blob: 1df92540195f2e047166c3ea2f2314104631b859 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Perform register memory operation.
28 */
29LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070030 int reg1, int base, int offset, ThrowKind kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070031 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
32 current_dalvik_offset_, reg1, base, offset);
33 OpRegMem(kOpCmp, reg1, base, offset);
34 LIR* branch = OpCondBranch(c_code, tgt);
35 // Remember branch target - will process later
36 throw_launchpads_.Insert(tgt);
37 return branch;
38}
39
40/*
Mark Mendell343adb52013-12-18 06:02:17 -080041 * Perform a compare of memory to immediate value
42 */
43LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code,
44 int base, int offset, int check_value, ThrowKind kind) {
45 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
46 current_dalvik_offset_, base, check_value, 0);
47 NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value);
48 LIR* branch = OpCondBranch(c_code, tgt);
49 // Remember branch target - will process later
50 throw_launchpads_.Insert(tgt);
51 return branch;
52}
53
54/*
Brian Carlstrom7940e442013-07-12 13:46:57 -070055 * Compare two 64-bit values
56 * x = y return 0
57 * x < y return -1
58 * x > y return 1
59 */
60void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070061 RegLocation rl_src2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070062 FlushAllRegs();
63 LockCallTemps(); // Prepare for explicit register usage
64 LoadValueDirectWideFixed(rl_src1, r0, r1);
65 LoadValueDirectWideFixed(rl_src2, r2, r3);
66 // Compute (r1:r0) = (r1:r0) - (r3:r2)
67 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
68 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
69 NewLIR2(kX86Set8R, r2, kX86CondL); // r2 = (r1:r0) < (r3:r2) ? 1 : 0
70 NewLIR2(kX86Movzx8RR, r2, r2);
71 OpReg(kOpNeg, r2); // r2 = -r2
72 OpRegReg(kOpOr, r0, r1); // r0 = high | low - sets ZF
73 NewLIR2(kX86Set8R, r0, kX86CondNz); // r0 = (r1:r0) != (r3:r2) ? 1 : 0
74 NewLIR2(kX86Movzx8RR, r0, r0);
75 OpRegReg(kOpOr, r0, r2); // r0 = r0 | r2
76 RegLocation rl_result = LocCReturn();
77 StoreValue(rl_dest, rl_result);
78}
79
80X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
81 switch (cond) {
82 case kCondEq: return kX86CondEq;
83 case kCondNe: return kX86CondNe;
84 case kCondCs: return kX86CondC;
85 case kCondCc: return kX86CondNc;
Vladimir Marko58af1f92013-12-19 13:31:15 +000086 case kCondUlt: return kX86CondC;
87 case kCondUge: return kX86CondNc;
Brian Carlstrom7940e442013-07-12 13:46:57 -070088 case kCondMi: return kX86CondS;
89 case kCondPl: return kX86CondNs;
90 case kCondVs: return kX86CondO;
91 case kCondVc: return kX86CondNo;
92 case kCondHi: return kX86CondA;
93 case kCondLs: return kX86CondBe;
94 case kCondGe: return kX86CondGe;
95 case kCondLt: return kX86CondL;
96 case kCondGt: return kX86CondG;
97 case kCondLe: return kX86CondLe;
98 case kCondAl:
99 case kCondNv: LOG(FATAL) << "Should not reach here";
100 }
101 return kX86CondO;
102}
103
104LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700105 LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700106 NewLIR2(kX86Cmp32RR, src1, src2);
107 X86ConditionCode cc = X86ConditionEncoding(cond);
108 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
109 cc);
110 branch->target = target;
111 return branch;
112}
113
114LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700115 int check_value, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700116 if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
117 // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
118 NewLIR2(kX86Test32RR, reg, reg);
119 } else {
120 NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value);
121 }
122 X86ConditionCode cc = X86ConditionEncoding(cond);
123 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
124 branch->target = target;
125 return branch;
126}
127
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700128LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700129 if (X86_FPREG(r_dest) || X86_FPREG(r_src))
130 return OpFpRegCopy(r_dest, r_src);
131 LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
132 r_dest, r_src);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800133 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700134 res->flags.is_nop = true;
135 }
136 return res;
137}
138
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700139LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700140 LIR *res = OpRegCopyNoInsert(r_dest, r_src);
141 AppendLIR(res);
142 return res;
143}
144
145void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700146 int src_lo, int src_hi) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700147 bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi);
148 bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi);
149 assert(X86_FPREG(src_lo) == X86_FPREG(src_hi));
150 assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi));
151 if (dest_fp) {
152 if (src_fp) {
153 OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
154 } else {
155 // TODO: Prevent this from happening in the code. The result is often
156 // unused or could have been loaded more easily from memory.
157 NewLIR2(kX86MovdxrRR, dest_lo, src_lo);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000158 dest_hi = AllocTempDouble();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700159 NewLIR2(kX86MovdxrRR, dest_hi, src_hi);
Razvan A Lupusoruf43adf62014-01-28 09:25:52 -0800160 NewLIR2(kX86PunpckldqRR, dest_lo, dest_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000161 FreeTemp(dest_hi);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700162 }
163 } else {
164 if (src_fp) {
165 NewLIR2(kX86MovdrxRR, dest_lo, src_lo);
166 NewLIR2(kX86PsrlqRI, src_lo, 32);
167 NewLIR2(kX86MovdrxRR, dest_hi, src_lo);
168 } else {
169 // Handle overlap
170 if (src_hi == dest_lo) {
171 OpRegCopy(dest_hi, src_hi);
172 OpRegCopy(dest_lo, src_lo);
173 } else {
174 OpRegCopy(dest_lo, src_lo);
175 OpRegCopy(dest_hi, src_hi);
176 }
177 }
178 }
179}
180
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700181void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800182 RegLocation rl_result;
183 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
184 RegLocation rl_dest = mir_graph_->GetDest(mir);
185 rl_src = LoadValue(rl_src, kCoreReg);
186
187 // The kMirOpSelect has two variants, one for constants and one for moves.
188 const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
189
190 if (is_constant_case) {
191 int true_val = mir->dalvikInsn.vB;
192 int false_val = mir->dalvikInsn.vC;
193 rl_result = EvalLoc(rl_dest, kCoreReg, true);
194
195 /*
196 * 1) When the true case is zero and result_reg is not same as src_reg:
197 * xor result_reg, result_reg
198 * cmp $0, src_reg
199 * mov t1, $false_case
200 * cmovnz result_reg, t1
201 * 2) When the false case is zero and result_reg is not same as src_reg:
202 * xor result_reg, result_reg
203 * cmp $0, src_reg
204 * mov t1, $true_case
205 * cmovz result_reg, t1
206 * 3) All other cases (we do compare first to set eflags):
207 * cmp $0, src_reg
208 * mov result_reg, $true_case
209 * mov t1, $false_case
210 * cmovnz result_reg, t1
211 */
212 const bool result_reg_same_as_src = (rl_src.location == kLocPhysReg && rl_src.low_reg == rl_result.low_reg);
213 const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
214 const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
215 const bool catch_all_case = !(true_zero_case || false_zero_case);
216
217 if (true_zero_case || false_zero_case) {
218 OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
219 }
220
221 if (true_zero_case || false_zero_case || catch_all_case) {
222 OpRegImm(kOpCmp, rl_src.low_reg, 0);
223 }
224
225 if (catch_all_case) {
226 OpRegImm(kOpMov, rl_result.low_reg, true_val);
227 }
228
229 if (true_zero_case || false_zero_case || catch_all_case) {
230 int immediateForTemp = false_zero_case ? true_val : false_val;
231 int temp1_reg = AllocTemp();
232 OpRegImm(kOpMov, temp1_reg, immediateForTemp);
233
234 ConditionCode cc = false_zero_case ? kCondEq : kCondNe;
235 OpCondRegReg(kOpCmov, cc, rl_result.low_reg, temp1_reg);
236
237 FreeTemp(temp1_reg);
238 }
239 } else {
240 RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
241 RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
242 rl_true = LoadValue(rl_true, kCoreReg);
243 rl_false = LoadValue(rl_false, kCoreReg);
244 rl_result = EvalLoc(rl_dest, kCoreReg, true);
245
246 /*
247 * 1) When true case is already in place:
248 * cmp $0, src_reg
249 * cmovnz result_reg, false_reg
250 * 2) When false case is already in place:
251 * cmp $0, src_reg
252 * cmovz result_reg, true_reg
253 * 3) When neither cases are in place:
254 * cmp $0, src_reg
255 * mov result_reg, true_reg
256 * cmovnz result_reg, false_reg
257 */
258
259 // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
260 OpRegImm(kOpCmp, rl_src.low_reg, 0);
261
262 if (rl_result.low_reg == rl_true.low_reg) {
263 OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
264 } else if (rl_result.low_reg == rl_false.low_reg) {
265 OpCondRegReg(kOpCmov, kCondEq, rl_result.low_reg, rl_true.low_reg);
266 } else {
267 OpRegCopy(rl_result.low_reg, rl_true.low_reg);
268 OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
269 }
270 }
271
272 StoreValue(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700273}
274
275void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
buzbee0d829482013-10-11 15:24:55 -0700276 LIR* taken = &block_label_list_[bb->taken];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700277 RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
278 RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
Vladimir Markoa8946072014-01-22 10:30:44 +0000279 ConditionCode ccode = mir->meta.ccode;
Mark Mendell412d4f82013-12-18 13:32:36 -0800280
281 if (rl_src1.is_const) {
282 std::swap(rl_src1, rl_src2);
283 ccode = FlipComparisonOrder(ccode);
284 }
285 if (rl_src2.is_const) {
286 // Do special compare/branch against simple const operand
287 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
288 GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
289 return;
290 }
291
Brian Carlstrom7940e442013-07-12 13:46:57 -0700292 FlushAllRegs();
293 LockCallTemps(); // Prepare for explicit register usage
294 LoadValueDirectWideFixed(rl_src1, r0, r1);
295 LoadValueDirectWideFixed(rl_src2, r2, r3);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700296 // Swap operands and condition code to prevent use of zero flag.
