentCopying*>(arg)->IsMarked(from_ref);
1598}
1599
1600bool ConcurrentCopying::IsHeapReferenceMarkedCallback(
1601 mirror::HeapReference<mirror::Object>* field, void* arg) {
1602 mirror::Object* from_ref = field->AsMirrorPtr();
1603 mirror::Object* to_ref = reinterpret_cast<ConcurrentCopying*>(arg)->IsMarked(from_ref);
1604 if (to_ref == nullptr) {
1605 return false;
1606 }
1607 if (from_ref != to_ref) {
1608 QuasiAtomic::ThreadFenceRelease();
1609 field->Assign(to_ref);
1610 QuasiAtomic::ThreadFenceSequentiallyConsistent();
1611 }
1612 return true;
1613}
1614
1615mirror::Object* ConcurrentCopying::MarkCallback(mirror::Object* from_ref, void* arg) {
1616 return reinterpret_cast<ConcurrentCopying*>(arg)->Mark(from_ref);
1617}
1618
1619void ConcurrentCopying::ProcessMarkStackCallback(void* arg) {
1620 reinterpret_cast<ConcurrentCopying*>(arg)->ProcessMarkStack();
1621}
1622
1623void ConcurrentCopying::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
1624 heap_->GetReferenceProcessor()->DelayReferenceReferent(
1625 klass, reference, &IsHeapReferenceMarkedCallback, this);
1626}
1627
1628void ConcurrentCopying::ProcessReferences(Thread* self, bool concurrent) {
1629 TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
1630 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1631 GetHeap()->GetReferenceProcessor()->ProcessReferences(
1632 concurrent, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(),
1633 &IsHeapReferenceMarkedCallback, &MarkCallback, &ProcessMarkStackCallback, this);
1634}
1635
1636void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
1637 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1638 region_space_->RevokeAllThreadLocalBuffers();
1639}
1640
Hiroshi Yamauchid5307ec2014-03-27 21:07:51 -07001641} // namespace collector
1642} // namespace gc
1643} // namespace art