297 if (ccode == kCondLe || ccode == kCondGt) {
298 // Compute (r3:r2) = (r3:r2) - (r1:r0)
299 OpRegReg(kOpSub, r2, r0); // r2 = r2 - r0
300 OpRegReg(kOpSbc, r3, r1); // r3 = r3 - r1 - CF
301 } else {
302 // Compute (r1:r0) = (r1:r0) - (r3:r2)
303 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
304 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
305 }
306 switch (ccode) {
307 case kCondEq:
308 case kCondNe:
309 OpRegReg(kOpOr, r0, r1); // r0 = r0 | r1
310 break;
311 case kCondLe:
312 ccode = kCondGe;
313 break;
314 case kCondGt:
315 ccode = kCondLt;
316 break;
317 case kCondLt:
318 case kCondGe:
319 break;
320 default:
321 LOG(FATAL) << "Unexpected ccode: " << ccode;
322 }
323 OpCondBranch(ccode, taken);
324}
325
Mark Mendell412d4f82013-12-18 13:32:36 -0800326void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
327 int64_t val, ConditionCode ccode) {
328 int32_t val_lo = Low32Bits(val);
329 int32_t val_hi = High32Bits(val);
330 LIR* taken = &block_label_list_[bb->taken];
331 LIR* not_taken = &block_label_list_[bb->fall_through];
332 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
333 int32_t low_reg = rl_src1.low_reg;
334 int32_t high_reg = rl_src1.high_reg;
335
336 if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
337 int t_reg = AllocTemp();
338 OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
339 FreeTemp(t_reg);
340 OpCondBranch(ccode, taken);
341 return;
342 }
343
344 OpRegImm(kOpCmp, high_reg, val_hi);
345 switch (ccode) {
346 case kCondEq:
347 case kCondNe:
348 OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
349 break;
350 case kCondLt:
351 OpCondBranch(kCondLt, taken);
352 OpCondBranch(kCondGt, not_taken);
353 ccode = kCondUlt;
354 break;
355 case kCondLe:
356 OpCondBranch(kCondLt, taken);
357 OpCondBranch(kCondGt, not_taken);
358 ccode = kCondLs;
359 break;
360 case kCondGt:
361 OpCondBranch(kCondGt, taken);
362 OpCondBranch(kCondLt, not_taken);
363 ccode = kCondHi;
364 break;
365 case kCondGe:
366 OpCondBranch(kCondGt, taken);
367 OpCondBranch(kCondLt, not_taken);
368 ccode = kCondUge;
369 break;
370 default:
371 LOG(FATAL) << "Unexpected ccode: " << ccode;
372 }
373 OpCmpImmBranch(ccode, low_reg, val_lo, taken);
374}
375
Mark Mendell2bf31e62014-01-23 12:13:40 -0800376void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
377 // It does not make sense to calculate magic and shift for zero divisor.
378 DCHECK_NE(divisor, 0);
379
380 /* According to H.S.Warren's Hacker's Delight Chapter 10 and
381 * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
382 * The magic number M and shift S can be calculated in the following way:
383 * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
384 * where divisor(d) >=2.
385 * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
386 * where divisor(d) <= -2.
387 * Thus nc can be calculated like:
388 * nc = 2^31 + 2^31 % d - 1, where d >= 2
389 * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
390 *
391 * So the shift p is the smallest p satisfying
392 * 2^p > nc * (d - 2^p % d), where d >= 2
393 * 2^p > nc * (d + 2^p % d), where d <= -2.
394 *
395 * the magic number M is calcuated by
396 * M = (2^p + d - 2^p % d) / d, where d >= 2
397 * M = (2^p - d - 2^p % d) / d, where d <= -2.
398 *
399 * Notice that p is always bigger than or equal to 32, so we just return 32-p as
400 * the shift number S.
401 */
402
403 int32_t p = 31;
404 const uint32_t two31 = 0x80000000U;
405
406 // Initialize the computations.
407 uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
408 uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
409 uint32_t abs_nc = tmp - 1 - tmp % abs_d;
410 uint32_t quotient1 = two31 / abs_nc;
411 uint32_t remainder1 = two31 % abs_nc;
412 uint32_t quotient2 = two31 / abs_d;
413 uint32_t remainder2 = two31 % abs_d;
414
415 /*
416 * To avoid handling both positive and negative divisor, Hacker's Delight
417 * introduces a method to handle these 2 cases together to avoid duplication.
418 */
419 uint32_t delta;
420 do {
421 p++;
422 quotient1 = 2 * quotient1;
423 remainder1 = 2 * remainder1;
424 if (remainder1 >= abs_nc) {
425 quotient1++;
426 remainder1 = remainder1 - abs_nc;
427 }
428 quotient2 = 2 * quotient2;
429 remainder2 = 2 * remainder2;
430 if (remainder2 >= abs_d) {
431 quotient2++;
432 remainder2 = remainder2 - abs_d;
433 }
434 delta = abs_d - remainder2;
435 } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
436
437 magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
438 shift = p - 32;
439}
440
Brian Carlstrom7940e442013-07-12 13:46:57 -0700441RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700442 int lit, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700443 LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
444 return rl_dest;
445}
446
Mark Mendell2bf31e62014-01-23 12:13:40 -0800447RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
448 int imm, bool is_div) {
449 // Use a multiply (and fixup) to perform an int div/rem by a constant.
450
451 // We have to use fixed registers, so flush all the temps.
452 FlushAllRegs();
453 LockCallTemps(); // Prepare for explicit register usage.
454
455 // Assume that the result will be in EDX.
456 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
457 r2, INVALID_REG, INVALID_SREG, INVALID_SREG};
458
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700459 // handle div/rem by 1 special case.
460 if (imm == 1) {
Mark Mendell2bf31e62014-01-23 12:13:40 -0800461 if (is_div) {
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700462 // x / 1 == x.
463 StoreValue(rl_result, rl_src);
464 } else {
465 // x % 1 == 0.
466 LoadConstantNoClobber(r0, 0);
467 // For this case, return the result in EAX.
468 rl_result.low_reg = r0;
469 }
470 } else if (imm == -1) { // handle 0x80000000 / -1 special case.
471 if (is_div) {
472 LIR *minint_branch = 0;
Mark Mendell2bf31e62014-01-23 12:13:40 -0800473 LoadValueDirectFixed(rl_src, r0);
474 OpRegImm(kOpCmp, r0, 0x80000000);
475 minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
476
477 // for x != MIN_INT, x / -1 == -x.
478 NewLIR1(kX86Neg32R, r0);
479
480 LIR* branch_around = NewLIR1(kX86Jmp8, 0);
481 // The target for cmp/jmp above.
482 minint_branch->target = NewLIR0(kPseudoTargetLabel);
483 // EAX already contains the right value (0x80000000),
484 branch_around->target = NewLIR0(kPseudoTargetLabel);
485 } else {
486 // x % -1 == 0.
487 LoadConstantNoClobber(r0, 0);
488 }
489 // For this case, return the result in EAX.
490 rl_result.low_reg = r0;
491 } else {
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700492 CHECK(imm <= -2 || imm >= 2);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800493 // Use H.S.Warren's Hacker's Delight Chapter 10 and
494 // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
495 int magic, shift;
496 CalculateMagicAndShift(imm, magic, shift);
497
498 /*
499 * For imm >= 2,
500 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
501 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
502 * For imm <= -2,
503 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
504 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
505 * We implement this algorithm in the following way:
506 * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
507 * 2. if imm > 0 and magic < 0, add numerator to EDX
508 * if imm < 0 and magic > 0, sub numerator from EDX
509 * 3. if S !=0, SAR S bits for EDX
510 * 4. add 1 to EDX if EDX < 0
511 * 5. Thus, EDX is the quotient
512 */
513
514 // Numerator into EAX.
515 int numerator_reg = -1;
516 if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
517 // We will need the value later.
518 if (rl_src.location == kLocPhysReg) {
519 // We can use it directly.
520 DCHECK(rl_src.low_reg != r0 && rl_src.low_reg != r2);
521 numerator_reg = rl_src.low_reg;
522 } else {
523 LoadValueDirectFixed(rl_src, r1);
524 numerator_reg = r1;
525 }
526 OpRegCopy(r0, numerator_reg);
527 } else {
528 // Only need this once. Just put it into EAX.
529 LoadValueDirectFixed(rl_src, r0);
530 }
531
532 // EDX = magic.
533 LoadConstantNoClobber(r2, magic);
534
535 // EDX:EAX = magic & dividend.
536 NewLIR1(kX86Imul32DaR, r2);
537
538 if (imm > 0 && magic < 0) {
539 // Add numerator to EDX.
540 DCHECK_NE(numerator_reg, -1);
541 NewLIR2(kX86Add32RR, r2, numerator_reg);
542 } else if (imm < 0 && magic > 0) {
543 DCHECK_NE(numerator_reg, -1);
544 NewLIR2(kX86Sub32RR, r2, numerator_reg);
545 }
546
547 // Do we need the shift?
548 if (shift != 0) {
549 // Shift EDX by 'shift' bits.
550 NewLIR2(kX86Sar32RI, r2, shift);
551 }
552
553 // Add 1 to EDX if EDX < 0.
554
555 // Move EDX to EAX.
556 OpRegCopy(r0, r2);
557
558 // Move sign bit to bit 0, zeroing the rest.
559 NewLIR2(kX86Shr32RI, r2, 31);
560
561 // EDX = EDX + EAX.
562 NewLIR2(kX86Add32RR, r2, r0);
563
564 // Quotient is in EDX.
565 if (!is_div) {
566 // We need to compute the remainder.
567 // Remainder is divisor - (quotient * imm).
568 DCHECK_NE(numerator_reg, -1);
569 OpRegCopy(r0, numerator_reg);
570
571 // EAX = numerator * imm.
572 OpRegRegImm(kOpMul, r2, r2, imm);
573
574 // EDX -= EAX.
575 NewLIR2(kX86Sub32RR, r0, r2);
576
577 // For this case, return the result in EAX.
578 rl_result.low_reg = r0;
579 }
580 }
581
582 return rl_result;
583}
584
Brian Carlstrom7940e442013-07-12 13:46:57 -0700585RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700586 int reg_hi, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700587 LOG(FATAL) << "Unexpected use of GenDivRem for x86";
588 return rl_dest;
589}
590
Mark Mendell2bf31e62014-01-23 12:13:40 -0800591RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
592 RegLocation rl_src2, bool is_div, bool check_zero) {
593 // We have to use fixed registers, so flush all the temps.
594 FlushAllRegs();
595 LockCallTemps(); // Prepare for explicit register usage.
596
597 // Load LHS into EAX.
598 LoadValueDirectFixed(rl_src1, r0);
599
600 // Load RHS into EBX.
601 LoadValueDirectFixed(rl_src2, r1);
602
603 // Copy LHS sign bit into EDX.
604 NewLIR0(kx86Cdq32Da);
605
606 if (check_zero) {
607 // Handle division by zero case.
608 GenImmedCheck(kCondEq, r1, 0, kThrowDivZero);
609 }
610
611 // Have to catch 0x80000000/-1 case, or we will get an exception!
612 OpRegImm(kOpCmp, r1, -1);
613 LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
614
615 // RHS is -1.
616 OpRegImm(kOpCmp, r0, 0x80000000);
617 LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
618
619 // In 0x80000000/-1 case.
620 if (!is_div) {
621 // For DIV, EAX is already right. For REM, we need EDX 0.
622 LoadConstantNoClobber(r2, 0);
623 }
624 LIR* done = NewLIR1(kX86Jmp8, 0);
625
626 // Expected case.
627 minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
628 minint_branch->target = minus_one_branch->target;
629 NewLIR1(kX86Idivmod32DaR, r1);
630 done->target = NewLIR0(kPseudoTargetLabel);
631
632 // Result is in EAX for div and EDX for rem.
633 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
634 r0, INVALID_REG, INVALID_SREG, INVALID_SREG};
635 if (!is_div) {
636 rl_result.low_reg = r2;
637 }
638 return rl_result;
639}
640
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700641bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700642 DCHECK_EQ(cu_->instruction_set, kX86);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800643
644 // Get the two arguments to the invoke and place them in GP registers.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700645 RegLocation rl_src1 = info->args[0];
646 RegLocation rl_src2 = info->args[1];
647 rl_src1 = LoadValue(rl_src1, kCoreReg);
648 rl_src2 = LoadValue(rl_src2, kCoreReg);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800649
Brian Carlstrom7940e442013-07-12 13:46:57 -0700650 RegLocation rl_dest = InlineTarget(info);
651 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800652
653 /*
654 * If the result register is the same as the second element, then we need to be careful.
655 * The reason is that the first copy will inadvertently clobber the second element with
656 * the first one thus yielding the wrong result. Thus we do a swap in that case.
657 */
658 if (rl_result.low_reg == rl_src2.low_reg) {
659 std::swap(rl_src1, rl_src2);
660 }
661
662 // Pick the first integer as min/max.
663 OpRegCopy(rl_result.low_reg, rl_src1.low_reg);
664
665 // If the integers are both in the same register, then there is nothing else to do
666 // because they are equal and we have already moved one into the result.
667 if (rl_src1.low_reg != rl_src2.low_reg) {
668 // It is possible we didn't pick correctly so do the actual comparison now.
669 OpRegReg(kOpCmp, rl_src1.low_reg, rl_src2.low_reg);
670
671 // Conditionally move the other integer into the destination register.
672 ConditionCode condition_code = is_min ? kCondGt : kCondLt;
673 OpCondRegReg(kOpCmov, condition_code, rl_result.low_reg, rl_src2.low_reg);
674 }
675
Brian Carlstrom7940e442013-07-12 13:46:57 -0700676 StoreValue(rl_dest, rl_result);
677 return true;
678}
679
Vladimir Markoe508a202013-11-04 15:24:22 +0000680bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
681 RegLocation rl_src_address = info->args[0]; // long address
682 rl_src_address.wide = 0; // ignore high half in info->args[1]
Mark Mendell55d0eac2014-02-06 11:02:52 -0800683 RegLocation rl_dest = size == kLong ? InlineTargetWide(info) : InlineTarget(info);
Vladimir Markoe508a202013-11-04 15:24:22 +0000684 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
685 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
686 if (size == kLong) {
687 // Unaligned access is allowed on x86.
688 LoadBaseDispWide(rl_address.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
689 StoreValueWide(rl_dest, rl_result);
690 } else {
691 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
692 // Unaligned access is allowed on x86.
693 LoadBaseDisp(rl_address.low_reg, 0, rl_result.low_reg, size, INVALID_SREG);
694 StoreValue(rl_dest, rl_result);
695 }
696 return true;
697}
698
699bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
700 RegLocation rl_src_address = info->args[0]; // long address
701 rl_src_address.wide = 0; // ignore high half in info->args[1]
702 RegLocation rl_src_value = info->args[2]; // [size] value
703 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
704 if (size == kLong) {
705 // Unaligned access is allowed on x86.
706 RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
707 StoreBaseDispWide(rl_address.low_reg, 0, rl_value.low_reg, rl_value.high_reg);
708 } else {
709 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
710 // Unaligned access is allowed on x86.
711 RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
712 StoreBaseDisp(rl_address.low_reg, 0, rl_value.low_reg, size);
713 }
714 return true;
715}
716
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700717void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700718 NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset);
719}
720
Ian Rogers468532e2013-08-05 10:56:33 -0700721void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) {
722 NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700723}
724
Vladimir Marko1c282e22013-11-21 14:49:47 +0000725bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
Vladimir Markoc29bb612013-11-27 16:47:25 +0000726 DCHECK_EQ(cu_->instruction_set, kX86);
727 // Unused - RegLocation rl_src_unsafe = info->args[0];
728 RegLocation rl_src_obj = info->args[1]; // Object - known non-null
729 RegLocation rl_src_offset = info->args[2]; // long low
730 rl_src_offset.wide = 0; // ignore high half in info->args[3]
731 RegLocation rl_src_expected = info->args[4]; // int, long or Object
732 // If is_long, high half is in info->args[5]
733 RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object
734 // If is_long, high half is in info->args[7]
735
736 if (is_long) {
Vladimir Marko70b797d2013-12-03 15:25:24 +0000737 FlushAllRegs();
738 LockCallTemps();
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000739 LoadValueDirectWideFixed(rl_src_expected, rAX, rDX);
740 LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000741 NewLIR1(kX86Push32R, rDI);
742 MarkTemp(rDI);
743 LockTemp(rDI);
744 NewLIR1(kX86Push32R, rSI);
745 MarkTemp(rSI);
746 LockTemp(rSI);
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000747 const int push_offset = 4 /* push edi */ + 4 /* push esi */;
748 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rDI);
749 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rSI);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000750 NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
751 FreeTemp(rSI);
752 UnmarkTemp(rSI);
753 NewLIR1(kX86Pop32R, rSI);
754 FreeTemp(rDI);
755 UnmarkTemp(rDI);
756 NewLIR1(kX86Pop32R, rDI);
757 FreeCallTemps();
Vladimir Markoc29bb612013-11-27 16:47:25 +0000758 } else {
759 // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
760 FlushReg(r0);
761 LockTemp(r0);
762
763 // Release store semantics, get the barrier out of the way. TODO: revisit
764 GenMemBarrier(kStoreLoad);
765
766 RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
767 RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
768
769 if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
770 // Mark card for object assuming new value is stored.
771 FreeTemp(r0); // Temporarily release EAX for MarkGCCard().
772 MarkGCCard(rl_new_value.low_reg, rl_object.low_reg);
773 LockTemp(r0);
774 }
775
776 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
777 LoadValueDirect(rl_src_expected, r0);
778 NewLIR5(kX86LockCmpxchgAR, rl_object.low_reg, rl_offset.low_reg, 0, 0, rl_new_value.low_reg);
779
780 FreeTemp(r0);
781 }
782
783 // Convert ZF to boolean
784 RegLocation rl_dest = InlineTarget(info); // boolean place for result
785 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
786 NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondZ);
787 NewLIR2(kX86Movzx8RR, rl_result.low_reg, rl_result.low_reg);
788 StoreValue(rl_dest, rl_result);
789 return true;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700790}
791
792LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800793 CHECK(base_of_code_ != nullptr);
794
795 // Address the start of the method
796 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
797 LoadValueDirectFixed(rl_method, reg);
798 store_method_addr_used_ = true;
799
800 // Load the proper value from the literal area.
801 // We don't know the proper offset for the value, so pick one that will force
802 // 4 byte offset. We will fix this up in the assembler later to have the right
803 // value.
804 LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg, reg, 256, 0, 0, target);
805 res->target = target;
806 res->flags.fixup = kFixupLoad;
807 SetMemRefType(res, true, kLiteral);
808 store_method_addr_used_ = true;
809 return res;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700810}
811
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700812LIR* X86Mir2Lir::OpVldm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700813 LOG(FATAL) << "Unexpected use of OpVldm for x86";
814 return NULL;
815}
816
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700817LIR* X86Mir2Lir::OpVstm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700818 LOG(FATAL) << "Unexpected use of OpVstm for x86";
819 return NULL;
820}
821
822void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
823 RegLocation rl_result, int lit,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700824 int first_bit, int second_bit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700825 int t_reg = AllocTemp();
826 OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, second_bit - first_bit);
827 OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, t_reg);
828 FreeTemp(t_reg);
829 if (first_bit != 0) {
830 OpRegRegImm(kOpLsl, rl_result.low_reg, rl_result.low_reg, first_bit);
831 }
832}
833
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700834void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) {
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800835 // We are not supposed to clobber either of the provided registers, so allocate
836 // a temporary to use for the check.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700837 int t_reg = AllocTemp();
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800838
839 // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700840 OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi);
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800841
842 // In case of zero, throw ArithmeticException.
843 GenCheck(kCondEq, kThrowDivZero);
844
845 // The temp is no longer needed so free it at this time.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700846 FreeTemp(t_reg);
847}
848
849// Test suspend flag, return target of taken suspend branch
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700850LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
Ian Rogers468532e2013-08-05 10:56:33 -0700851 OpTlsCmp(Thread::ThreadFlagsOffset(), 0);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700852 return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
853}
854
855// Decrement register and branch on condition
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700856LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700857 OpRegImm(kOpSub, reg, 1);
Yixin Shoua0dac3e2014-01-23 05:01:22 -0800858 return OpCondBranch(c_code, target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700859}
860
buzbee11b63d12013-08-27 07:34:17 -0700861bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700862 RegLocation rl_src, RegLocation rl_dest, int lit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700863 LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
864 return false;
865}
866
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700867LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700868 LOG(FATAL) << "Unexpected use of OpIT in x86";
869 return NULL;
870}
871
Mark Mendell4708dcd2014-01-22 09:05:18 -0800872void X86Mir2Lir::GenImulRegImm(int dest, int src, int val) {
873 switch (val) {
874 case 0:
875 NewLIR2(kX86Xor32RR, dest, dest);
876 break;
877 case 1:
878 OpRegCopy(dest, src);
879 break;
880 default:
881 OpRegRegImm(kOpMul, dest, src, val);
882 break;
883 }
884}
885
886void X86Mir2Lir::GenImulMemImm(int dest, int sreg, int displacement, int val) {
887 LIR *m;
888 switch (val) {
889 case 0:
890 NewLIR2(kX86Xor32RR, dest, dest);
891 break;
892 case 1:
893 LoadBaseDisp(rX86_SP, displacement, dest, kWord, sreg);
894 break;
895 default:
896 m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest, rX86_SP,
897 displacement, val);
898 AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
899 break;
900 }
901}
902
Mark Mendelle02d48f2014-01-15 11:19:23 -0800903void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700904 RegLocation rl_src2) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800905 if (rl_src1.is_const) {
906 std::swap(rl_src1, rl_src2);
907 }
908 // Are we multiplying by a constant?
909 if (rl_src2.is_const) {
910 // Do special compare/branch against simple const operand
911 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
912 if (val == 0) {
913 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
914 OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
915 OpRegReg(kOpXor, rl_result.high_reg, rl_result.high_reg);
916 StoreValueWide(rl_dest, rl_result);
917 return;
918 } else if (val == 1) {
919 rl_src1 = EvalLocWide(rl_src1, kCoreReg, true);
920 StoreValueWide(rl_dest, rl_src1);
921 return;
922 } else if (val == 2) {
923 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
924 return;
925 } else if (IsPowerOfTwo(val)) {
926 int shift_amount = LowestSetBit(val);
927 if (!BadOverlap(rl_src1, rl_dest)) {
928 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
929 RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
930 rl_src1, shift_amount);
931 StoreValueWide(rl_dest, rl_result);
932 return;
933 }
934 }
935
936 // Okay, just bite the bullet and do it.
937 int32_t val_lo = Low32Bits(val);
938 int32_t val_hi = High32Bits(val);
939 FlushAllRegs();
940 LockCallTemps(); // Prepare for explicit register usage.
941 rl_src1 = UpdateLocWide(rl_src1);
942 bool src1_in_reg = rl_src1.location == kLocPhysReg;
943 int displacement = SRegOffset(rl_src1.s_reg_low);
944
945 // ECX <- 1H * 2L
946 // EAX <- 1L * 2H
947 if (src1_in_reg) {
948 GenImulRegImm(r1, rl_src1.high_reg, val_lo);
949 GenImulRegImm(r0, rl_src1.low_reg, val_hi);
950 } else {
951 GenImulMemImm(r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
952 GenImulMemImm(r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
953 }
954
955 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
956 NewLIR2(kX86Add32RR, r1, r0);
957
958 // EAX <- 2L
959 LoadConstantNoClobber(r0, val_lo);
960
961 // EDX:EAX <- 2L * 1L (double precision)
962 if (src1_in_reg) {
963 NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
964 } else {
965 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
966 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
967 true /* is_load */, true /* is_64bit */);
968 }
969
970 // EDX <- EDX + ECX (add high words)
971 NewLIR2(kX86Add32RR, r2, r1);
972
973 // Result is EDX:EAX
974 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
975 INVALID_SREG, INVALID_SREG};
976 StoreValueWide(rl_dest, rl_result);
977 return;
978 }
979
980 // Nope. Do it the hard way
981 FlushAllRegs();
982 LockCallTemps(); // Prepare for explicit register usage.
983 rl_src1 = UpdateLocWide(rl_src1);
984 rl_src2 = UpdateLocWide(rl_src2);
985
986 // At this point, the VRs are in their home locations.
987 bool src1_in_reg = rl_src1.location == kLocPhysReg;
988 bool src2_in_reg = rl_src2.location == kLocPhysReg;
989
990 // ECX <- 1H
991 if (src1_in_reg) {
992 NewLIR2(kX86Mov32RR, r1, rl_src1.high_reg);
993 } else {
994 LoadBaseDisp(rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, r1,
995 kWord, GetSRegHi(rl_src1.s_reg_low));
996 }
997
998 // EAX <- 2H
999 if (src2_in_reg) {
1000 NewLIR2(kX86Mov32RR, r0, rl_src2.high_reg);
1001 } else {
1002 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, r0,
1003 kWord, GetSRegHi(rl_src2.s_reg_low));
1004 }
1005
1006 // EAX <- EAX * 1L (2H * 1L)
1007 if (src1_in_reg) {
1008 NewLIR2(kX86Imul32RR, r0, rl_src1.low_reg);
1009 } else {
1010 int displacement = SRegOffset(rl_src1.s_reg_low);
1011 LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
1012 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1013 true /* is_load */, true /* is_64bit */);
1014 }
1015
1016 // ECX <- ECX * 2L (1H * 2L)
1017 if (src2_in_reg) {
1018 NewLIR2(kX86Imul32RR, r1, rl_src2.low_reg);
1019 } else {
1020 int displacement = SRegOffset(rl_src2.s_reg_low);
1021 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1022 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1023 true /* is_load */, true /* is_64bit */);
1024 }
1025
1026 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
1027 NewLIR2(kX86Add32RR, r1, r0);
1028
1029 // EAX <- 2L
1030 if (src2_in_reg) {
1031 NewLIR2(kX86Mov32RR, r0, rl_src2.low_reg);
1032 } else {
1033 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, r0,
1034 kWord, rl_src2.s_reg_low);
1035 }
1036
1037 // EDX:EAX <- 2L * 1L (double precision)
1038 if (src1_in_reg) {
1039 NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
1040 } else {
1041 int displacement = SRegOffset(rl_src1.s_reg_low);
1042 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1043 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1044 true /* is_load */, true /* is_64bit */);
1045 }
1046
1047 // EDX <- EDX + ECX (add high words)
1048 NewLIR2(kX86Add32RR, r2, r1);
1049
1050 // Result is EDX:EAX
1051 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
1052 INVALID_SREG, INVALID_SREG};
1053 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001054}
Mark Mendelle02d48f2014-01-15 11:19:23 -08001055
1056void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1057 Instruction::Code op) {
1058 DCHECK_EQ(rl_dest.location, kLocPhysReg);
1059 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1060 if (rl_src.location == kLocPhysReg) {
1061 // Both operands are in registers.
1062 if (rl_dest.low_reg == rl_src.high_reg) {
1063 // The registers are the same, so we would clobber it before the use.
1064 int temp_reg = AllocTemp();
1065 OpRegCopy(temp_reg, rl_dest.low_reg);
1066 rl_src.high_reg = temp_reg;
1067 }
1068 NewLIR2(x86op, rl_dest.low_reg, rl_src.low_reg);
1069
1070 x86op = GetOpcode(op, rl_dest, rl_src, true);
1071 NewLIR2(x86op, rl_dest.high_reg, rl_src.high_reg);
1072 FreeTemp(rl_src.low_reg);
1073 FreeTemp(rl_src.high_reg);
1074 return;
1075 }
1076
1077 // RHS is in memory.
1078 DCHECK((rl_src.location == kLocDalvikFrame) ||
1079 (rl_src.location == kLocCompilerTemp));
1080 int rBase = TargetReg(kSp);
1081 int displacement = SRegOffset(rl_src.s_reg_low);
1082
1083 LIR *lir = NewLIR3(x86op, rl_dest.low_reg, rBase, displacement + LOWORD_OFFSET);
1084 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1085 true /* is_load */, true /* is64bit */);
1086 x86op = GetOpcode(op, rl_dest, rl_src, true);
1087 lir = NewLIR3(x86op, rl_dest.high_reg, rBase, displacement + HIWORD_OFFSET);
1088 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1089 true /* is_load */, true /* is64bit */);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001090}
1091
Mark Mendelle02d48f2014-01-15 11:19:23 -08001092void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1093 rl_dest = UpdateLocWide(rl_dest);
1094 if (rl_dest.location == kLocPhysReg) {
1095 // Ensure we are in a register pair
1096 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1097
1098 rl_src = UpdateLocWide(rl_src);
1099 GenLongRegOrMemOp(rl_result, rl_src, op);
1100 StoreFinalValueWide(rl_dest, rl_result);
1101 return;
1102 }
1103
1104 // It wasn't in registers, so it better be in memory.
1105 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1106 (rl_dest.location == kLocCompilerTemp));
1107 rl_src = LoadValueWide(rl_src, kCoreReg);
1108
1109 // Operate directly into memory.
1110 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1111 int rBase = TargetReg(kSp);
1112 int displacement = SRegOffset(rl_dest.s_reg_low);
1113
1114 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.low_reg);
1115 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1116 false /* is_load */, true /* is64bit */);
1117 x86op = GetOpcode(op, rl_dest, rl_src, true);
1118 lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.high_reg);
1119 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1120 false /* is_load */, true /* is64bit */);
1121 FreeTemp(rl_src.low_reg);
1122 FreeTemp(rl_src.high_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001123}
1124
Mark Mendelle02d48f2014-01-15 11:19:23 -08001125void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1126 RegLocation rl_src2, Instruction::Code op,
1127 bool is_commutative) {
1128 // Is this really a 2 operand operation?
1129 switch (op) {
1130 case Instruction::ADD_LONG_2ADDR:
1131 case Instruction::SUB_LONG_2ADDR:
1132 case Instruction::AND_LONG_2ADDR:
1133 case Instruction::OR_LONG_2ADDR:
1134 case Instruction::XOR_LONG_2ADDR:
1135 GenLongArith(rl_dest, rl_src2, op);
1136 return;
1137 default:
1138 break;
1139 }
1140
1141 if (rl_dest.location == kLocPhysReg) {
1142 RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1143
1144 // We are about to clobber the LHS, so it needs to be a temp.
1145 rl_result = ForceTempWide(rl_result);
1146
1147 // Perform the operation using the RHS.
1148 rl_src2 = UpdateLocWide(rl_src2);
1149 GenLongRegOrMemOp(rl_result, rl_src2, op);
1150
1151 // And now record that the result is in the temp.
1152 StoreFinalValueWide(rl_dest, rl_result);
1153 return;
1154 }
1155
1156 // It wasn't in registers, so it better be in memory.
1157 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1158 (rl_dest.location == kLocCompilerTemp));
1159 rl_src1 = UpdateLocWide(rl_src1);
1160 rl_src2 = UpdateLocWide(rl_src2);
1161
1162 // Get one of the source operands into temporary register.
1163 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1164 if (IsTemp(rl_src1.low_reg) && IsTemp(rl_src1.high_reg)) {
1165 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1166 } else if (is_commutative) {
1167 rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1168 // We need at least one of them to be a temporary.
1169 if (!(IsTemp(rl_src2.low_reg) && IsTemp(rl_src2.high_reg))) {
1170 rl_src1 = ForceTempWide(rl_src1);
1171 }
1172 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1173 } else {
1174 // Need LHS to be the temp.
1175 rl_src1 = ForceTempWide(rl_src1);
1176 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1177 }
1178
1179 StoreFinalValueWide(rl_dest, rl_src1);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001180}
1181
Mark Mendelle02d48f2014-01-15 11:19:23 -08001182void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001183 RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001184 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1185}
1186
1187void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1188 RegLocation rl_src1, RegLocation rl_src2) {
1189 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1190}
1191
1192void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1193 RegLocation rl_src1, RegLocation rl_src2) {
1194 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1195}
1196
1197void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1198 RegLocation rl_src1, RegLocation rl_src2) {
1199 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1200}
1201
1202void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1203 RegLocation rl_src1, RegLocation rl_src2) {
1204 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001205}
1206
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001207void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001208 rl_src = LoadValueWide(rl_src, kCoreReg);
1209 RegLocation rl_result = ForceTempWide(rl_src);
1210 if (rl_dest.low_reg == rl_src.high_reg) {
1211 // The registers are the same, so we would clobber it before the use.
1212 int temp_reg = AllocTemp();
1213 OpRegCopy(temp_reg, rl_result.low_reg);
1214 rl_result.high_reg = temp_reg;
1215 }
1216 OpRegReg(kOpNeg, rl_result.low_reg, rl_result.low_reg); // rLow = -rLow
1217 OpRegImm(kOpAdc, rl_result.high_reg, 0); // rHigh = rHigh + CF
1218 OpRegReg(kOpNeg, rl_result.high_reg, rl_result.high_reg); // rHigh = -rHigh
Brian Carlstrom7940e442013-07-12 13:46:57 -07001219 StoreValueWide(rl_dest, rl_result);
1220}
1221
Ian Rogers468532e2013-08-05 10:56:33 -07001222void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001223 X86OpCode opcode = kX86Bkpt;
1224 switch (op) {
1225 case kOpCmp: opcode = kX86Cmp32RT; break;
1226 case kOpMov: opcode = kX86Mov32RT; break;
1227 default:
1228 LOG(FATAL) << "Bad opcode: " << op;
1229 break;
1230 }
Ian Rogers468532e2013-08-05 10:56:33 -07001231 NewLIR2(opcode, r_dest, thread_offset.Int32Value());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001232}
1233
1234/*
1235 * Generate array load
1236 */
1237void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001238 RegLocation rl_index, RegLocation rl_dest, int scale) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001239 RegisterClass reg_class = oat_reg_class_by_size(size);
1240 int len_offset = mirror::Array::LengthOffset().Int32Value();
Brian Carlstrom7940e442013-07-12 13:46:57 -07001241 RegLocation rl_result;
1242 rl_array = LoadValue(rl_array, kCoreReg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001243
Mark Mendell343adb52013-12-18 06:02:17 -08001244 int data_offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001245 if (size == kLong || size == kDouble) {
1246 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1247 } else {
1248 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1249 }
1250
Mark Mendell343adb52013-12-18 06:02:17 -08001251 bool constant_index = rl_index.is_const;
1252 int32_t constant_index_value = 0;
1253 if (!constant_index) {
1254 rl_index = LoadValue(rl_index, kCoreReg);
1255 } else {
1256 constant_index_value = mir_graph_->ConstantValue(rl_index);
1257 // If index is constant, just fold it into the data offset
1258 data_offset += constant_index_value << scale;
1259 // treat as non array below
1260 rl_index.low_reg = INVALID_REG;
1261 }
1262
Brian Carlstrom7940e442013-07-12 13:46:57 -07001263 /* null object? */
1264 GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1265
1266 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001267 if (constant_index) {
1268 GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1269 constant_index_value, kThrowConstantArrayBounds);
1270 } else {
1271 GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1272 len_offset, kThrowArrayBounds);
1273 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001274 }
Mark Mendell343adb52013-12-18 06:02:17 -08001275 rl_result = EvalLoc(rl_dest, reg_class, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001276 if ((size == kLong) || (size == kDouble)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001277 LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_result.low_reg,
Brian Carlstrom7940e442013-07-12 13:46:57 -07001278 rl_result.high_reg, size, INVALID_SREG);
1279 StoreValueWide(rl_dest, rl_result);
1280 } else {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001281 LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale,
1282 data_offset, rl_result.low_reg, INVALID_REG, size,
1283 INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001284 StoreValue(rl_dest, rl_result);
1285 }
1286}
1287
1288/*
1289 * Generate array store
1290 *
1291 */
1292void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001293 RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001294 RegisterClass reg_class = oat_reg_class_by_size(size);
1295 int len_offset = mirror::Array::LengthOffset().Int32Value();
1296 int data_offset;
1297
1298 if (size == kLong || size == kDouble) {
1299 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1300 } else {
1301 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1302 }
1303
1304 rl_array = LoadValue(rl_array, kCoreReg);
Mark Mendell343adb52013-12-18 06:02:17 -08001305 bool constant_index = rl_index.is_const;
1306 int32_t constant_index_value = 0;
1307 if (!constant_index) {
1308 rl_index = LoadValue(rl_index, kCoreReg);
1309 } else {
1310 // If index is constant, just fold it into the data offset
1311 constant_index_value = mir_graph_->ConstantValue(rl_index);
1312 data_offset += constant_index_value << scale;
1313 // treat as non array below
1314 rl_index.low_reg = INVALID_REG;
1315 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001316
1317 /* null object? */
1318 GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1319
1320 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001321 if (constant_index) {
1322 GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1323 constant_index_value, kThrowConstantArrayBounds);
1324 } else {
1325 GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1326 len_offset, kThrowArrayBounds);
1327 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001328 }
1329 if ((size == kLong) || (size == kDouble)) {
1330 rl_src = LoadValueWide(rl_src, reg_class);
1331 } else {
1332 rl_src = LoadValue(rl_src, reg_class);
1333 }
1334 // If the src reg can't be byte accessed, move it to a temp first.
1335 if ((size == kSignedByte || size == kUnsignedByte) && rl_src.low_reg >= 4) {
1336 int temp = AllocTemp();
1337 OpRegCopy(temp, rl_src.low_reg);
1338 StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, temp,
1339 INVALID_REG, size, INVALID_SREG);
1340 } else {
1341 StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_src.low_reg,
1342 rl_src.high_reg, size, INVALID_SREG);
1343 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001344 if (card_mark) {
Ian Rogers773aab12013-10-14 13:50:10 -07001345 // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
Mark Mendell343adb52013-12-18 06:02:17 -08001346 if (!constant_index) {
1347 FreeTemp(rl_index.low_reg);
1348 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001349 MarkGCCard(rl_src.low_reg, rl_array.low_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001350 }
1351}
1352
Mark Mendell4708dcd2014-01-22 09:05:18 -08001353RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1354 RegLocation rl_src, int shift_amount) {
1355 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1356 switch (opcode) {
1357 case Instruction::SHL_LONG:
1358 case Instruction::SHL_LONG_2ADDR:
1359 DCHECK_NE(shift_amount, 1); // Prevent a double store from happening.
1360 if (shift_amount == 32) {
1361 OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1362 LoadConstant(rl_result.low_reg, 0);
1363 } else if (shift_amount > 31) {
1364 OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1365 FreeTemp(rl_src.high_reg);
1366 NewLIR2(kX86Sal32RI, rl_result.high_reg, shift_amount - 32);
1367 LoadConstant(rl_result.low_reg, 0);
1368 } else {
1369 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1370 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1371 NewLIR3(kX86Shld32RRI, rl_result.high_reg, rl_result.low_reg, shift_amount);
1372 NewLIR2(kX86Sal32RI, rl_result.low_reg, shift_amount);
1373 }
1374 break;
1375 case Instruction::SHR_LONG:
1376 case Instruction::SHR_LONG_2ADDR:
1377 if (shift_amount == 32) {
1378 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1379 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1380 NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1381 } else if (shift_amount > 31) {
1382 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1383 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1384 NewLIR2(kX86Sar32RI, rl_result.low_reg, shift_amount - 32);
1385 NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1386 } else {
1387 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1388 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1389 NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1390 NewLIR2(kX86Sar32RI, rl_result.high_reg, shift_amount);
1391 }
1392 break;
1393 case Instruction::USHR_LONG:
1394 case Instruction::USHR_LONG_2ADDR:
1395 if (shift_amount == 32) {
1396 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1397 LoadConstant(rl_result.high_reg, 0);
1398 } else if (shift_amount > 31) {
1399 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1400 NewLIR2(kX86Shr32RI, rl_result.low_reg, shift_amount - 32);
1401 LoadConstant(rl_result.high_reg, 0);
1402 } else {
1403 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1404 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1405 NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1406 NewLIR2(kX86Shr32RI, rl_result.high_reg, shift_amount);
1407 }
1408 break;
1409 default:
1410 LOG(FATAL) << "Unexpected case";
1411 }
1412 return rl_result;
1413}
1414
Brian Carlstrom7940e442013-07-12 13:46:57 -07001415void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
Mark Mendell4708dcd2014-01-22 09:05:18 -08001416 RegLocation rl_src, RegLocation rl_shift) {
1417 // Per spec, we only care about low 6 bits of shift amount.
1418 int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1419 if (shift_amount == 0) {
1420 rl_src = LoadValueWide(rl_src, kCoreReg);
1421 StoreValueWide(rl_dest, rl_src);
1422 return;
1423 } else if (shift_amount == 1 &&
1424 (opcode == Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1425 // Need to handle this here to avoid calling StoreValueWide twice.
1426 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1427 return;
1428 }
1429 if (BadOverlap(rl_src, rl_dest)) {
1430 GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1431 return;
1432 }
1433 rl_src = LoadValueWide(rl_src, kCoreReg);
1434 RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1435 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001436}
1437
1438void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001439 RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001440 switch (opcode) {
1441 case Instruction::ADD_LONG:
1442 case Instruction::AND_LONG:
1443 case Instruction::OR_LONG:
1444 case Instruction::XOR_LONG:
1445 if (rl_src2.is_const) {
1446 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1447 } else {
1448 DCHECK(rl_src1.is_const);
1449 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1450 }
1451 break;
1452 case Instruction::SUB_LONG:
1453 case Instruction::SUB_LONG_2ADDR:
1454 if (rl_src2.is_const) {
1455 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1456 } else {
1457 GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1458 }
1459 break;
1460 case Instruction::ADD_LONG_2ADDR:
1461 case Instruction::OR_LONG_2ADDR:
1462 case Instruction::XOR_LONG_2ADDR:
1463 case Instruction::AND_LONG_2ADDR:
1464 if (rl_src2.is_const) {
1465 GenLongImm(rl_dest, rl_src2, opcode);
1466 } else {
1467 DCHECK(rl_src1.is_const);
1468 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1469 }
1470 break;
1471 default:
1472 // Default - bail to non-const handler.
1473 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1474 break;
1475 }
1476}
1477
1478bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1479 switch (op) {
1480 case Instruction::AND_LONG_2ADDR:
1481 case Instruction::AND_LONG:
1482 return value == -1;
1483 case Instruction::OR_LONG:
1484 case Instruction::OR_LONG_2ADDR:
1485 case Instruction::XOR_LONG:
1486 case Instruction::XOR_LONG_2ADDR:
1487 return value == 0;
1488 default:
1489 return false;
1490 }
1491}
1492
1493X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1494 bool is_high_op) {
1495 bool rhs_in_mem = rhs.location != kLocPhysReg;
1496 bool dest_in_mem = dest.location != kLocPhysReg;
1497 DCHECK(!rhs_in_mem || !dest_in_mem);
1498 switch (op) {
1499 case Instruction::ADD_LONG:
1500 case Instruction::ADD_LONG_2ADDR:
1501 if (dest_in_mem) {
1502 return is_high_op ? kX86Adc32MR : kX86Add32MR;
1503 } else if (rhs_in_mem) {
1504 return is_high_op ? kX86Adc32RM : kX86Add32RM;
1505 }
1506 return is_high_op ? kX86Adc32RR : kX86Add32RR;
1507 case Instruction::SUB_LONG:
1508 case Instruction::SUB_LONG_2ADDR:
1509 if (dest_in_mem) {
1510 return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1511 } else if (rhs_in_mem) {
1512 return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1513 }
1514 return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1515 case Instruction::AND_LONG_2ADDR:
1516 case Instruction::AND_LONG:
1517 if (dest_in_mem) {
1518 return kX86And32MR;
1519 }
1520 return rhs_in_mem ? kX86And32RM : kX86And32RR;
1521 case Instruction::OR_LONG:
1522 case Instruction::OR_LONG_2ADDR:
1523 if (dest_in_mem) {
1524 return kX86Or32MR;
1525 }
1526 return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1527 case Instruction::XOR_LONG:
1528 case Instruction::XOR_LONG_2ADDR:
1529 if (dest_in_mem) {
1530 return kX86Xor32MR;
1531 }
1532 return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1533 default:
1534 LOG(FATAL) << "Unexpected opcode: " << op;
1535 return kX86Add32RR;
1536 }
1537}
1538
1539X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1540 int32_t value) {
1541 bool in_mem = loc.location != kLocPhysReg;
1542 bool byte_imm = IS_SIMM8(value);
1543 DCHECK(in_mem || !IsFpReg(loc.low_reg));
1544 switch (op) {
1545 case Instruction::ADD_LONG:
1546 case Instruction::ADD_LONG_2ADDR:
1547 if (byte_imm) {
1548 if (in_mem) {
1549 return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1550 }
1551 return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1552 }
1553 if (in_mem) {
1554 return is_high_op ? kX86Adc32MI : kX86Add32MI;
1555 }
1556 return is_high_op ? kX86Adc32RI : kX86Add32RI;
1557 case Instruction::SUB_LONG:
1558 case Instruction::SUB_LONG_2ADDR:
1559 if (byte_imm) {
1560 if (in_mem) {
1561 return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1562 }
1563 return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1564 }
1565 if (in_mem) {
1566 return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1567 }
1568 return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1569 case Instruction::AND_LONG_2ADDR:
1570 case Instruction::AND_LONG:
1571 if (byte_imm) {
1572 return in_mem ? kX86And32MI8 : kX86And32RI8;
1573 }
1574 return in_mem ? kX86And32MI : kX86And32RI;
1575 case Instruction::OR_LONG:
1576 case Instruction::OR_LONG_2ADDR:
1577 if (byte_imm) {
1578 return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1579 }
1580 return in_mem ? kX86Or32MI : kX86Or32RI;
1581 case Instruction::XOR_LONG:
1582 case Instruction::XOR_LONG_2ADDR:
1583 if (byte_imm) {
1584 return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1585 }
1586 return in_mem ? kX86Xor32MI : kX86Xor32RI;
1587 default:
1588 LOG(FATAL) << "Unexpected opcode: " << op;
1589 return kX86Add32MI;
1590 }
1591}
1592
1593void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1594 DCHECK(rl_src.is_const);
1595 int64_t val = mir_graph_->ConstantValueWide(rl_src);
1596 int32_t val_lo = Low32Bits(val);
1597 int32_t val_hi = High32Bits(val);
1598 rl_dest = UpdateLocWide(rl_dest);
1599
1600 // Can we just do this into memory?
1601 if ((rl_dest.location == kLocDalvikFrame) ||
1602 (rl_dest.location == kLocCompilerTemp)) {
1603 int rBase = TargetReg(kSp);
1604 int displacement = SRegOffset(rl_dest.s_reg_low);
1605
1606 if (!IsNoOp(op, val_lo)) {
1607 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1608 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo);
1609 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1610 false /* is_load */, true /* is64bit */);
1611 }
1612 if (!IsNoOp(op, val_hi)) {
1613 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1614 LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi);
1615 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1616 false /* is_load */, true /* is64bit */);
1617 }
1618 return;
1619 }
1620
1621 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1622 DCHECK_EQ(rl_result.location, kLocPhysReg);
1623 DCHECK(!IsFpReg(rl_result.low_reg));
1624
1625 if (!IsNoOp(op, val_lo)) {
1626 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1627 NewLIR2(x86op, rl_result.low_reg, val_lo);
1628 }
1629 if (!IsNoOp(op, val_hi)) {
1630 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1631 NewLIR2(x86op, rl_result.high_reg, val_hi);
1632 }
1633 StoreValueWide(rl_dest, rl_result);
1634}
1635
1636void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1637 RegLocation rl_src2, Instruction::Code op) {
1638 DCHECK(rl_src2.is_const);
1639 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1640 int32_t val_lo = Low32Bits(val);
1641 int32_t val_hi = High32Bits(val);
1642 rl_dest = UpdateLocWide(rl_dest);
1643 rl_src1 = UpdateLocWide(rl_src1);
1644
1645 // Can we do this directly into the destination registers?
1646 if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
1647 rl_dest.low_reg == rl_src1.low_reg && rl_dest.high_reg == rl_src1.high_reg &&
1648 !IsFpReg(rl_dest.low_reg)) {
1649 if (!IsNoOp(op, val_lo)) {
1650 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1651 NewLIR2(x86op, rl_dest.low_reg, val_lo);
1652 }
1653 if (!IsNoOp(op, val_hi)) {
1654 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1655 NewLIR2(x86op, rl_dest.high_reg, val_hi);
1656 }
1657 return;
1658 }
1659
1660 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1661 DCHECK_EQ(rl_src1.location, kLocPhysReg);
1662
1663 // We need the values to be in a temporary
1664 RegLocation rl_result = ForceTempWide(rl_src1);
1665 if (!IsNoOp(op, val_lo)) {
1666 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1667 NewLIR2(x86op, rl_result.low_reg, val_lo);
1668 }
1669 if (!IsNoOp(op, val_hi)) {
1670 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1671 NewLIR2(x86op, rl_result.high_reg, val_hi);
1672 }
1673
1674 StoreFinalValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001675}
1676
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001677// For final classes there are no sub-classes to check and so we can answer the instance-of
1678// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1679void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1680 RegLocation rl_dest, RegLocation rl_src) {
1681 RegLocation object = LoadValue(rl_src, kCoreReg);
1682 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1683 int result_reg = rl_result.low_reg;
1684
1685 // SETcc only works with EAX..EDX.
1686 if (result_reg == object.low_reg || result_reg >= 4) {
1687 result_reg = AllocTypedTemp(false, kCoreReg);
1688 DCHECK_LT(result_reg, 4);
1689 }
1690
1691 // Assume that there is no match.
1692 LoadConstant(result_reg, 0);
1693 LIR* null_branchover = OpCmpImmBranch(kCondEq, object.low_reg, 0, NULL);
1694
1695 int check_class = AllocTypedTemp(false, kCoreReg);
1696
1697 // If Method* is already in a register, we can save a copy.
1698 RegLocation rl_method = mir_graph_->GetMethodLoc();
1699 int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1700 (sizeof(mirror::Class*) * type_idx);
1701
1702 if (rl_method.location == kLocPhysReg) {
1703 if (use_declaring_class) {
1704 LoadWordDisp(rl_method.low_reg,
1705 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1706 check_class);
1707 } else {
1708 LoadWordDisp(rl_method.low_reg,
1709 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1710 check_class);
1711 LoadWordDisp(check_class, offset_of_type, check_class);
1712 }
1713 } else {
1714 LoadCurrMethodDirect(check_class);
1715 if (use_declaring_class) {
1716 LoadWordDisp(check_class,
1717 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1718 check_class);
1719 } else {
1720 LoadWordDisp(check_class,
1721 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1722 check_class);
1723 LoadWordDisp(check_class, offset_of_type, check_class);
1724 }
1725 }
1726
1727 // Compare the computed class to the class in the object.
1728 DCHECK_EQ(object.location, kLocPhysReg);
1729 OpRegMem(kOpCmp, check_class, object.low_reg,
1730 mirror::Object::ClassOffset().Int32Value());
1731
1732 // Set the low byte of the result to 0 or 1 from the compare condition code.
1733 NewLIR2(kX86Set8R, result_reg, kX86CondEq);
1734
1735 LIR* target = NewLIR0(kPseudoTargetLabel);
1736 null_branchover->target = target;
1737 FreeTemp(check_class);
1738 if (IsTemp(result_reg)) {
1739 OpRegCopy(rl_result.low_reg, result_reg);
1740 FreeTemp(result_reg);
1741 }
1742 StoreValue(rl_dest, rl_result);
1743}
1744
Mark Mendell6607d972014-02-10 06:54:18 -08001745void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1746 bool type_known_abstract, bool use_declaring_class,
1747 bool can_assume_type_is_in_dex_cache,
1748 uint32_t type_idx, RegLocation rl_dest,
1749 RegLocation rl_src) {
1750 FlushAllRegs();
1751 // May generate a call - use explicit registers.
1752 LockCallTemps();
1753 LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 gets current Method*.
1754 int class_reg = TargetReg(kArg2); // kArg2 will hold the Class*.
1755 // Reference must end up in kArg0.
1756 if (needs_access_check) {
1757 // Check we have access to type_idx and if not throw IllegalAccessError,
1758 // Caller function returns Class* in kArg0.
1759 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
1760 type_idx, true);
1761 OpRegCopy(class_reg, TargetReg(kRet0));
1762 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1763 } else if (use_declaring_class) {
1764 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1765 LoadWordDisp(TargetReg(kArg1),
1766 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg);
1767 } else {
1768 // Load dex cache entry into class_reg (kArg2).
1769 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1770 LoadWordDisp(TargetReg(kArg1),
1771 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
1772 int32_t offset_of_type =
1773 mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
1774 * type_idx);
1775 LoadWordDisp(class_reg, offset_of_type, class_reg);
1776 if (!can_assume_type_is_in_dex_cache) {
1777 // Need to test presence of type in dex cache at runtime.
1778 LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1779 // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
1780 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true);
1781 OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path.
1782 LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* Reload Ref. */
1783 // Rejoin code paths
1784 LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1785 hop_branch->target = hop_target;
1786 }
1787 }
1788 /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
1789 RegLocation rl_result = GetReturn(false);
1790
1791 // SETcc only works with EAX..EDX.
1792 DCHECK_LT(rl_result.low_reg, 4);
1793
1794 // Is the class NULL?
1795 LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1796
1797 /* Load object->klass_. */
1798 DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1799 LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1800 /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
1801 LIR* branchover = nullptr;
1802 if (type_known_final) {
1803 // Ensure top 3 bytes of result are 0.
1804 LoadConstant(rl_result.low_reg, 0);
1805 OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
1806 // Set the low byte of the result to 0 or 1 from the compare condition code.
1807 NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondEq);
1808 } else {
1809 if (!type_known_abstract) {
1810 LoadConstant(rl_result.low_reg, 1); // Assume result succeeds.
1811 branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1812 }
1813 OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
1814 OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial));
1815 }
1816 // TODO: only clobber when type isn't final?
1817 ClobberCallerSave();
1818 /* Branch targets here. */
1819 LIR* target = NewLIR0(kPseudoTargetLabel);
1820 StoreValue(rl_dest, rl_result);
1821 branch1->target = target;
1822 if (branchover != nullptr) {
1823 branchover->target = target;
1824 }
1825}
1826
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001827void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1828 RegLocation rl_lhs, RegLocation rl_rhs) {
1829 OpKind op = kOpBkpt;
1830 bool is_div_rem = false;
1831 bool unary = false;
1832 bool shift_op = false;
1833 bool is_two_addr = false;
1834 RegLocation rl_result;
1835 switch (opcode) {
1836 case Instruction::NEG_INT:
1837 op = kOpNeg;
1838 unary = true;
1839 break;
1840 case Instruction::NOT_INT:
1841 op = kOpMvn;
1842 unary = true;
1843 break;
1844 case Instruction::ADD_INT_2ADDR:
1845 is_two_addr = true;
1846 // Fallthrough
1847 case Instruction::ADD_INT:
1848 op = kOpAdd;
1849 break;
1850 case Instruction::SUB_INT_2ADDR:
1851 is_two_addr = true;
1852 // Fallthrough
1853 case Instruction::SUB_INT:
1854 op = kOpSub;
1855 break;
1856 case Instruction::MUL_INT_2ADDR:
1857 is_two_addr = true;
1858 // Fallthrough
1859 case Instruction::MUL_INT:
1860 op = kOpMul;
1861 break;
1862 case Instruction::DIV_INT_2ADDR:
1863 is_two_addr = true;
1864 // Fallthrough
1865 case Instruction::DIV_INT:
1866 op = kOpDiv;
1867 is_div_rem = true;
1868 break;
1869 /* NOTE: returns in kArg1 */
1870 case Instruction::REM_INT_2ADDR:
1871 is_two_addr = true;
1872 // Fallthrough
1873 case Instruction::REM_INT:
1874 op = kOpRem;
1875 is_div_rem = true;
1876 break;
1877 case Instruction::AND_INT_2ADDR:
1878 is_two_addr = true;
1879 // Fallthrough
1880 case Instruction::AND_INT:
1881 op = kOpAnd;
1882 break;
1883 case Instruction::OR_INT_2ADDR:
1884 is_two_addr = true;
1885 // Fallthrough
1886 case Instruction::OR_INT:
1887 op = kOpOr;
1888 break;
1889 case Instruction::XOR_INT_2ADDR:
1890 is_two_addr = true;
1891 // Fallthrough
1892 case Instruction::XOR_INT:
1893 op = kOpXor;
1894 break;
1895 case Instruction::SHL_INT_2ADDR:
1896 is_two_addr = true;
1897 // Fallthrough
1898 case Instruction::SHL_INT:
1899 shift_op = true;
1900 op = kOpLsl;
1901 break;
1902 case Instruction::SHR_INT_2ADDR:
1903 is_two_addr = true;
1904 // Fallthrough
1905 case Instruction::SHR_INT:
1906 shift_op = true;
1907 op = kOpAsr;
1908 break;
1909 case Instruction::USHR_INT_2ADDR:
1910 is_two_addr = true;
1911 // Fallthrough
1912 case Instruction::USHR_INT:
1913 shift_op = true;
1914 op = kOpLsr;
1915 break;
1916 default:
1917 LOG(FATAL) << "Invalid word arith op: " << opcode;
1918 }
1919
1920 // Can we convert to a two address instruction?
1921 if (!is_two_addr &&
1922 (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
1923 mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
1924 is_two_addr = true;
1925 }
1926
1927 // Get the div/rem stuff out of the way.
1928 if (is_div_rem) {
1929 rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
1930 StoreValue(rl_dest, rl_result);
1931 return;
1932 }
1933
1934 if (unary) {
1935 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1936 rl_result = UpdateLoc(rl_dest);
1937 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1938 OpRegReg(op, rl_result.low_reg, rl_lhs.low_reg);
1939 } else {
1940 if (shift_op) {
1941 // X86 doesn't require masking and must use ECX.
1942 int t_reg = TargetReg(kCount); // rCX
1943 LoadValueDirectFixed(rl_rhs, t_reg);
1944 if (is_two_addr) {
1945 // Can we do this directly into memory?
1946 rl_result = UpdateLoc(rl_dest);
1947 rl_rhs = LoadValue(rl_rhs, kCoreReg);
1948 if (rl_result.location != kLocPhysReg) {
1949 // Okay, we can do this into memory
1950 OpMemReg(op, rl_result, t_reg);
1951 FreeTemp(t_reg);
1952 return;
1953 } else if (!IsFpReg(rl_result.low_reg)) {
1954 // Can do this directly into the result register
1955 OpRegReg(op, rl_result.low_reg, t_reg);
1956 FreeTemp(t_reg);
1957 StoreFinalValue(rl_dest, rl_result);
1958 return;
1959 }
1960 }
1961 // Three address form, or we can't do directly.
1962 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1963 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1964 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, t_reg);
1965 FreeTemp(t_reg);
1966 } else {
1967 // Multiply is 3 operand only (sort of).
1968 if (is_two_addr && op != kOpMul) {
1969 // Can we do this directly into memory?
1970 rl_result = UpdateLoc(rl_dest);
1971 if (rl_result.location == kLocPhysReg) {
1972 // Can we do this from memory directly?
1973 rl_rhs = UpdateLoc(rl_rhs);
1974 if (rl_rhs.location != kLocPhysReg) {
1975 OpRegMem(op, rl_result.low_reg, rl_rhs);
1976 StoreFinalValue(rl_dest, rl_result);
1977 return;
1978 } else if (!IsFpReg(rl_rhs.low_reg)) {
1979 OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
1980 StoreFinalValue(rl_dest, rl_result);
1981 return;
1982 }
1983 }
1984 rl_rhs = LoadValue(rl_rhs, kCoreReg);
1985 if (rl_result.location != kLocPhysReg) {
1986 // Okay, we can do this into memory.
1987 OpMemReg(op, rl_result, rl_rhs.low_reg);
1988 return;
1989 } else if (!IsFpReg(rl_result.low_reg)) {
1990 // Can do this directly into the result register.
1991 OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
1992 StoreFinalValue(rl_dest, rl_result);
1993 return;
1994 } else {
1995 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1996 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1997 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
1998 }
1999 } else {
2000 // Try to use reg/memory instructions.
2001 rl_lhs = UpdateLoc(rl_lhs);
2002 rl_rhs = UpdateLoc(rl_rhs);
2003 // We can't optimize with FP registers.
2004 if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2005 // Something is difficult, so fall back to the standard case.
2006 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2007 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2008 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2009 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2010 } else {
2011 // We can optimize by moving to result and using memory operands.
2012 if (rl_rhs.location != kLocPhysReg) {
2013 // Force LHS into result.
2014 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2015 LoadValueDirect(rl_lhs, rl_result.low_reg);
2016 OpRegMem(op, rl_result.low_reg, rl_rhs);
2017 } else if (rl_lhs.location != kLocPhysReg) {
2018 // RHS is in a register; LHS is in memory.
2019 if (op != kOpSub) {
2020 // Force RHS into result and operate on memory.
2021 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2022 OpRegCopy(rl_result.low_reg, rl_rhs.low_reg);
2023 OpRegMem(op, rl_result.low_reg, rl_lhs);
2024 } else {
2025 // Subtraction isn't commutative.
2026 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2027 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2028 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2029 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2030 }
2031 } else {
2032 // Both are in registers.
2033 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2034 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2035 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2036 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2037 }
2038 }
2039 }
2040 }
2041 }
2042 StoreValue(rl_dest, rl_result);
2043}
2044
2045bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2046 // If we have non-core registers, then we can't do good things.
2047 if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.low_reg)) {
2048 return false;
2049 }
2050 if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.low_reg)) {
2051 return false;
2052 }
2053
2054 // Everything will be fine :-).
2055 return true;
2056}
Brian Carlstrom7940e442013-07-12 13:46:57 -07002057} // namespace art